
HAL Id: hal-01789435
https://hal.science/hal-01789435

Submitted on 10 May 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The AltaRica 3.0 Project for Model-Based Safety
Assessment

Tatiana Prosvirnova, Michel Batteux, Pierre-Antoine Brameret, Abraham
Cherfi, Thomas Friedlhuber, Jean-Marc Roussel, Antoine Rauzy

To cite this version:
Tatiana Prosvirnova, Michel Batteux, Pierre-Antoine Brameret, Abraham Cherfi, Thomas Friedl-
huber, et al.. The AltaRica 3.0 Project for Model-Based Safety Assessment. 4th IFAC Workshop
on Dependable Control of Discrete Systems, DCDS 2013, Sep 2013, York, United Kingdom. �hal-
01789435�

https://hal.science/hal-01789435
https://hal.archives-ouvertes.fr


The AltaRica 3.0 Project for Model-Based
Safety Assessment

Tatiana Prosvirnova ∗ Michel Batteux ∗

Pierre-Antoine Brameret ∗∗ Abraham Cherfi ∗

Thomas Friedlhuber ∗ Jean-Marc Roussel ∗∗ Antoine Rauzy ∗

∗ LIX - Ecole Polytechnique, route de Saclay, 91128 Palaiseau cedex,
FRANCE (e-mail: name@lix.polytechnique.fr).

∗∗ LURPA - ENS Cachan, 61 avenue du Président Wilson,
94235 Cachan cedex, FRANCE

(e-mail: firstname.name@lurpa.ens-cachan.fr).

Abstract: The aim of this article is to present the AltaRica 3.0 project. “Traditional” risk
modeling formalisms (e.g. Fault Trees, Markov Processes, etc.) are well mastered by safety
analysts. Efficient assessment algorithms and tools are available. However, models designed
with these formalisms are far from the specifications of the systems under study. They are
consequently hard to design and to maintain throughout the life cycle of systems. The high-
level modeling language AltaRica has been created to tackle this problem.
The objective of the AltaRica 3.0 project is to design a new version of AltaRica and to develop
a complete set of authoring and assessment tools for this new version of the language. AltaRica
3.0 improves significantly the expressive power of AltaRica Data-Flow without decreasing the
efficiency of assessment algorithms. Prototypes of a compiler to Fault Trees, a compiler to
Markov chains, stochastic and stepwise simulators have been already developed. Other tools are
under specification or implementation.

Keywords: Safety and Reliability analysis, Model-Based design.

1. INTRODUCTION

The Model-Based approach for safety and reliability anal-
ysis is gradually wining the trust of engineers but is still
an active domain of research. Safety engineers master
“traditional” risk modeling formalisms, such as “Failure
Mode, Effects and Criticality Analysis” (FMECA), Fault
Trees (FT), Event Trees (ET), Markov Processes. Efficient
algorithms and tools are available. However, despite of
their qualities, these formalisms share a major drawback:
models are far from the specifications of the systems under
study. As a consequence, models are hard to design and
to maintain throughout the life cycle of systems. A small
change in the specifications may require revisiting com-
pletely safety models, which is both resource consuming
and error prone.

The high-level modeling language AltaRica Data-Flow
(Rauzy, 2002; Boiteau et al., 2006) has been created
to tackle this problem. AltaRica Data-Flow models are
made of hierarchies of reusable components. Graphical
representations are associated with components, making
models visually very close to Process and Instrumentation
Diagrams. AltaRica Data-Flow is at the core of several In-
tegrated Modeling and Simulation Environments: Cecilia
OCAS (Dassault Aviation), Simfia (EADS Apsys), and
Safety Designer (Dassault Systèmes). Successful industrial
experiments were held using AltaRica Data-Flow (e.g. cer-
tification of the flight control system of the aircraft Falcon
7X) (Bernard et al., 2007; Bieber et al., 2008). In a word,
AltaRica Data-Flow has reached an industrial maturity.

However, more than ten years of experience showed that
both the language and the assessment tools can be im-
proved. AltaRica 3.0 is an entirely new version of the
language. Its underlying mathematical model – Guarded
Transition Systems (Rauzy, 2008; Prosvirnova and Rauzy,
2012) – makes it possible to design acausal components
and to handle looped systems. The development of a
complete set of freeware authoring and assessment tools
is planned, so to make them available to a wide audience.

The aim of this article is to present the AltaRica 3.0
project. It is organized as follows. Section 2 gives an
overview of the project. Section 3 introduces the new
version of the language. Section 4 presents Guarded Tran-
sition Systems. Section 5 presents the current state of the
development of authoring and assessment tools. Section 6
presents related works. Finally Section 7 concludes the
article and outlines directions for future works.

2. OVERVIEW OF THE PROJECT

The objective of the AltaRica 3.0 project is to propose a set
of modeling and assessment tools to perform preliminary
safety analyses. Figure 1 presents the overview of the
project.

AltaRica 3.0 is in the heart of the project. It significantly
increases the expressive power of AltaRica Data-Flow
without decreasing the efficiency of assessment algorithms.
Models are compiled into a low level formalism: Guarded
Transition Systems (GTS). GTS is a states/transitions



Fig. 1. Overview of the AltaRica 3.0 project

formalism generalizing classical safety formalisms, such as
Reliability Block Diagrams and Markov Chains. It is a
pivot formalism for Safety Analyses: other safety models
can be compiled into GTS to take benefits from assessment
tools. The assessment tools for GTS already include a
Fault Tree compiler to perform Fault Tree Analysis (FTA),
a Markov Chain generator, a stochastic and a stepwise sim-
ulators. Other tools are under specification or implementa-
tion: a model-checker and a reliability allocation module.
These tools will be distributed under a free license in order
to make them available to a wide audience, especially in
the academic community. They enable users to perform
virtual experiments on systems, to compute reliability
indicators and, also, to perform cross check calculations.

3. ALTARICA 3.0 MODELING LANGUAGE

AltaRica is an event based modeling language. The state of
the system is described by means of variables. The system
changes its state when, and only when, an event occurs.
The occurrence of an event updates the value of variables.
Events can be associated with deterministic or stochastic
delays so to obtain (stochastic) timed models. Models of
components can be assembled into hierarchies, their inputs
and outputs can be connected and their transitions can be
synchronized.

Two main variants of AltaRica have been designed so
far. These two variants differ essentially with respect to
the way variables are updated after each transition fir-
ing. In the first version, variables are updated by solving
constraints (Point and Rauzy, 1999; Arnold et al., 2000).
This mechanism, although very powerful, is too resource
consuming for industrial scale applications. To be able
to assess industrial scale models, in the second version,
AltaRica Data-Flow (Rauzy, 2002; Boiteau et al., 2006),
variables are updated by propagating values in a fixed
order. This order is determined at compile time, which
imposes strong constraints on the way assertions are writ-
ten. However, some problems stay: located synchroniza-
tions cannot be captured, bidirectional flows, circulating
through a network, cannot be modeled in a natural way,
and looped systems remains difficult to model.

The new version is currently under specification. It im-
proves AltaRica Data-Flow into two directions:

(1) Its semantic is based on the new underlying mathe-
matical model: Guarded Transition Systems (GTS).

(2) It provides new constructs to structure models.

The new underlying formalism, i.e. GTS, makes it possible
to handle systems with instant loops and to define acausal
components, i.e. components for which the input and
output flows are decided at run time. It is much easier to
model systems with bidirectional flows, such as electrical
systems.

AltaRica 3.0 is a prototype oriented modeling language,
see e.g. Noble et al. (1999) for a discussion on objects
versus prototypes. Prototype orientation makes it possible
to separate the knowledge into two distinct spaces: the
stabilized knowledge, incorporated into libraries of on-
the-shelf modeling components; the sandbox in which the
system under study is modeled. In the sandbox, many
components are unique and some others are instances of
reusable components. With prototype-orientation, models
can be reused in two ways: at component level by instanti-
ating off-the-shelf components; at system level by cloning
and modifying a model designed for a previous project.

Example
Consider a part of a system, named TwoValves (see Figure
2), composed of two valves connected in series. rightFlow
and leftFlow are bidirectional flows circulating through
this sub-system.

Fig. 2. The component TwoValves.

A valve is represented by the class Valve. This valve has
two states: closed or not. When the valve is opened, the
right flow and the left flow are the same. In functional
mode, the states change according to the command events
open and close. For this class of valves, we consider only a
failure behavior: the valve is blocked in the current state.
The AltaRica 3.0 model of a valve is the following:

class Valve

Boolean closed (init = true), blocked (init = false);

Real rightFlow (reset = 0), leftFlow (reset = 0);

event open, close, failure(delay = exponential(0.0005));

transition

open: closed and not blocked -> closed := false;

close: not closed and not blocked -> closed := true;

failure: not blocked -> blocked := true;

assertion

if not closed then leftFlow :=: rightFlow;

end

The class Valve contains two state variables closed and
blocked ; and two flow variables rightFlow and leftFlow.
Events open, close and failure are declared and then
used to define transitions. The behavior of a valve is
thus defined by transitions (to update its state) and
the assertion (to propagate flows). The operator “:=:”
expresses a bidirectional flow circulating through the valve.

The sub-system TwoValves is represented by the class
TwoValves, containing two instances of the class Valve.
rightFlow and leftFlow are bidirectional flows circulating
through the sub-system when both valves are open. Each
valve can fail individually. Both valves can fail simultane-
ously due to a common cause failure. The corresponding
AltaRica 3.0 model is given below:



class TwoValves

Valve v1, v2;

Real rightFlow (reset = 0), leftFlow (reset = 0);

event ccf;

transition

ccf: ?v1.failure & ?v2.failure;

v1.failure: !v1.failure;

v2.failure: !v2.failure;

assertion

leftFlow :=: v1.leftFlow;

rightFlow :=: v2.rightFlow;

v1.rightFlow :=: v2.leftFlow;

end

The event ccf represents the common cause failure of the
two valves. It is expressed by means of the synchronization
of the events v1.failure and v2.failure. The event ccf may
occur when at least one of two valves is working. Operator
“!”/“?” means that the event is mandatory/optional for
the synchronization.

To be able to describe the sub-system TwoValves with the
previous version of the language, the class Valve should
include four flow variables: two inputs and two outputs for
the left and right hand sides (i.e. inputRightFlow, input-
LeftFlow for inputs and outputRightFlow, outputLeftFlow
for outputs). Thus, the instruction of the assertion should
be replaced by a block connecting inputs and outputs:

if not closed then

{outputRightFlow := inputLeftFlow;

outputLeftFlow := inputRightFlow;}

Finally, the connection between the two valves should be
done by connecting inputRightFlow of v1 to outputLeft-
Flow of v2 and inputLeftFlow of v2 to outputRightFlow
of v1 :

v1.outputRightFlow := v2.inputLeftFlow;

v2.outputLeftFlow := v1.inputRightFlow;

When considering a complex system with a significant
number of similar components, connecting them together
may be a tedious and error prone task.

4. GUARDED TRANSITION SYSTEMS

Before any assessment, AltaRica models are “flattened”
(i.e. reduced to a single class without sub-classes). This
“flattened” class produces a GTS model. The new seman-
tics of instructions (Prosvirnova and Rauzy, 2012) makes it
possible to represent components with bidirectional flows.

4.1 Definition

A Guarded Transition Systems is formally a quintuple
〈V,E, T,A, ι〉, where:

• V = S ] F is a set of variables, divided into disjoint
sets S of state variables and F of flow variables.
• E is a set of symbols, called events.
• T is a set of transitions.
• A is an assertion (i.e. an instruction built over V ).
• ι is the initial (or default) assignment of variables of
V .

GTS is thus a states/transitions formalism where states
are implicit, i.e. given by variables assignments σ. A
transition is a triple 〈e,G, P 〉, also denoted e : G → P ,

where e ∈ E is an event, G is a guard, i.e. a Boolean
formula built over V , and P is an instruction built over
V , also called an action or a post-condition. A transition
e : G→ P is said fireable in a given state σ if its guard G
is satisfied in this state.

4.2 Instructions

Both assertions and actions of transitions are described
by means of instructions. There are basically four types of
instructions:

• The empty instruction noted skip.
• The assignment v := E, where v is a variable and E

is an expression built over variables from V .
• The conditional assignment if C then I, where C is

a Boolean expression and I is an instruction.
• The block {I1, . . . , In}, where I1, . . . , In are instruc-

tions.

State variables can be presented as the left member of
an assignment only in the action of a transition. Flow
variables can be presented as the left member of an as-
signment only in the assertion. Instructions are interpreted
in a slightly different way depending they are used in
the actions or in the assertion. Let σ be the variable
assignment before the firing of the transition e : G → P .
Applying the instruction P to the variable assignment σ
consists in calculating a new variable assignment τ . The
right hand side of assignments and conditional expressions
are evaluated in the context of σ. Thus, the result does
not depend on the order in which instructions of a block
are applied. In other words, instructions of a block are
applied in parallel. Let denote by Update(P, σ) the vari-
able assignment τ resulting from the application of the
instruction P to σ. In case when the same state variable
is affected several times and receives different values, an
error is raised.

Let A be the assertion and τ the variable assignment
obtained after the application of the action of a transition.
Applying A consists in calculating a new variable assign-
ment (of flow variables) π as follows. We start by setting all
state variables in π to their values in τ : ∀v ∈ Sπ(v) = τ(v).
Let D be a set of unevaluated flow variables, we start with
D = F . Then,

• If A is an empty instruction, then π is left unchanged.
• If A is an assignment v := E, then if π(E) can be

evaluated in π, i.e. all variables of E have a value in
π, then π(v) is set to π(E) and v is removed from D.
An error is raised if the value of v has been already
modified and is different from the calculated one.

• If A is a conditional assignment if C then I and π(C)
can be evaluated in π and is true, then the instruction
I is applied to π. Otherwise, π is left unchanged.

• If A is a block of instructions {I1, . . . , In} then
instructions I1, . . . , In are repeatedly applied to π
until there is no more possibility to assign a flow
variable.

If after applying A to π there are unevaluated variables in
D, then all these variables are set to their default values
∀v ∈ Dπ(v) = reset(v) and A is applied to π in order
to verify that all assignments are satisfied. If that is not
true an error is raised. Let denote by Propagate(A, σ) the



variable assignment resulting from the application of the
instruction A to σ.

4.3 Reachability graph

Guarded Transition Systems are implicit representations
of labeled Kripke structures, i.e. of graphs whose nodes
are labeled by variable assignments and whose edges
are labeled by events. This graph is constructed in the
following way.

Assume that σ is the variable assignment just before the
firing of a transition. Then, the firing of the transition
transforms σ into the assignment Fire(e : G → P,A, σ)
defined as follows:

Fire(e : G→ P,A, σ) = Propagate(A,Update(P, σ))

The so-called reachability graph Γ = (Σ,Θ) is the smallest
Kripke structure verifying:

(1) σ0 = Propagate(A, ι, ι) ∈ Σ. σ0 is the initial state of
the Kripke structure.

(2) If σ ∈ Σ and ∃t = 〈e,G, P 〉 ∈ T , such that the guard
G is verified in σ then the state τ = Fire(P,A, ι, σ) ∈
Σ and the transition (σ, e, τ) ∈ Θ,

In special cases, the calculation of Γ = (Σ,Θ) may
raise errors, when GTS are not well designed. Currently
assessment tools detect modeling errors at the execution
of the model.

4.4 Timed/Stochastic Guarded Transition Systems

A probabilistic time structure can be put on top of a
Guarded Transition System so to get timed/stochastic
models. The idea is to associate to each event:

• A delay which can be deterministic or stochastic and
may depend on the state. When a transition labeled
with the event becomes fireable at time t, a delay d is
calculated and the transition is actually fired at time
t+ d if it stays fireable from t to t+ d.
• a weight, called expectation, used to determine the

probability that the transition is fired in case of
several transitions are fireable at the same date.

In the example given in Section 3, the transition failure
is a timed stochastic one, obeying to the exponential
distribution with a failure rate 0.0005.

4.5 Example

The GTS model of the sub-system TwoValves, introduced
in Section 3 and pictured Figure 2, is as follows:

class TwoValves

Boolean v1.closed (init = true);

Boolean v1.blocked (init = false);

Real v1.rightFlow (reset = 0);

Real v1.leftFlow (reset = 0);

...

event v1.failure (delay = exponential(0.0005));

event v2.failure (delay = exponential(0.0005));

event ccf;

transition

...

ccf: not v1.blocked or not v2.blocked ->

{
if not v1.blocked then v1.blocked := true;

if not v2.blocked then v2.blocked := true;

}
v1.failure: not v1.blocked -> v1.blocked := true;

v2.failure: not v2.blocked -> v2.blocked := true;

assertion

v1.rightFlow := v2.leftFlow;

v2.leftFlow := v1.rightFlow;

...

end

This GTS is obtained by flattening the corresponding
AltaRica 3.0 model. All variables, parameters and events
are prefixed by the name of the instantiated class. The syn-
chronized transition ccf is flattened into a simple transi-
tion. Each bidirectional assignment x :=: y is transformed
into two simple assignments x := y and y := x. A compiler
automatically transforms AltaRica 3.0 models to GTS.

5. ASSESSMENT TOOLS

As shown Figure 1, the AltaRica 3.0 project provides a
set of assessment tools. Some of them are already available
and others are under specification or implementation. In
the sequel, we will present first versions of four of them.
All assessment tools take a GTS model as input.

5.1 Compiler to Fault Trees

Fault trees are widely used to perform Safety Analyses
and some regulation authorities require to use them to
support the certification process. From a GTS model, it
is possible to generate corresponding Fault Trees (FT),
i.e. to transform a states/transitions model into a set of
Boolean formulae. It may seem inefficient at a first glance
to use a states/transitions formalism to end up with a
Fault Tree. However in practice, it is of great interest.
It is easier and less time consuming to automatically
generate FT from high-level models rather than create
them from scratch. High-level models improves greatly the
design, the sharing and the maintenance of models. The
algorithm of compilation to Fault Trees for AltaRica Data-
Flow, described in Rauzy (2002), can be extended to a
general case of GTS. As illustrates Figure 3, this algorithm
includes 3 steps:

(1) The GTS model is partitioned into independent GTS
and an independent assertion.

(2) Reachability graphs of each independent GTS are
calculated.

(3) Reachability graphs and the assertion are separately
compiled into Boolean equations.

Partitioning is a key point of the algorithm that ensures
its efficiency. In practice, components of a system fail in
general in a relatively independent way. In that case a
partitioning is possible. If the GTS is combinatorial, its
compilation to Fault Trees is efficient and does not lose
information.

The generated Fault Tree could be assessed with any Fault
Tree calculation engine supporting Open-PSA format (Hi-
bti et al., 2012). For example, XFTA (Rauzy, 2012) can
be used to calculate minimal cutsets, events probabilities,
importance factors, etc.



Fig. 3. Algorithm of compilation of GTS to FT

5.2 Stepwise simulator

The stepwise simulator enables to perform an interactive
step by step simulation of a GTS model. This interactive
tool can be very useful to debug models, to play differ-
ent failure scenarios, etc. The stepwise simulator can be
coupled with a graphical simulator as illustrated in Perrot
et al. (2010). Graphical simulation of models can be used
to perform virtual experiments on systems, via models,
helping to better understand the system behavior.

The first version of the interactive stepwise simulator sup-
ports commands to display information about the simu-
lated model (all variables and observers and their values,
all transitions fireable in the current state, execution his-
tory, etc.) and to perform “actions” (to fire a transition,
to cancel the last action, to restart the simulation, etc.).

5.3 Stochastic simulator

Stochastic simulation is a basic tool for safety analyses
of systems. It provides fine results to calculate reliability
indicators, even with complex systems. The principle is
to run many pseudo-random histories of the behavior of
the system and to make statistics on them. The stochastic
simulator of the AltaRica 3.0 project has been designed
by taking into account original features.

A generic mechanism is implemented to define specific
delays. In general, simulation tools offer a lot of stochas-
tic delays. Users have to choose the best matching one
and fill out parameters. A few ones are widely used for
safety/reliability analyses (e.g. exponential, Weibull, etc.),
but others are generally difficult to use: difficult to un-
derstand or to fill out parameters. Due to this fact, the
stochastic simulator implements the widely used delay
functions, previously mentioned. For other specific ones,
a generic mechanism allows to describe them by means of
a set of points interpolated in a triangular way.

Compilation techniques are used to reduce computation
time of simulations. In fact, the only limit of stochastic
simulation is the number of histories, and their length,
necessary to stabilize the measures. But with current
computing technology, it is relatively easy to perform up
to several million histories (of reasonable length). Beyond,
the computation time gets an issue and with that respect,
compilation technique may be of a great help. Thus the
considered GTS model is translated into C++ classes,
representing a set of instructions for the simulator engine.

Then, they are compiled, with this simulator engine, to
constitute the stochastic simulator of the system to study.

5.4 Markov chains Generator

The different reachable states of a system can be built
from its GTS model. The state space of the system can be
transformed into a Markov chain to compute the sojourn
times / steady state probabilities of the different states of
the system. The Markov chain formalism can be efficiently
assessed by numerical methods such as developed in Rauzy
(2004). It is a very straightforward method to compute
mean values of the observers defined in the AltaRica 3.0
model. For instance, the availability of the system can be
build from an observer which takes value 1 when system is
working and 0 otherwise. Figure 4 illustrates the process.

Fig. 4. Illustration of the Markov chain generation process

This computation method has two limits:

(1) the Markov hypothesis must hold for the system, ie.
the transition rates between states must be constant,

(2) the size of the Markov model is subject to explode
exponentially.

The hypothesis (2) is difficult to overcome. A method
has been developed to limit the construction of the state
space. It consists in selecting the most influential states
toward the given reward to assess, thus giving accurate
results while drastically limiting the size of the state
space. The influence of the hypothesis (1) really depends
on the system modeled. It is usually valid for safety
assessment, and it gives good results to quickly assess an
AltaRica model with the Markov chain generator. It is
particularly valid while designing the system architecture,
when engineers need to assess and compare several models.

6. RELATED WORKS

Two approaches for (high-level) Model-Based Safety As-
sessment can be found in literature. The first one consists
in creating extensions of high-level modeling languages
used in other domains. The second approach consists in
defining domain specific languages, dedicated to Safety
Analyses.

In the first category, we can find Feiler and Rugina (2007)
who added an Error Model annex to the modeling formal-
ism for embedded real-time systems AADL. In the same
way the HiP-HOPS workbench (Pasquini et al., 1999) en-
ables to add reliability data to models imported from dif-
ferent modeling tools: Matlab/SIMULINK, Eclipse-based
UML tools, etc., and then to automatically generate Fault
Trees and FMEA tables.

Similarly, translations have been defined from specialized
UML/SysML models to Fault Trees or Petri nets (Bernardi
et al., 2002). In David et al. (2010), the functional design
phase, using SysML, is combined with commonly used
reliability techniques (i.e. FMEA and construction of Al-
taRica Data-Flow models).



In the second category, we can find Figaro (Bouissou
et al., 1991), developed by EDF R&D. It is a textual
modeling language dedicated to dependability assessment
of complex systems. It combines object-orientated lan-
guages features, such as inheritance, and first order pro-
duction rules (interaction and occurrence rules). It is used
as a description language to create knowledge bases for
the workbench KB3 (Bouissou, 2005), to automatically
perform systems dependability assessment: Monte-Carlo
simulation, Markov Chain generation, quantification and
generation of critical sequences, etc.

In between the two categories, we can find SAML (Safety
Analysis Modeling Language) (Güdemann and Ortmeier,
2010), which is a synchronous language. It expresses a
model in terms of finite stochastic state automata and its
semantics is defined as Markov decision process. S3E is
a design and verification environment focused on SAML
models. It provides a stochastic simulator and translators
to the input languages of the model-checkers PRISM and
NuSMV.

7. CONCLUSION

In this article, we presented the AltaRica 3.0 Project,
which aims to develop a complete set of tools, under a free
license, to create, edit, check, simulate, debug and assess
models. The new version of AltaRica modeling language
increases the expressive power of the previous one with-
out decreasing the efficiency of assessment algorithms. It
makes it possible to model looped systems and components
with bidirectional flows. First versions of assessment tools
include: a compiler to Fault Trees, a compiler to Markov
chains, a stepwise and a stochastic simulators.

Forthcoming works will focus, amongst others, on the
implementation of other assessment tools (i.e. a model-
checker and a reliability allocation module) and the devel-
opment of modeling methodology and pedagogical mate-
rials, including benchmark tests.

REFERENCES

Arnold, A., Griffault, A., Point, G., and Rauzy, A. (2000).
The altarica language and its semantics. Fundamenta
Informaticae, 34, 109–124.

Bernard, R., Aubert, J.J., Bieber, P., Merlini, C., and
Metge, S. (2007). Experiments in model-based safety
analysis: flight controls. In Proceedings of IFAC
workshop on Dependable Control of Discrete Systems,
Cachan.

Bernardi, S., Donatelli, S., and Merseguer, J. (2002). From
uml sequence diagrams and statecharts to analyzable
petri net models. In In Proceedings of the Third Inter-
national Workshop on Software on Performance.

Bieber, P., Blanquart, J.P., Durrieu, G., Lesens, D., Lu-
cotte, J., Tardy, F., Turin, M., Seguin, C., and Conquet,
E. (2008). Integration of formal fault analysis in as-
sert: Case studies and lessons learnt. In Proceedings of
4th European Congress Embedded Real Time Software,
ERTS 2008. Toulouse (France).

Boiteau, M., Dutuit, Y., Rauzy, A., and Signoret, J.P.
(2006). The altarica data-flow language in use: Assess-
ment of production availability of a multistates system.
Reliability Engineering and System Safety, 91, 747–755.

Bouissou, M. (2005). Automated dependability analysis
of complex systems with the kb3 workbench: the expe-
rience of edf r&d. In Proceedings of the International
Conference on Energy and Environment.

Bouissou, M., Bouhadana, H., Bannelier, M., and Villatte,
N. (1991). Knowledge modelling and reliability process-
ing: presentation of the figaro modelling language and
associated tools. In Proceedings of Safecomp’91.

David, P., Idasiak, V., and Kratz, F. (2010). Reliability
study of complex physical systems using sysml. Relia-
bility Engineering and System Safety, 431–450.

Feiler, P. and Rugina, A. (2007). Dependability modeling
with the architecture analysis & design language (aadl).
Technical report, Carnegie Mellon University.

Güdemann, M. and Ortmeier, F. (2010). A framework for
qualitative and quantitative model-based safety anal-
ysis. In Proceedings of 12th High Assurance System
Engineering Symposium, 132141.

Hibti, M., Friedlhuber, T., and Rauzy, A. (2012).
Overview of the open psa platform. In R. Virolainen
(ed.), Proceedings of International Joint Conference
PSAM’11/ESREL’12.

Noble, J., Taivalsaari, A., and Moore, I. (1999). Prototype-
Based Programming: Concepts, Languages and Applica-
tions. Springer-Verlag.

Pasquini, A., Papadopoulos, Y., and McDermid, J. (1999).
Hierarchically performed hazard origin and propagation
studies. Computer Safety, Reliability and Security, 1698
of LNCS, 688–688.

Perrot, B., Prosvirnova, T., Rauzy, A., d’Izarn, J.P.S.,
and Schoening, R. (2010). Expériences de couplages
de modèles AltaRica avec des interfaces métiers. In
E. Fadier (ed.), Actes du congrès LambdaMu’17 (actes
électroniques). IMdR.

Point, G. and Rauzy, A. (1999). AltaRica: Constraint
automata as a description language. Journal Européen
des Systèmes Automatisés, 33(8–9), 1033–1052.

Prosvirnova, T. and Rauzy, A. (2012). Guarded transition
systems: Pivot modelling formalism for safety analysis.
In J. Barbet (ed.), Actes du Congrès Lambda-Mu 18.

Rauzy, A. (2002). Mode automata and their compilation
into fault trees. Reliability Engineering and System
Safety, 78, 1–12.

Rauzy, A. (2004). An experimental study on iterative
methods to compute transient solutions of large markov
models. Reliability Engineering & System Safety, 86(1),
105–115.

Rauzy, A. (2008). Guarded transition systems: a new
states/events formalism for reliability studies. Journal
of Risk and Reliability, 222(4), 495–505.

Rauzy, A. (2012). Anatomy of an efficient fault tree
assessment engine. In R. Virolainen (ed.), Proceedings of
International Joint Conference PSAM’11/ESREL’12.


