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Abstract 18 
 Assessing the implications of paleoclimatic and paleoenvironmental data at temporal 19 
and spatial scales that would have directly intersected with human decision-making and 20 
activity is a fundamental archaeological challenge.  This paper addresses this challenge by 21 
presenting a spatial and temporal downscaling method that can provide quantitative high-22 
spatio-temporal-resolution estimates of the local consequences of climatic change.  Using a 23 
case study in Provence (France) we demonstrate that a centennial-scale Mediterranean-wide 24 
model of Holocene climate, in conjunction with modern geospatial and climate data, can be 25 
used to generate explicit and solidly-grounded monthly estimates of temperature, 26 
precipitation, and cloudiness at landscape scales and with annual resolution, enabling 27 
consideration of climate variability at human scales and meeting the data requirements of 28 
socioecological models focused on human activity.  While the results are not reconstructions 29 
– that is, particular values are single realizations, consistent with the coarse-grained data but 30 
not individually empirically derived nor unique solutions – they provide a more suitable basis 31 
for assessing the human consequences of climate change than can coarse-grained data. 32 
 33 
Keywords: downscaling; resolution; scale; paleoclimate; climate change; human-34 
environment interactions 35 
 36 
1. Introduction 37 
 38 
 Interpreting the consequences of environmental change for past peoples is a 39 
longstanding concern of archaeology, and often the ‘hook’ for paleoclimatic or 40 
paleoenvironmental studies as well.  Developing explanatory links has remained a persistent 41 
challenge, however, and studies that are able to move beyond correlation to causation remain 42 
rare.  Much of this difficulty results from the challenge of assessing the implications of 43 
paleoclimatic and paleoenvironmental data at temporal and spatial scales that would have 44 
been directly relevant to human decision-making and activity.  We address this problem by 45 
developing a spatial and temporal downscaling method that can provide quantitative high-46 
spatiotemporal-resolution estimates of the local consequences of climatic change.  Using a 47 
case study in Provence we demonstrate that a centennial-scale Mediterranean-wide model of 48 
Holocene climate, in conjunction with modern geographic and climatic data, can be used to 49 
generate solidly-grounded monthly estimates of temperature, precipitation, and cloudiness at a 50 
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300m spatial scale and with annual resolution.  These results, it must be emphasized, are not 51 
reconstructions: they are single realizations consistent with coarse-grained data, but individual 52 
values are not directly empirically derived.  Downscaling generates one set of values 53 
consistent with the coarse-grained input data, but the results are not unique solutions 54 
(Bierkens et al., 2000, p. 111; Wu and Li, 2006, p. 35).  However, they provide a more 55 
suitable basis for assessing the human consequences of climate change than can coarse-56 
grained data, as analyses of past human-environment interaction grounded in anthropological 57 
archaeology require high spatial and temporal resolution.  Anthropological archaeological 58 
explanation relies on theoretical models of human behavior and decision-making that are 59 
necessarily grounded in human experience: spatial and temporal scales measured in hectares 60 
and years rather than regions and centuries.   61 
 In this paper we review these issues of scale and resolution in the study of past human-62 
environment interactions before demonstrating how spatial and temporal downscaling has the 63 
potential to address the challenge of relating spatially and temporally coarse-grained 64 
paleoclimate data to fine-grained anthropologically-grounded explanations of past human 65 
behavior.  We explore the application of spatial downscaling of paleoclimate data to provide 66 
high spatial resolution, and temporal downscaling to provide high temporal resolution.  This 67 
combined approach enables consideration of landscape-scale spatial variability in past 68 
climates (vital in topographically diverse landscapes in which climate effects would not have 69 
been spatially uniform) as well as consideration of interannual variability.  Such downscaling 70 
is a necessary tool for considering the human consequences of climate changes documented in 71 
spatial and temporal aggregate. 72 
 73 
2. Scale and Resolution in the study of past human-environment interactions 74 
 75 
 Description and analysis of past human-environment interactions, particularly over the 76 
long-term, comprises a fundamental goal of archaeology.  This focus underlies several of the 77 
recently-articulated “grand challenges for archaeology” (Kintigh et al., 2014), and has been 78 
singled out in 21

st
 century discussions of the discipline as central to archaeology’s 79 

contribution to interdisciplinary efforts to understand past and present socioenvironmental 80 
systems, as well as of pressing modern relevance (e.g., Van der Leeuw and Redman, 2002; 81 
Smith et al., 2012). 82 
 Analysis of long-term human-environment interactions promises improved 83 
understanding of both cultural and environmental trajectories, and provides a tool for 84 
examining the anthropogenic component of past and modern environment and climate.  It is 85 
fundamental to ongoing debates over the Anthropocene, in which archaeologists, 86 
paleoenvironmental scientists, and geologists dispute the antiquity, character, and significance 87 
of that period (e.g., Braje, 2015; Crutzen and Steffen, 2003; Erlandson and Braje, 2013; 88 
Morrison, 2015; Ruddiman, 2013; Smith and Zeder, 2013; Zalasiewicz et al., 2015).  89 
 However, such analysis continues to be challenged by problems of spatial and 90 
temporal scale and resolution (cf. Contreras, 2017).  The problem is not unique to 91 
archaeology, but central also to modern discussions of climate change: what are the local 92 
consequences of global climate?  In analytical terms, how can we move from global summary 93 
data to local characterizations that enable consideration of the human consequences of climate 94 
change?  Moreover, as the global effects of local behaviors can also be significant for large-95 
scale modeling, the inverse problem is also an important focus: in order to estimate the 96 
aggregate global impact of local behaviors, those behaviors must themselves be modeled, 97 
taking into account how diverse actors respond to local conditions. 98 
 The need to reconcile contrasting scales and resolutions results partly from evidentiary 99 
constraints, and partly from contrasting foci and explanatory mechanisms of archaeology on 100 



the one hand and paleoclimatic and paleoenvironmental science on the other.  Paleoclimatic 101 
and paleoenvironmental science often strives to achieve regional and long-term relevance, 102 
resulting in coarser (regional and centennial) scales of analysis.  In contrast, archaeological 103 
explanation relies fundamentally on anthropological models of behavior – i.e., understandings 104 
of human activity that are grounded in decision-making at local and annual scales.  As a 105 
result, linking analyses that focus on distinct scales, with varying resolutions, is vital to 106 
relating archaeological and paleoclimatic and paleoenvironmental data, and has been the 107 
focus of both practical and theoretical consideration in archaeology (e.g., Stein, 1993; Lock 108 
and Molyneaux, 2006; Robb and Pauketat, 2013; Kintigh and Ingram, 2018).  Nevertheless, 109 
analysis (and even description) of human-environment interaction remains difficult at best 110 
with coarse-grained data, and must confront basic questions of scale and resolution:  In space, 111 
what do regional-scale data mean for landscape-scale experience, and in time, what do 112 
centennial-scale data mean for annual or seasonal experience?   113 
 This problem is endemic to applications of regional modeling to archaeological 114 
explanation (cf. Brayshaw et al., 2011, p. 28): even when they succeed in revealing interesting 115 
patterning, coarse-grained models can suggest broad correlations but require finer-grained 116 
analyses if explanatory linking mechanisms are to be pursued.  High-resolution empirical data 117 
might be ideal, but it is (given the character of paleoclimatic, paleoenvironmental, and 118 
archaeological archives) rare and spatially and temporally uneven.  In their absence, when 119 
only a limited number of observations for a broad area with varied topography may be 120 
available from recorded and/or modeled data, it is possible to take modern data from that area 121 
and, presuming the climate-geography relationships to have remained relatively constant over 122 
time, reconstruct realistically spatially variable climate data.  Similarly, modern (recorded) 123 
interannual variability can serve as the basis for realistically modeling temporal variability in 124 
climate variables.  Spatial and temporal downscaling thus offer a way of taking advantage of 125 
uneven data to explore potential linking mechanisms between climate variables and human 126 
behavior, and ultimately to develop arguments that move from correlation to explanation. 127 
 128 

2.1 Downscaling  129 
 130 
 Downscaling addresses the problem of deriving small-scale values from large-scale 131 
aggregates (Bierkens et al., 2000, pp. 111–118; Wilby et al., 2004; Wu and Li, 2006, pp. 34–132 
36).  The principle is that any summary value is by its definition a product of a number of 133 
possible individual values that even when not precisely known can be probabilistically 134 
estimated. We focus here on statistical downscaling of low-resolution climatic data to enable 135 
generation of climate variables at the landscape scale.  This is based on applying relationships 136 
between high-resolution and low-resolution fields, calibrated based on time periods where 137 
both exist, to the target low-resolution field.  138 
 The climate-modeling community has explored downscaling of climate data, 139 
stimulated by the desire to address regional impacts of climate change in scenarios where 140 
global climate models (GCMs) are the primary data source (cf. Fowler et al., 2007; Wilby et 141 
al., 2004).  The focus has primarily been on future impacts, but the paleoclimate community 142 
(e.g., Korhonen et al., 2014; Levavasseur et al., 2011; Vrac et al., 2007) has also begun to 143 
explore the potential of downscaling methods as means of examining regional or implications 144 
of global models of past climate.  Geographically-based downscaling (e.g., Joly et al., 2010; 145 
Martin et al., 2013; Vrac et al., 2007) is one means of dealing with spatially heterogeneous 146 
landscapes, and is particularly valuable for applications to past climates, as geographic 147 
variables are generally stable over archaeological timescales, whereas regional climate 148 
relationships to GCMs may have been significantly different in the past (cf. Vrac et al., 2007, 149 
p. 670).   150 



 Geographically-based methods which have been applied to paleoclimatological data 151 
are based on the calibration of potentially non-linear relationships between the target high-152 
resolution variable and its low-resolution version completed by high-resolution geographical 153 
variables (topography, distance to sea, etc.; see Vrac et al., 2007).  The most appropriate 154 
calibration technique is generally recognized to be a generalized additive model (GAM) 155 
(Hastie and Tibshirani, 1990) or a multinominial logistic GAM when the variable to 156 
interpolate is categorical (Levavasseur et al., 2011, 2013), but other geostatistical methods 157 
have also been explored (e.g., Joly et al., 2010; Martin et al., 2013).  With fewer potential 158 
predictors available at higher spatial resolution and for the past, we have used simple 159 
regression to select predictor variables (described in Section 3.2.1, below). 160 
 161 

2.2 Downscaling for Archaeology – Potentials and Limitations 162 
 163 
 Archaeologists, given their field’s long interest in human-environment interactions, 164 
are often avid consumers of paleoclimate data.  However, the potential of downscaling has 165 
been largely neglected (with important recent exceptions; see Burke et al., 2014; Gauthier, 166 
2016).  When downscaling has been explored the target scales have, following the climate 167 
work, been regional (with the notable recent exception of Bocinsky and Kohler, 2014). 168 
 Spatial and temporal downscaling produces values for climate variables that, for any 169 
given pixel in any given year, are in all probability inaccurate: they are single realizations and 170 
not unique solutions.  However, in aggregate the fidelity to the areal and temporal means 171 
represented by the input paleoclimate data is high, and is based on the reasonable assumptions 172 
that 1) modern relationships between climate and geographic variables applied also in the 173 
past, and 2) 20

th
 century interannual variability resembles past interannual variability.  While 174 

the second assumption in particular may be questionable, in the absence of a local annually-175 
resolved paleoclimate archive a better model for interannual variability is unavailable. 176 
 As in any modeling exercise, the data employed might also be critiqued.  The spatial 177 
and temporal downscaling approach presented here can be applied to virtually any input data, 178 
but the accuracy of the results is wholly dependent on the accuracy of those data.  179 
Comparisons across space and time within the same dataset, however, can minimize the 180 
problem of absolute accuracy of results, and in principle one might also vary the input data if 181 
multiple sources were available.   182 
 As archaeologists are commonly consumers of paleoclimate data, the archaeological 183 
use of climate data – whether from GCMs or derived (as in our case study below) from 184 
paleoclimatic reconstructions – is likely to be offline (using previously generated results) 185 
rather than coupled to runs of global and/or regional models.  Inasmuch as that is the case, 186 
archaeologists are more likely to employ statistical downscaling than dynamical downscaling 187 
(cf. Fowler et al., 2007, pp. 1548–1552). Although the latter – coupled models able to both 188 
incorporate and enable investigation of feedbacks between human activity and climate 189 
dynamics – perhaps have the most analytical promise (cf. Wilby et al., 2004, p. 11 on human-190 
climate feedbacks for contemporary and future models and Kaplan et al., 2010 on the 191 
significance of past human activity for regional and global climate), they are also the most 192 
complex conceptually and computationally.  We address here the less optimal but 193 
nevertheless vital statistical downscaling of pre-existing climate data, which represents the 194 
more likely scenario for most archaeological practitioners and still promises to enhance 195 
archaeological interpretation of the local consequences of past climates. 196 
 Even offline, working with extant paleoclimate data/reconstructions, spatial and 197 
temporal downscaling has significant potential to enable analytical consideration of human-198 
environment interactions at the scale and resolution necessary to consider the human 199 
consequences of climate change.  Box’s dictum that “all models are wrong” (Box, 1979) is 200 



apropos, and we argue that a downscaling approach produces data that are more useful in 201 
archaeological interpretation, and less misleading, than implicit models that posit uniform 202 
climate over a large area and over long timespans.  It is important to emphasize that using 203 
paleoclimate data in archaeological interpretations without downscaling is also an exercise in 204 
modeling: it posits a direct one-to-one relationship between local and annual climates and 205 
spatially and temporally averaged regional climate data.  That being the case, we suggest that 206 
consideration of the implications virtually any method of downscaling is likely to improve 207 
archaeological interpretation. 208 
 The human experience of climate is fundamentally local and annual (if not in fact 209 
seasonal), and the consequences of changes in climate are quotidian even if they are measured 210 
in aggregate.  While the use of global or regional paleoclimate data that is rarely sub-decadal 211 
(and often much coarser) reflects the reality of data availability for most archaeological 212 
research, a downscaling approach makes it possible to explicitly consider the local and annual 213 
implications of such data.  This can also provide the requisite spatially explicit and 214 
quantitative basis for further modeling that addresses particular questions about the human 215 
past, especially past human-environment interactions, including agricultural niche modeling 216 
(e.g., Bocinsky and Kohler, 2014; d’Alpoim Guedes et al., 2016), agroecosystem modeling 217 
(e.g., Contreras et al., in press), agent-based modeling of subsistence activity (e.g., Barton et 218 
al., 2010; Kohler et al., 2012), and isoscape modeling (e.g., Kootker et al., 2016; Willmes et 219 
al., 2018).  The higher resolution produced by downscaling can enable models suited to 220 
construction of more robust arguments about the implications of past environmental change 221 
for human experience.   222 
 Preindustrial agriculture is a likely mechanism linking changing climates to 223 
socioeconomic change (Currie et al., 2015; Schwindt et al., 2016), making the relationship of 224 
settlement distributions to climate variables a potential means of examining human 225 
ecodynamics.  Archaeologists have attempted to reconstruct past ecodynamics by, for 226 
example, comparing archaeological settlement patterns against spatial patterning of modern 227 
maize productivity in Central Mexico (Gorenflo and Gale, 1986) or against potato and maize 228 
productivity in the Central Andes (Seltzer and Hastorf, 1990).  More recent efforts have 229 
involved sophisticated digital modeling of precipitation-limited maize agriculture in the U.S. 230 
Southwest (Bocinsky and Kohler, 2014) or temperature-limited cereal agriculture on the 231 
Tibetan Plateau (d’Alpoim Guedes et al., 2016).  Questions of scale and resolution are critical 232 
to the employment of these models, as topographic and climatic diversity can combine to 233 
create viable niches within larger areas that are apparently unsuitable.  As the example of the 234 
Central Andes demonstrates, the potential exploitation (as well as creation and management, 235 
cf. (Erickson, 2000; Mamani Pati et al., 2011)) of microclimates as agricultural niches 236 
suggests the importance of fine-grained analysis and consideration of the potential plasticity 237 
of thresholds. 238 
 A fourth dimension of variability can also be critical: both interannual variability and 239 
change over time can be vital parameters for inhabitants.  Temporal downscaling enables 240 
some consideration of interannual variability, potentially vital in areas where long-term means 241 
are poor summaries of annual experience (e.g., where interannual variability is high).  In areas 242 
where agricultural or foraged resources are near biological thermal or hydrologic limits (or 243 
even economic ones), long-term means may be poor indicators of subsistence viability, as 244 
periodic low minima may be an unacceptable risk.  Re-aggregration of climate data over 245 
various timespans can also enable direct comparison of one archaeological period to another, 246 
for instance across archaeologically significant thresholds. 247 
 248 
 249 
3. Applying Downscaling in Archaeology: A Case Study in Holocene Provence (France) 250 



 We illustrate the data requirements, spatial and temporal downscaling methods, and 251 
interpretive payoffs with an example from Holocene Provence. 252 

3.1 Data 253 

 We present here a computational approach that uses modern (20
th

-21
st
 century) 254 

CNRM20141 and CRU TS v. 3.232 climate data to relate climatic variables (temperature, 255 
precipitation, and cloudiness) to geographic variables (primarily elevation and distance-from-256 
the-sea3) through geographically-weighted regression.  As the geographic variables are of 257 
high spatial resolution where the climate variables are coarse (even for modern data), this 258 
relationship can then be used to predict values of climate variables at high spatial resolution.  259 
 The problem of temporal resolution is in turn addressed by generating interannual 260 
variability within reconstructed trends based on the estimated past seasonal amplitudes and 261 
the interannual variability of the modern data.  For case study region in Provence that we use 262 
here (a topographically diverse 40 km x 40 km area; see Figure 1), Guiot and Kaniewski’s 263 
(2015) Holocene climate reconstruction (HolCR) based on inverse vegetation modeling with 264 
data from 295 pollen cores provides monthly reconstructions of average daily temperature 265 
(ADT), total monthly precipitation (TMP), and % cloudiness (CLD) (see Figure 2).  These 266 
monthly values for temperature, precipitation, and % cloudiness are provided at centennial 267 
steps throughout the Holocene4, but the 2 (latitude) by 4 (longitude) spatial resolution 268 
(approximately 225 x 450 km cells at Mediterranean latitudes) means that for the study area 269 
we use here only a single value for each variable is available.  Modern data are higher 270 
resolution: for average daily temperature (TAV) and average daily precipitation (PAV) data 271 
are available on an 8km grid from the CNRM2014 simulation for the period 1951-2005, while 272 
cloudiness (CLD) data is available for the period 1951-2010 at 10’ resolution (approximately 273 
18 km at the latitude of the study area) from the CRU model.  Calculating mean TAV and 274 
cumulative PAV for each month is necessary to relate the CRNM2014 and HolCR data. 275 
 The data sources and their spatial and temporal resolutions are summarized in Table 2. 276 
 277 

3.2 Methodology: A spatial and temporal downscaling approach 278 

 We downscale in two dimensions, addressing both spatial and temporal scales.  279 
Following the hierarchical typology established by Bierkens and colleagues (2000, pp. 111–280 
144), these comprise distinct problems.   281 

 For spatial downscaling, the modern geographic and climate data described above are 282 
used to calculate relationships of geographic variables to climate variables at data points 283 
known from modern data through geographically weighted linear regression using the spgwr 284 
package (Bivand and Yu, 2015) in R (R Core Team, 2016).  All raster processing is also 285 
carried out in R, using the raster package (Hijmans and van Etten, 2016) in R.   286 

                                                        
1
A simulation model based on instrumental data, described at 

http://www.cnrm.meteo.fr/spip.php?article125 and available from the DRIAS Portal: 

http://www.drias-climat.fr/ 
2Global coverage climate data at 0.5° resolution from 1901-2014, described in (Harris et al., 2014; 

New et al., 2002), and available at https://5 

data.uea.ac.uk/cru/data/hrg/cru_ts_3.23/cruts.1506241137.v3.23/ 
3 Derived from the SRTM 30m digital elevation model (DEM) (NASA JPL, 2013).  As detailed 

below, more environmental variables could in principle be included.  In fact, for the case study, for 

each month and each climatic variable multiple environmental variables were tested and those with the 

strongest predictive value used (see Table 1).  
4 Available in the OT-Med data catalog at http://database.otmed.fr/geonetworkotmed/srv/eng/search - 

|54b9bf34-57ae-45ea-b455-9f90351e538f 

http://www.cnrm.meteo.fr/spip.php?article125
http://www.drias-climat.fr/
https://crudata.uea.ac.uk/cru/data/hrg/cru_ts_3.23/cruts.1506241137.v3.23/
https://crudata.uea.ac.uk/cru/data/hrg/cru_ts_3.23/cruts.1506241137.v3.23/
http://database.otmed.fr/geonetworkotmed/srv/eng/search#|54b9bf34-57ae-45ea-b455-9f90351e538f
http://database.otmed.fr/geonetworkotmed/srv/eng/search#|54b9bf34-57ae-45ea-b455-9f90351e538f


 For temporal downscaling, the mean, trend, seasonal, and interannual values from 287 
modern data for the study area are used to generate monthly values with a modified version of 288 
the greenbrown package (Forkel et al., 2013; Forkel and Wutzler, 2015) in R. 289 

 R code for the procedures detailed below, with reference to the data sources described 290 
in Section 3.1 and Table 2, is available in the supplementary online material.   291 

3.2.1 Spatial downscaling 292 

 The spatial downscaling that we develop here empirically relates fine-scale auxiliary 293 
information to the coarse-grained data available to derive a deterministic model.  294 
Geographically-weighted regression of modern climate and geographic time-series data is 295 
used to establish functions that relate auxiliary information (geographic characteristics) to 296 
coarse-grained paleoclimate data (temperature, precipitation, and cloudiness).  As even for 297 
past time periods geographic data are available at high resolution, they can be used to derive 298 
high-resolution climate variables from the existing low-resolution paleoclimate data. 299 
 The spatial downscaling procedure, with the input of spatially homogenous data, 300 
produces a set of spatial relationships between location and climate variables that can be used 301 
to calculate spatially variable rasters of climate variables at temporal resolution that matches 302 
the input data.  In our case study, this makes possible high-spatial-resolution climate data at 303 
centennial steps throughout the Holocene (following the resolution of Guiot and Kaniewski’s 304 
dataset). 305 
 Using a DEM larger than the study area (~3100 km

2
 rather than ~1400 km

2
), in order 306 

to increase the sample of CNRM2014 points, relationships of geographic variables to climate 307 
variables at each point are calculated by geographically weighted linear regression.  After 308 
extracting values from the rasters of the geographic variables at each point where there are 309 
CNRM2014 values for climate variables, regressions are calculated to test the value of 310 
various geographic variables as predictors of climate variables, and then to estimate the 311 
climatic variables using the values of the selected geographic variables.  312 
 Geographic variables that are the strongest predictors for our case study (determined 313 
by linear regression using the entire dataset of 54 climate datapoints in the ~3100 km

2
 area) 314 

are elevation and distance from the sea.  Irradiance – calculated in GRASS GIS (GRASS 315 
Development Team, 2016) with r.sun.daily – and latitude were also tested; neither is a 316 
significant predictor, likely as the CNRM2014 data are too spatially sparse to correlate with 317 
highly locally-variant environmental characteristics such as irradiance, aspect, topographic 318 
roughness, etc.  Modern climate data of higher spatial-resolution would allow incorporation 319 
of more predictive variables, but even with only two predictor variables that the predictive 320 
values are fairly high: mean R

2
 values (across all months) are .93 for temperature, .80 for 321 

precipitation, and .77 for cloudiness.  These regressions, in other words, can predict climate 322 
variables at an 8km resolution with a reasonable degree of confidence, and can thus be used to 323 
predict values of climate variables on the basis of geographic variables at finer spatial 324 
resolutions – i.e., limited in spatial resolution by the latter but not the former.   325 
 The selected geographic variables are then used in a geographically-weighted 326 
regression to predict values of climate variables for each cell in a 300m pixel raster (spatial 327 
resolution could be increased to the limits [30m] of the original DEM with a concomitant 328 
increase in computing time5).  For months and/or climate variables when linear regression 329 
indicates that distance from the sea is not a significant predictor, elevation alone is used (see 330 
Table 1). 331 

                                                        
5 The target resolution – here 300m – depends on analytic needs and practical concerns about 

computing time and subsequent data management. 



 For each cell the value of the target climate variable is predicted based on the specified 332 
geographic variables, taking into account all points for which both values are available within 333 
a specified search radius.  Geographically weighted regression (gwr) works to limit the 334 
smoothing of spatial variation in the data by “moving a weighted window over the data, 335 
estimating one set of coefficient values at every chosen ‘fit’ point.” (Bivand, 2015); that is, 336 
relationships between geographic and climate variables can vary locally rather than being 337 
based necessarily on a regression across the entire dataset.  In the case study here the 338 
difference between gwr and other methods is not large, but with denser data or a more 339 
spatially variable dataset gwr would in principle be preferable, as it would mirror, rather than 340 
smoothing, spatial heterogeneity in the input data. 341 
 The resulting raster is cropped to the study area.  Following this method a raster is 342 
produced for each month for each climate variable.  The rasters produced by this process –343 
300m resolution, for each month – serve as reference datasets that can be adjusted according 344 
to paleoclimate data, producing high spatial-resolution estimates of paleoclimatic conditions.   345 

3.2.2 Temporal downscaling 346 

 Temporal downscaling, as we employ it here, is a distinct procedure because it must 347 
operate without fine-scale auxiliary information, using a mechanistic model and conditionally 348 
stochastic methods.  These comprise harmonic models with parameters derived from modern 349 
interannual variability and the long-term trends and seasonal amplitudes in the coarse-grained 350 
data.  These are used to generate time-series that constitutes single realizations of the possible 351 
solutions within the parameters for the temporal scale.  The result – the generation of monthly 352 
values that are consistent with the coarse-grained averages though individual values are not 353 
directly empirically derived – requires consideration of long-term trends, seasonal amplitudes, 354 
and interannual variability.   355 
 Centennial means of climate variables for the study area throughout the Holocene are 356 
calculated from HolCR and modern reference values for the area calculated from CNRM2014 357 
and CRU data.  Centennial trends are provided by linear interpolation from the HolCR data; 358 
any three values from HolCR thus produce a continuous 200-year series, while the varying 359 
annual means of the HolCR data capture the longer-term Holocene trends.  Seasonal 360 
amplitudes are calculated from HolCR by linearly interpolating the monthly values from each 361 
centennial step and fitting two-term harmonics to each decade.  Temperature, precipitation, 362 
and cloudiness are calculated independently from one another.  Although in principle these 363 
variables are likely to be coupled, modeling those complex and dynamic relationships (the 364 
region is influenced by both Atlantic and Mediterranean climate systems) would itself be a 365 
considerable task (Fowler et al., 2007, p. 1563).  We have not attempted to model these 366 
couplings, but the covariance of these variables with the predictors should limit their 367 
divergence except in rare (stochastic) cases.   368 
 These trend and seasonal components are combined with interannual variability 369 
calculated from CNRM2014 and CRU data.  For CNRM2014 standard deviation and range of 370 
ADT and TMP are calculated from TAV and PAV for the area from 1951 – 2005, and for 371 
CRU standard deviation and range of cloudiness values are calculated from the data for 1961 372 
- 1990 by subtracting the CRU ‘cld’ values from 100.  Interannual variability throughout the 373 
Holocene apparently did not always match modern magnitudes in the region (cf. Büntgen et 374 
al., 2011; Luterbacher et al., 2006), but in the absence of specific proxy data of resolution 375 
sufficient to reconstruct interannual variability we use modern data.  376 
 The mean, trend, seasonal, and interannual values for the study area are used to 377 
generate monthly values for a selected time period.  The SimTs() function from the 378 
greenbrown package generates monthly values for each climate variable for each year of the 379 
specified period by building a time series from multiple time-series components: the mean of 380 
the time series, the trend slope, the standard deviation of annual means, the range of annual 381 



means, the seasonal amplitude, and randomly-generated short-term intra-annual variation.  382 
The sum of these components describes a time series for the selected variable (cf. Forkel et 383 
al., 2013, pp. 2118–2122).  In order to fit the seasonal patterns in climate variables in the 384 
study area, we replace the cosine harmonic that SimTs() uses to generate a seasonal 385 
distribution with harmonics fitted to the HolCR values for the period as described above. 386 
 The modified SimTs() results are monthly values over a 200-year segment, from 387 
which the target segment can be extracted if it is shorter.  The monthly values for ADT, TMP, 388 
and % cloudiness for that segment are used to calculate monthly anomalies from the HolCR 389 
reference values, and new rasters are calculated from the reference rasters by adjusting 390 
temperature (average daily temperature in C), precipitation (total monthly precipitation in 391 
mm), and cloudiness (% cloudcover) using the monthly anomalies for each year of the 392 
selected time window.   393 
 As a period of interest is defined and the data for those dates extracted from the Guiot 394 
and Kaniewski (2015) dataset, anomalies from the modern data are calculated, and the 395 
reference rasters can be used to derive rasters at 300m-resolution for any year of the Holocene 396 
for the three climate variables, all by month.  To capture the trend in annual means and 397 
seasonal amplitude across a target window 200 years of data (three datapoints) are the 398 
minimum to work with.  Using these in the temporal downscaling process, a time-series of 399 
spatially-downscaled rasters can be generated, from which a smaller segment can 400 
subsequently be extracted.   401 
 402 
4. Results: From Centennial Means to a Year in Provence 403 
 404 
 Mediterranean climate variation during the Holocene is modest compared to that of 405 
the Pleistocene, but nonetheless paleoclimate data underpins a large number of studies 406 
positing relationships between climate changes and cultural developments (see partial reviews 407 
in Finné et al., 2011; Roberts et al., 2004; Robinson et al., 2006).  This is particularly true in 408 
the eastern Mediterranean (e.g., Kaniewski et al., 2015; Weninger et al., 2009; Wiener, 2014), 409 
reflecting greater abundance of archaeological and paleoclimatic research, but Holocene 410 
climate-culture links have also been suggested in the western Mediterranean (e.g., Berger and 411 
Guilaine, 2009; Carozza et al., 2015; Weinelt et al., 2015).  As discussed above, the 412 
elucidation of these links is limited by chronological resolution and the often incommensurate 413 
scales of analysis and explanation pursued by paleoclimatologists and archaeologists.  414 
 In the Mediterranean, the diversity of microenvironments characteristic of such a 415 
topographically complex region historically has significantly complicated generalization from 416 
paleoclimate data, and further complicates the exploration of the human consequences of 417 
climate change.  In Provence, geographic variability is one of the principle drivers of the 418 
region’s significant environmental diversity (cf. Blondel and colleagues [2010, p. 13], who 419 
single out, “slope, exposition, distance from the sea, steepness, and parent rock type”).  420 
Although of course other variables (e.g., water availability, soil depth, etc.) are also 421 
influential, environmental contrasts apparent over short distances reflect in large part the 422 
interaction of topographic variability and climatic variability.  Climate changes may thus 423 
affect the spatial distribution of environmental variability as well as the environment in 424 
aggregate; both can impact the human inhabitants of a landscape.  Interannual variability, 425 
which can be obscured by long-term means, may also be particularly significant for 426 
inhabitants. 427 
 Employing a spatial and temporal downscaling approach to explore the human 428 
consequences of past climate changes at large spatial scale and high temporal resolution to a 429 
Mediterranean case provides a means of addressing the challenges of a) reconciling scales and 430 
resolutions, and b) exploring the implications of geographic and interannual variability.  The 431 



case study area in Provence explores this across an approximately 1400 km
2
 study area 432 

(Figure 1) that spans significant topographic variability: elevations range between 50 and 433 
1200 masl and the area includes both the floodplain of the Durance River and the steep 434 
limestone ridge of the Luberon.  For the period for which instrumental data are available (or 435 
modeled data based directly on instrumental data; namely the CNRM2014 and CRU datasets), 436 
average daily temperatures (TAV) vary in space by 4-5 C in each month of the year, and 437 
total monthly precipitation (TMP) by 12-32 mm (see Figure 3).  Long-term temporal 438 
variation, by comparison, assessed from the HolCR dataset across the entire Holocene for the 439 
cell including the study area, is generally more modest: AMT has varied by approximately 1-440 
2.5 C, depending on the month, and TMP has ranged by 10-20 mm, depending on the month 441 
(see Figure 4).  442 
 The combination of spatial and interannual variability produces marked contrasts 443 
across the study area, belying the homogeneity fundamental to a coarse-grained 444 
reconstruction.  Downscaling of AMT in the study area at 2400 BP – the coolest period of the 445 
Holocene – for instance, demonstrates both the strong seasonality recorded in the input data 446 
and the spatial variability in temperature produced by elevation gradients that is absent in the 447 
input data but produced by the downscaling process (Figure 5).  AMT values from the HolCR 448 
dataset for 2400 BP range from 3.1 to 21.6 C, while the downscaled rasters display lower 449 
minima and higher maxima, reflecting spatially variable values for each month (Table 3). 450 
 The addition of temporal downscaling makes it possible to move from spatially-451 
variable but static climate reconstructions to time-series of spatially-variable reconstructions 452 
that better reflect the variable and dynamic environments that inhabitants of the region would 453 
have experienced.  The addition of temporal variability following centennial trends is 454 
illustrated in Figure 6, while Figure 7 demonstrates the results of temporal downscaling to 455 
generate variability following centennial trends and modern interannual variability, in this 456 
case precipitation in the month of March for the period 4004 BP - 3096 BP, the driest period 457 
of the Holocene.  Where HolCR provided a single TMP value of 36.2 mm and spatial 458 
downscaling produced a spatial range of 25.2 – 69.2 mm (Figure 7a), temporal downscaling 459 
to generate interannual variability produced a sequence of rasters whose minima range from 0 460 
– 33.9 mm and whose maxima range from 27.5 – 77.8 mm (Figure 7b; this is a single 461 
realization illustrating one possible solution). 462 
 These downscaled data open new analytical possibilities, particularly regarding 463 
human-environment interactions and potential impacts of climate change.  Variability of the 464 
magnitude and at the spatial and temporal scales visible in Figure 7b can be vital to 465 
archaeological interpretation, and downscaling enables consideration, for instance, of whether 466 
site distributions are random with respect to climate variables.  Various other factors – 467 
notably chronological resolution, landscape taphonomy, and recovery bias – make assessment 468 
of settlement pattern data in the study area an analytical challenge, but even with such 469 
challenges downscaled paleoclimate data have the potential to generate hypotheses that would 470 
have otherwise remained inaccessible.   471 
 The Late Iron Age expansion of settlement in the study area illustrated in Figure 8, for 472 
example, might represent a simple infilling of the landscape as population increased (push 473 
factors: local population increase, political and/or economic imperatives, etc.), and/or it might 474 
represent the results of the opening up of previously unused areas (pull factors: changes in 475 
agricultural practices or technologies [irrigation, iron plowshares, etc.)], shifts in crop 476 
preference, willingness to accept less productive land, changes in climate, etc.).  Downscaled 477 
climate data make it possible to evaluate the hypothesis that changing climate enabled 478 
agricultural expansion into areas previous insufficiently productive to be exploited: 479 
comparison of the quantities and variability of precipitation in the areas settled (Figure 8) 480 
suggest little change from the Early to Late Iron Age, and the summarized values around each 481 



settlement do not show any strong contrast from one period to the next (see boxplots at left in 482 
Figure 8; the climate-driven contrast in standard deviations is clearly statistically significant, 483 
but the magnitude of difference [a decline of 2% in TMP] is probably too low to suggest any 484 
notable shift in agricultural potential). 485 
 Higher-resolution cultural chronology, as well as specific consideration of the 486 
hydrologic needs of particular crops, might enable further evaluation of climate impacts in the 487 
3

rd
 millennium BP.  For that or any other period, resolution of the cultural chronology is a 488 

limiting factor in interpreting any effects of climate change: although the downscaled data 489 
enable tracking changing spatial patterns of climate variability, the settlement data do not 490 
always allow tracking of changes in settlement patterns at comparable temporal resolution, 491 
and aggregation of the climate data over archaeological periods (each of approximately four 492 
centuries here) may efface important variability.  However, this evidence of broad consistency 493 
in climatic conditions and niches exploited suggests that climate was not a strong driver of 494 
settlement pattern in the study area during this period (and moreover the apparent sudden 495 
increase in site density in the Late Iron Age is in fact an artifact of time-averaging and was 496 
rather the result of gradual growth (cf. Isoardi, 2010)).  Such (preliminary) negative evidence 497 
only becomes possible with downscaled data; with only coarse-grained data like that in Figure 498 
7a, questions like these, vital to considering potential impacts of past climate changes, cannot 499 
even be asked.   500 
 501 
5. Conclusions 502 
 503 
 The simulated data produced by spatial and temporal downscaling capture both spatial 504 
variability and interannual variation in climatic factors, parameters fundamental to assessing 505 
the human consequences of climate changes.  Examining such consequences at high 506 
resolution is necessary to analysis of the significance of climatic factors for such fundamental 507 
human activities as agriculture, and thus vital to the articulation of mechanisms linking 508 
climate and cultural change.  There are drawbacks: downscaling adds a further layer of 509 
analysis, and can create a seductive precision when in fact it produces non-unique solutions 510 
that should be understand as reasonable but not necessarily accurate.  However, not 511 
downscaling is also dangerous: it represents an implicit downscaling, in which coarse-grained 512 
data are presumed to indicate homogeneity within each granule, and understood as relevant at 513 
scales finer than those measured but without explicit mechanisms to relate regional to local or 514 
time-averaged to temporally-variable.   515 
 The methodology that we have presented here is straightforward to apply for any 516 
portion of the Holocene anywhere in the Mediterranean Basin using the same datasets, and 517 
the approach is adaptable to other regions and input data.  The value of such data 518 
manipulation is analogous to what Lake (2015, p. 9) describes with reference to 519 
archaeological simulation modeling: it enables the virtual disaggregation of spatially and 520 
temporally coarse-grained data, and thus constitutes an important tool in shifting to a human 521 
scale of analysis.  It can provide the raw material for further modeling and analysis focused 522 
on socioecological systems (advocated as a unique and significant contribution of 523 
archaeology to studies of sustainability and resilience; cf. Barton et al., 2012; Kohler and van 524 
der Leeuw, 2007; Van der Leeuw et al., 2011).  Such modeling often requires higher-525 
resolution and larger-scale data than that generally available from paleoclimate archives; 526 
indeed one of the benefits of such models is that they mandate explicit consideration of data 527 
requirements.  The problem is not uniquely archaeological: developing agent-based models, 528 
agroecosystem models, or erosion models at scales directly relatable to human experience and 529 
decision-making is as much a challenge for socioecological science of the present as of the 530 
past.  Downscaling tools are thus as needed in present-day modeling as in archaeological 531 



simulation, and are vital for considering, for instance, the specific implications at local scales 532 
– i.e., the human impacts – of the 1.5 - 2 °C of global warming targeted by the COP21 533 
agreement.  Methodologies like that presented here thus add needed components to the 534 
analytical toolkit for past human-environment dynamics, and potentially contribute to 535 
exploration of present and future human-environment dynamics as well. 536 

 537 
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Table 1: Data sources. 

Data source Summary description Variables 

used 

Spatial 

resolution 

Temporal 

resolution 

and span 

Reference and data url 

CNRM2014  Simulated dataset based on the 

limited-area aladin-Climate model 

(Aire Limited Adaptation Dynamic 

development InterNational) and 

corrected by a quantile-quantile 

method to SAFRAN (Vidal et al., 

2010). 

TAV, PAV 8km Monthly 

values, 1950-

2005  

(Spiridonov et al., 2005); 

http://www.cnrm.meteo.fr/spip.php?article125; 

DRIAS Portal at http://www.drias-climat.fr/ 

CRU Global ridded climate dataset 

interpolated from 20
th
-21

st
 century 

meteorological station data. 

cld
a
 10’ 1951-2010 (Harris et al., 2014; New et al., 2002); 

https://crudata.uea.ac.uk/cru/data/hrg/tmc/ 

HolCR Holocene climate reconstruction 

based on pollen data and an inverse 

vegetation model (BIOME4) 

ADT, TMP, 

% cloudiness 
2 latitude 

x 4 

longitude 

Monthly 

estimates in 

centennial 

steps; 10000 

BP - present 

(Guiot and Kaniewski, 2015); OT-Med data catalog at 

http://database.otmed.fr/geonetworkotmed/srv/eng/sea

rch - |54b9bf34-57ae-45ea-b455-9f90351e538f 

SRTM30 digital elevation model  elevation
b
 30m 2000 (NASA JPL, 2013); http://dds.cr.usgs.gov/srtm/ 

a. In fact the CRU dataset provides % sunniness, which must be subtracted from 100 to provide % cloudiness. 

b. Although they were not ultimately used, we also tested elevation derivatives, e.g., slope, aspect, and irradiance. 
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b. Although they were not ultimately used, we also tested elevation derivatives, e.g., slope, aspect, and irradiance. 

 

Table 2

http://www.cnrm.meteo.fr/spip.php?article125
http://www.drias-climat.fr/
https://crudata.uea.ac.uk/cru/data/hrg/tmc/
http://database.otmed.fr/geonetworkotmed/srv/eng/search#|54b9bf34-57ae-45ea-b455-9f90351e538f
http://database.otmed.fr/geonetworkotmed/srv/eng/search#|54b9bf34-57ae-45ea-b455-9f90351e538f
http://dds.cr.usgs.gov/srtm/


Table 3: Monthly temperatures from HolCR and downscaling results for the study area at 2400 BP. 

 January February March April May June July August September October November December 

HolCR value 3.08 4.04 6.91 10.57 14.67 18.26 21.29 21.55 17.33 12.12 7.21 4.03 

spatial 

minimum -1.08 -0.35 1.33 5.04 9.00 12.69 15.75 16.35 12.36 7.40 2.88 0.05 

spatial 

maximum 4.77 5.67 8.69 12.24 16.24 19.95 22.95 23.08 18.87 13.86 8.97 5.63 
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