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Abstract. Following the Triple Pattern Fragments (TPF) approach, in-
telligent clients are able to improve the availability of the Linked Data.
However, data availability is still limited by the availability of TPF
servers. Although some existing TPF servers belonging to different orga-
nizations already replicate the same datasets, existing intelligent clients
are not able to take advantage of replicated data to provide fault toler-
ance and load-balancing. In this paper, we propose Ulysses, an intelli-
gent TPF client that takes advantage of replicated datasets to provide
fault tolerance and load-balancing. By reducing the load on a server,
Ulysses improves the overall Linked Data availability and reduces data
hosting cost for organizations. Ulysses relies on an adaptive client-
side load-balancer and a cost-model to distribute the load among het-
erogeneous replicated TPF servers. Experimentations demonstrate that
Ulysses reduces the load of TPF servers, tolerates failures and improves
queries execution time in case of heavy loads on servers.

Keywords: Semantic Web, Triple Pattern Fragments, Intelligent client,
Load balancing, Fault tolerance, Data Replication

1 Introduction

The Triple Pattern Fragments (TPF) [16] approach improves Linked Data avail-
ability by shifting costly SPARQL operators from servers to intelligent clients.
However, data availability is still dependent on servers’ availability, i.e., if a
server fails, there is no failover mechanism, and the query execution fails too.
Moreover, if a server is heavily loaded, performances can be deteriorated.

The availability of TPF servers can be ensured by cloud providers and con-
sequently servers’ availability are depended on the budget of data providers. An
alternative solution is to take advantage of datasets replicated by different data
providers. In this case, TPF clients can balance the load of queries processing
among data providers. Using replicated servers, they can prevent a single point
of failure server-side, improves the overall availability of data, and distributes
the financial costs of queries execution among data providers.
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Some data providers already replicate RDF datasets produced by other data
providers [11]. Replication can be total, e.g., both DBpedia 3 and LANL Linked
Data Archive 4 publish the same versions of DBpedia datasets. Replication can
also be partial, e.g., LOD-a-lot 5 [4] gathers all LOD Laundromat datasets 6 into
a single dataset, hence each LOD Laundromat dataset is a partial replication of
LOD-a-lot.

Existing TPF clients allow to process a federated SPARQL query over a feder-
ation of TPF servers replicating the same datasets. However, existing TPF clients
do not support replication nor client-side load balancing [16]. Consequently, the
execution time of queries are severely degraded in presence of replication. To
illustrate, consider the federated SPARQL query Q1, given in Figure 1, and the
TPF servers S1 and S2 owned respectively by DBpedia and LANL. Both servers
host the DBpedia dataset 2015-10. Executing Q1 on S1 alone takes 7s in aver-
age, and returns 222 results. Executing the same query as a federated SPARQL
query on both S1 and S2 also returns 222 results, but takes 25s in average.

PREFIX dbo : <ht tp : // dbped ia . org / o n t o l o g y/>
PREFIX r d f s : <ht tp : //www. w3 . org /2000/01/ rd f´schema#>
SELECT DISTINCT ? s o f t w a r e ?company WHERE {

? s o f t w a r e dbo : d e v e l o p e r ?company . # tp1
?company dbo : l o c a t i o n C o u n t r y ? c o un t r y . # tp2
? co u n t r y r d f s : l a b e l " France "@en . # tp3

}

Fig. 1: Federated SPARQL query Q1 finds all software developed by French com-
panies, executed on S1 : http://fragments.dbpedia.org/2015-10/en and S2 :
http://fragments.mementodepot.org/dbpedia_201510

Moreover, in the first setting, S1 received 442 HTTP calls while, in the
federated setting, S1 received 478 HTTP calls and S2 received 470 HTTP
calls. Thus, there was unnecessary transfer of data between the client and servers
which increased the global load on servers without producing new results.

Distributing the load of Q1 processing across S1 and S2 requires to know
servers capabilities. As TPF servers are heterogeneous, i.e, they do not have the
same processing capabilities and access latencies, poorly distributed load further
deteriorates query processing.

In this paper, we propose Ulysses, a replication-aware intelligent TPF client
providing load balancing and fault tolerance over heterogeneous replicated TPF
servers. Managing replication in Linked Data has been already addressed in
[10,11,13]. These approaches consider SPARQL endpoints and not TPF servers.
Moreover, they focus on minimizing intermediate results and do not address the
3 http://fragments.dbpedia.org/
4 http://fragments.mementodepot.org/
5 http://hdt.lod.labs.vu.nl/?graph=LOD-a-lot
6 http://lodlaundromat.org/wardrobe/

http://fragments.dbpedia.org/2015-10/en
http://fragments.mementodepot.org/dbpedia_201510
http://fragments.dbpedia.org/
http://fragments.mementodepot.org/
http://hdt.lod.labs.vu.nl/?graph=LOD-a-lot
http://lodlaundromat.org/wardrobe/
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problems of load-balancing and fault-tolerance. The load balancing problem with
replicated datasets is addressed in [9] but without considering heterogeneous
servers. The main contributions of this paper are:
– A replication-aware source selection for TPF servers.
– A light-weighted cost-model for accessing heterogeneous TPF servers.
– A client-side load balancer for distributing SPARQL query processing among

heterogeneous TPF servers hosting replicated datasets.
The paper is organized as follows. Section 2 summarizes related works. Sec-

tion 3 presents Ulysses approach and key contributions. Section 4 presents our
experimental setup and details experimental results. Finally, conclusions and
future works are outlined in Section 5.

2 Related Work

Triple Pattern Fragments The Triple Pattern Fragments approach (TPF) [16]
proposes to shift complex query processing from servers to clients to improve
availability and reliability of servers, at the cost of performance. In this approach,
SPARQL query processing is distributed between a TPF server and a TPF client:
the first only evaluates single triple patterns, issued to the server using HTTP
requests, while the latter performs all others SPARQL operations [12]. Queries
are evaluated using dynamic Nested Loop Joins that minimize the selectivity
of each join, using metadata provided by the TPF server. The evaluation of
SPARQL queries by TPF clients could require a great number of HTTP requests.
For example, when processing tp3 ’ tp2 (of Q1 in Figure 1), each solution
mapping of tp3 is applied to tp2 to generate subqueries, which are then evaluated
against a TPF server. As a TPF server delivers results in several pages, the
evaluation of one triple pattern could require several HTTP requests. In our
example, the client downloads 429 triples in 5 requests, and generates 429 new
subqueries when joining with tp1.

Federated SPARQL query processing with replication Federated SPARQL query
engines [1,6,7,14] are able to evaluate SPARQL queries over a set of data sources,
i.e. a federation. However, if the federated query engine is not aware of replicated
data, computing complete results will degrade performance: the query engine has
to contact every relevant source and will transfer redundant intermediate results.
This is an issue for federations of SPARQL endpoints, as pointed in [10,13], and
also for federations of TPF servers, as pointed in Section 1.

The Fedra [10] and LILAC [11] approaches address this issue in the context
of SPARQL endpoints. Both prune redundant sources and use data locality to re-
duce data transfer during federated query processing. Fedra is a source selection
algorithm that finds as many sub-queries as possible that can be answered by
the same endpoint, increasing the number of joins evaluated locally by SPARQL
endpoints. LILAC is a replication-aware decomposer that further reduces inter-
mediate results by allocating the same triple patterns to several endpoints. In
the context of TPF servers, data locality cannot be exploited and consequently
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Fedra and LILAC are not pertinent. Moreover, Fedra and LILAC do not ad-
dress problems of load-balancing and fault tolerance using replicated datasets.

PeNeLoop [9] makes available a replication-aware parallel join operator
for federated SPARQL queries. PeNeLoop parallelizes join processing over
SPARQL endpoints or TPF servers hosting replicated data by distributing bind-
ings among available servers. However, PeNeLoop approach does not address
the issue of heterogeneous servers. As the load of join processing is equally dis-
tributed across the federation, servers with poor performance or latency could
deteriorate query execution time.

Client-side load balancing with heterogeneous servers Client-side load balancing
is well suited for heterogeneous servers [3]. In this context, strategies for selecting
servers can be classified into three categories: (i) random; (ii) statistical, by se-
lecting the server with the lowest estimated latency; (iii) dynamic, using probing
requests to select the fastest server. Dynamic probes perform better for selecting
servers, but they add a communication overhead, as additional messages need to
be exchanged between clients and servers. Dynamic probes reduce retrieval time
for objects replicated on different servers but are not designed to distribute the
cost among servers. Thus, powerful servers could receive all the load, and cost,
of query processing. Smart clients [18] provide client-side load balancing and
fault tolerance using a weighted random distribution algorithm: the probability
of choosing a server is inversely proportional to its response time. Smart clients
rely on probing to gather load information about servers but they do not propose
an accurate and low-overhead load estimator that can be used to estimate the
load of TPF servers.

3 Ulysses approach

Ulysses proposes intelligent clients for replicated TPF servers. In order to bal-
ance the load on heterogeneous servers hosting replicated datasets, Ulysses
relies on 3 key ideas:

First, it uses a replication-aware source selection algorithm to identify which
TPF servers can be used to distribute evaluation of triple patterns during SPARQL
query processing. The source selection algorithm relies on the replication model
introduced in [10,11].

Second, Ulysses uses each call performed to a TPF server during query
processing as a probe to compute the processing capabilities of the server. Since
triple pattern queries can be resolved in constant time by TPF servers [5], ob-
serving HTTP responses times allows to compute an accurate load-estimation
of TPF servers. Such estimation is updated in real-time during query process-
ing and allows Ulysses to dynamically react to failures or heavy load of TPF
servers.

Last, Ulysses uses an adaptive load-balancer to perform load balancing
among replicated servers. Instead of simply selecting the server with the best
access latency, Ulysses performs its selection using a weighted random algo-
rithm: the probability of selecting a server is proportional to its processing
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(a) Replicated fragments
DBpedia

S2S1 S3

f1 “ x DBpedia, ?software dbo:developer dbp:Arkane_Studios y

f2 “ x DBpedia, ?software dbo:developer ?company y

f3 “ x DBpedia, ?company dbo:locationCountry ?country y

f4 “ x DBpedia, ?country rdfs:label "France"@en y

f1, f3 f2, f3 f2, f4

(b) Triple patterns in Q1 and their
relevant fragments and servers
Triple Relevant Relevant

pattern fragment server(s)
tp1 f1 S1

f2 S2, S3

tp2 f3 S1, S2

tp3 f4 S3

Fig. 2: Relevant replicated fragments for query Q1 (from Figure 1)

capabilities. Thus, the load of query processing will be distributed across all
replicated servers, minimizing the individual cost of query processing for each
data provider. This load-balancer also provides fault-tolerance, by re-scheduling
failed HTTP requests using available replicated servers.

3.1 Replication model
For replication, we follow the approach of replicated fragments introduced in
[10,11] and recall related definitions, adapted for TPF servers.

Definition 1 (Fragment). A fragment is a tuple f “ xu, tpf y where u is the
authoritative source of the fragment, e.g., DBpedia, and tpf is the triple pattern
met by the fragment’s triples.

Figure 2a shows a federation with three TPF servers S1, S2 and S3, each of
them exposing fragments replicated from DBpedia. For example, S3 replicated
the fragment f4, which correspond to all triples matched by the triple pattern
?country rdfs:label "France"@en. Notice that a total replication can be eas-
ily expressed using a fragment defined by the triple pattern ?s ?p ?o.

Definition 2 (Fragment mapping). A fragment mapping is a function L
that maps a fragment to a set of TPF servers.

For example, in Figure 2a, the fragment mapping of f2 is Lpf2q “ tS2, S3u.

Definition 3 (Containment mapping). A containment mapping is a con-
tainment relation Ď defined as follows:

Let tppDq denote the evaluation of the triple pattern tp over an RDF dataset
D. Let tp1 and tp2 be two triple patterns. We say that tp1 is contained in tp2,
denoted by tp1 Ď tp2, if, @ RDF dataset D, tp1pDq Ď tp2pDq.

Computing triple pattern containment has a complexity of Op1q, as demon-
strated in [10].
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Algorithm 1: Ulysses Source Selection algorithm
Input: Q: SPARQL query, S: set of TPF servers, F : set of fragments
Output: selection: map from Triple Pattern to set of set of TPF servers

1 Function SourceSelection(Q,S,C):
2 selectionÐ empty map
3 patternsÐ get triple patterns in Q
4 for each tp P patterns do
5 selectionrtps Ð H

6 Rptpq Ð RelevantFragmentsptp, F q
7 Rptpq Ð CheckContainmentpRptpq, F q
8 for each f P R(tp) do
9 Lpfq Ð FragmentLocationspf, Sq

10 selectionrtps Ð selectionrtps
Ť

tLpfqu

11 return selection

For example, in Figure 2a, we have f1 Ď f2, as all triples matching f1 pattern
are included in the triples matching f2 pattern.

Definition 4 (Fragment relevance). Let f be a fragment defined by a triple
pattern tp1. Let tp2 be a triple pattern of a SPARQL query Q. f is relevant to
Q if tp1 Ď tp2 or tp2 Ď tp1.

Figure 2b shows the relevant fragments of query Q1, from Figure 1, using
the fragments defined in Figure 2a. For example, f1 and f2 are relevant to tp1,
as tpf1 Ď tp1 and tpf2 Ď tp1.

3.2 Replication-aware source selection for Triple Pattern Fragments

When processing a SPARQL query, Ulysses loads a catalog that describes frag-
ments and the servers that provide access to them, i.e., the fragment localities.
In this paper, we made the following assumptions:
– We do not address how the catalog is obtained. It could be provided as an

input by the user, any server in the federation or by a dedicated service that
record replication between online datasets.

– For simplicity, we consider that replicated fragments are synchronized, i.e.
there are no updates. Managing consistency between replicated datasets with
updates is addressed in [8]. Most TPF servers address this issue by hosting
versioned datasets [15].
Algorithm 1 presents Ulysses replication-aware source selection algorithm.

This algorithm identifies the TPF servers that can be used to evaluate each triple
pattern of a query. The following example illustrates how this algorithm works.

Example 1. Consider Algorithm 1 with the following inputs: the SPARQL query
Q1 from Figure 1, the set of TPF servers S “ tS1, S2, S3u and the fragments from
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Figure 2. First, relevant fragments are computed for each triple pattern (line 6):
Rptp1q “ tf1, f2u, Rptp2q “ tf3u and Rptp3q “ tf4u. Notice that triple pat-
terns with more than one relevant fragments require the retrieval of all relevant
fragments to get complete results. Next, we compute triple pattern containment
to remove redundant fragments (line 7), f1 is removed because f1 Ď f2, and
then fragments are localized on TPF servers (line 9): Lpf2q “ tS2, S3u, Lpf3q “
tS1, S2u and Lpf4q “ tS3u. Finally, the source selection of each triple pattern is
computed (line 10): selectionrtp1s “ ttS2, S3uu, selectionrtp2s “ ttS1, S2uu and
selectionrtp3s “ ttS3uu.

The results of the source selection algorithm are used to identify the TPF
servers that replicate the same relevant fragments. These servers can be used
to distribute the evaluation of triple patterns. However, as TPF servers are
heterogeneous, i.e., they do not exhibit the same processing capabilities, we must
ensure that servers with weaker processing capabilities are less requested in favor
of more powerful servers, to maintain good query processing performance. To
this end, we define a cost-model to compute and evaluate servers capabilities.

3.3 A cost-model for evaluating TPF servers capabilities

The cost model uses server capability factors to evaluate servers capabilities. A
server capability factor depends on: (i) The access latency of the TPF client for
this server. (ii) The processing capabilities of the server, i.e., in terms of CPU,
RAM, etc. (iii) The impact of the server loads on its processing capabilities.

As a triple pattern is evaluated in constant time [5], a server capability factor
can be deduced from its access time. If an HTTP request is not resolved in the
server cache, a server access time is the time to receive one page of RDF triples
matching a triple pattern from the TPF server 7. However, as the size of pages
could be different among servers, two servers with the same access times do not
necessarily produce results at the same rate. Thus, we choose to rely on a server
throughput, i.e., the number of results served per unit of time, to evaluate more
precisely its processing capabilities.

Definition 5 (Server throughput). Given a set of TPF servers S “ tS1, . . . , Snu,
∆ “ tδ1, . . . , δnu where δi is the access time of Si, and P “ tp1, . . . , pnu where
pi is the number of results served per access to Si.
@Si P S, the server throughput wi of Si is wi “

pi

δi

Example 2. Consider three TPF servers S1, S2 and S3, with their access times
be δ1 “ δ2 “ 100 ms and δ3 “ 500 ms, and the number of results they serve
per access be p1 “ 100 and p2 “ p3 “ 400, respectively. Using Definition 5, we
compute the servers throughput as w1 “ 1, w2 “ 4 and w3 “ 0.8, respectively.
Notice that S1 and S2 have the same access times, but using their throughput,
we observe that S2 delivers more triples per unit of time than S1.
7 We suppose that an HTTP client is able to detect if an HTTP request has been
resolved in the cache.
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Next, we use the throughput of a TPF server to estimate its capability. The
capability is normalized with respect to other servers used to evaluate the query.

Definition 6 (Server capability). Given a set of TPF servers S “ tS1, . . . , Snu

and W “ tw1, . . . , wnu where wi is the throughput of Si.
@Si P S, the capability φi of Si is φi “

Y wi

min W

]

Example 3. Consider the set of servers S “ tS1, S2, S3u and their throughputs
W “ tw1 “ 1, w2 “ 4, w3 “ 0.8u from Example 2. Using Definition 6, we com-
pute the capability of S1, S2 and S3 as φ1 “ 1, φ2 “ 5 and φ3 “ 1, respectively.
We observe that S1 and S3 have similar capabilities, even if S3 access times is
higher than S1, and that S2 is five times more powerful than both S1 and S3.

3.4 Accessing TPF servers based on capabilities

We follow a load distribution approach similar to Smart Clients [18], with a
random algorithm weighted by the servers capabilities. This allows for quick
adaptation to variations in server loads: if a server throughput is deteriorated,
its capability will decrease and it will be less frequently accessed. Definition 7
states how to access a set of TPF servers in such way.

Definition 7 (Weighted random access). Given a set of TPF servers S “
tS1, . . . , Snu and Φ “ tφ1, . . . , φnu where φi is the capability of Si.

When selecting a TPF server Si P S to evaluate a triple pattern tp, the
probability of selecting Si is: ApSiq “

φi
řn

j“1 φj
, such as: (i)

ř

SiPS

ApSiq “ 1;

(ii) @Si P S, 0 ď ApSiq ď 1.

Example 4. Consider again the set of TPF servers S “ tS1, S2, S3u and the set
of capabilities Φ “ tφ1 “ 1, φ2 “ 5, φ3 “ 1u computed in Example 3.

According to Definition 7, the probability of selecting S1, S2 and S3 for eval-
uating a triple pattern are ApS1q “

1
7 , ApS2q “

5
7 and ApS3q “

1
7 , respectively.

Next, we define how Ulysses uses the cost-model to effectively distribute
the evaluation of triples patterns across replicated TPF servers.

3.5 Ulysses adaptive client-side load balancing with fault tolerance

Ulysses defines an adaptive client-side load balancer that acts as a transparent
component between the client and the set of replicated TPF servers. When the
TPF query engine evaluates a triple pattern, it uses the load balancer to perform
the evaluation. The load balancer distributes accesses to relevant TPF servers
according to servers capabilities as defined in Section 3.4.

Algorithm 2 describes the load balancing algorithm used by Ulysses. First,
the sources selected by the source selection algorithm are used to find Stp, a set
of set of TPF servers (line 3). Each S1 P Stp is a set of servers that replicates one
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Algorithm 2: Ulysses Load Balancing algorithm
Data: S “ tS1, . . . , Snu: set of TPF servers, selection: map of Triple Pattern

to set of set of TPF servers, Φ “ tφ1, . . . , φnu: set of servers capabilities.
1 Function EvaluatePattern(tp: triple pattern):
2 µÐH

3 Stp Ð selectionrtps
4 for each S1

P Stp do
5 if |S1

| ą 1 then // replicated servers available
6 s1

Ð a TPF server selected using Φ, such as s1
P S1

7 else
8 s1

Ð the only server s1
P S1

9 µÐ µ
Ť

t Evaluate tp at s1
u

10 return µ

11 Event OnHTTPResponse(Si: TPF server, δ1: request execution time):
12 Update access times of Si and recompute Φ using it
13 Event OnHTTPFailure(q: HTTP request, Si: TPF server, tp: triple pattern):
14 @S1

P selectionrtps, remove Si from S1

15 if selectionrtps “ H then // all servers have failed
16 FailQuerypq

17 Retry q using another relevant TPF server, selected using Φ

relevant fragment of tp. Ulysses has to evaluate tp using at least one server in
each S1 to get complete results (line 4). For each S1 P Stp, if replicated servers
are available, the set of servers capabilities is used to select a server to evaluate
tp (line 6). Otherwise, the unique server in S1 is used to evaluate tp (line 8).

Additionally, Ulysses load balancer adapts to changes in network conditions
and provides fault tolerance. If a valid HTTP response is received from a server
(line 11), its access time is updated in Ulysses cost-model and the set of servers
capabilities is recomputed to be kept up-to-date. Furthermore, if a server has
failed to process a request (line 13), it is removed from the cost-model and the
request is re-scheduled using an alternative server (lines 14-17).

4 Experimental study

The goal of the experimental study is to evaluate the effectiveness of Ulysses:
(i) Ulysses produces complete results and does not deteriorate query execu-
tion time; (ii) The load distribution is done conforming to the cost model;
(iii) Ulysses speed-up query execution when servers are loaded; (iv) Ulysses
is able to tolerate faults and adapts to the load of servers in real time.
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We compare the performance of the reference TPF client alone (denoted
as TPF) and the same TPF client with the addition of Ulysses (denoted as
Ulysses) 8

4.1 Experimental setup

Dataset and Queries: We use one instance of the Waterloo SPARQL Diversity
Test Suite (WatDiv) synthetic dataset [2] with 107 triples, encoded in the HDT
format [5]. We generate 50,000 DISTINCT queries from 500 templates (STAR,
PATH, and SNOWFLAKE shaped queries). Next, we eliminate all duplicated
queries, and then pick 100 random queries to be used in our experiments. Queries
that failed to deliver an answer due to a query engine internal error with the
regular TPF client are excluded from all configurations.

Type of replication: We consider two types of replication: (i) total replication:
our WatDiv dataset is replicated by all servers in the experimentation; (ii) partial
replication: fragments are created from the 100 random queries and are repli-
cated up to two times. Each replica is assigned randomly to a server in the
experimentation.

Servers and client configurations: We use the Amazon Elastic Compute Cloud
(Amazon EC2) to host our WatDiv dataset with the latest version of the TPF
server. RDF triples are served per page of 100 triples. Each server use t2.micro
instances (one core virtual CPU, 1GB of RAM), with 4 workers and no HTTP
web cache. HTTP proxies are used to simulate network latencies and special
conditions, using two configurations: (i) Homogeneous: all servers have access
latencies of 300ms. (ii) Heterogeneous: The first server has an access latency of
900ms, and other servers have access latencies of 300ms.

The Ulysses TPF client is hosted on a machine with Intel Core i7-4790S
3.20GHz and 2BG of RAM and implemented as an extension of the reference
TPF client.

Evaluation Metrics: (i) Execution time (ET): is the elapsed time since the query
is posed until a complete answer is produced. (ii) HTTP response time (HRT): is
the elapsed time since a HTTP request is submitted by the client to a TPF server
until a complete HTTP response is received. (iii) Number of HTTP requests per
server (NHR): is the number of HTTP requests performed by the client against
each TPF server for a query. Thus, it represents the load that each query injected
on each server. (iv) Answer Completeness (AC): is the ratio between the answers
produced by the evaluation of a query using the reference TPF client and the
evaluation by Ulysses; values ranges between 0.0 and 1.0.

Results presented for all metrics correspond to the average obtained after
three successive evaluation of our queries.
8 The datasets, queries, code and results relative to the experiment are available the
companion web site https://callidon.github.io/ulysses-tpf as long as with an
online demo http://ulysses-demo.herokuapp.com.

https://callidon.github.io/ulysses-tpf
http://ulysses-demo.herokuapp.com
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4.2 Experimental Results

Query execution time and Answer Completeness: First, we check that
Ulysses preserves answer completeness. We executed our 100 random queries
with Ulysses using one, two and three homogeneous TPF servers. As a baseline,
we also executed our queries with the reference TPF client, using one TPF server.
In all configurations, Ulysses is able to produce the same answers as the baseline
for all queries.

Next, to confirm that Ulysses does not deteriorate query execution time, we
run a Wilcoxon signed rank test [17] for paired non-uniform data for the query
execution time results obtained by Ulysses, using up to three servers, with the
following hypothesis: H0: Ulysses does not change SPARQL query execution
time compared to the reference TPF client; H1: Ulysses does change SPARQL
query execution time compared to the reference TPF client.

We obtained p-values of 2.83019e´17, 9.0472e´12 and 5.05541e´12 for config-
urations with one, two and three servers, respectively. These low p-values allow
for rejecting the null hypothesis and support that Ulysses do change SPARQL
query execution times compared to the reference TPF client.

Next, we validate that Ulysses is able to distribute the load of query pro-
cessing according to servers’ capabilities both in a total replication settings and
in a partial replication settings.

Load distribution with total replication: Figure 3a shows the number of
HTTP requests per server (NHR) after the evaluation of our workload of 100
queries, with up to four homogeneous servers that totally replicate the dataset.
The configuration with one server runs with the reference TPF client, others with
Ulysses. As all servers have the same capabilities according to Ulysses cost-
model, the requests are equally distributed among servers. Ulysses reduces the
number of HTTP requests received per server. Consequently, each server receives
fewer loads during query processing and servers availabilities are potentially
increased.

Figure 3b shows the same experiment with heterogeneous servers. Again,
Ulysses is able to distribute the load according to servers capabilities: as S1 is
three times slower than other servers, therefore it receives less requests.

Load distribution with partial replication: Figure 3c shows for the five
queries (from our 100 queries) that generate the most HTTP requests, the num-
ber of HTTP requests per server, grouped by triple patterns in a query. We
consider four homogeneous servers and partial replication. Results are similar
to those obtained previously: the HTTP requests required to evaluate a triple
pattern are distributed across servers that replicate relevant fragments. As the
load of a query processing is distributed at triple pattern level, we conclude that
the shape of a SPARQL query does not influence the load distribution.

Execution time under load: We study the impact of Ulysses load balancing
on query execution time when servers experience heavy load. We separately study
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Fig. 3: Average number of HTTP requests received by servers after evaluation of
WatDiv queries, using several configurations

the query 72 (from our set of 100 queries) of the template query from WatDiv
that generates an average load of requests (590 HTTP requests). Figure 4 shows
the execution time of this query, using up to twenty homogeneous servers. The
servers load is generated using several TPF clients, up to a hundred, that evaluate
the same query against the servers.

With only one server, results are similar to those obtained in [16]: as the load
increases, the server is less available and the query execution time is deteriorated.
Using several replicated servers, Ulysses distributes the load among servers
and improves availablity, so query execution time is significantly improved. This
improvement is not proportional to the number of replicated servers available: for
example, gains are more important between one and two servers than between
three and twenty servers.



Intelligent clients for replicated Triple Pattern Fragments 13

Number of concurrent clients executing the query

1 10 20 50 100

40

60

80

100

120
a
v
g

. 
e
xe

cu
ti

o
n
 t

im
e
 (

s)
4321 (TPF) 

Number of servers
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quests received by servers S1, S2, S3
during evaluation of query 72.
Servers start homogeneous, then S1
access latency is tripled at 20s

Fault tolerance: We examine how Ulysses reacts to faults. Figure 5 shows the
average HTTP responses times recorded client-side, when Ulysses evaluates the
query 72 using three homogeneous servers S1, S2 and S3 in presence of failure:
after 5 seconds, S1 becomes unavailable, and after 20 seconds, S3 also becomes
unavailable. We observe that Ulysses is able to tolerate servers failure and
evaluates the query with 100% answer completeness. When a failure is detected,
Ulysses distributes failed requests among available servers and resumes query
execution in less than a second. Tolerating faults involves a slight overhead, as
failed requests need to be re-executed.

Load adaptivity: We examine the evaluation of query 72 in a context where
servers load vary during query execution. Figure 6 shows the average number
of HTTP requests received by servers S1, S2 and S3 during the evaluation of
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query 72 by Ulysses. Replication is total and servers start homogeneous, after
20s the access latency of S1 is tripled. Before S1 becomes loaded, requests are
evenly distributed between the three servers, as they have the same processing
capabilities. Passed the 20 seconds, Ulysses detects that processing capabilities
of S1 have been deteriorated and adapts the load distribution in consequence:
S2 and S3 receive more requests until the end of the query processing. Ulysses
is able to quickly adapt to changes in servers conditions.

5 Conclusion and Future Works

In this paper, we presented Ulysses, a replication-aware intelligent TPF client
providing load balancing and fault tolerance over heterogeneous replicated TPF
servers. Ulysses accurately evaluates processing capabilities of TPF servers us-
ing only HTTP responses times observed during query processing. Experimental
results demonstrate that Ulysses reduces the individual load per server, speeds
up query execution time under heavy load, tolerates faults, and adapts to the
load of servers in real-time. Moreover, by distributing the load among differ-
ent data providers, Ulysses distributes the financial costs of queries execution
among data providers without impacting query execution times for end-users.

Ulysses opens several perspectives. First, we do not address how the catalog
of replicated fragments can be acquired. It could be provided by TPF servers
as additional metadata or built collaboratively by TPF clients as they evaluate
SPARQL queries. Building and maintaining the catalog of replicated data over
the web is challenging. Another perspective is to consider divergence over repli-
cated data. Executing queries over weakly-consistent replicated datasets raises
interesting issues about the correctness of results.
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