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Abstract

Technological advances have led to a strong increase in the number of data
collection efforts aimed at measuring co-presence of individuals at different
spatial resolutions. It is however unclear how much co-presence data can inform
us on actual face-to-face contacts, of particular interest to study the structure of
a population in social groups or for use in data-driven models of information or
epidemic spreading processes. Here, we address this issue by leveraging data sets
containing high resolution face-to-face contacts as well as a coarser spatial
localisation of individuals, both temporally resolved, in various contexts. The
co-presence and the face-to-face contact temporal networks share a number of
structural and statistical features, but the former is (by definition) much denser
than the latter. We thus consider several down-sampling methods that generate
surrogate contact networks from the co-presence signal and compare them with
the real face-to-face data. We show that these surrogate networks reproduce
some features of the real data but are only partially able to identify the most
central nodes of the face-to-face network. We then address the issue of using
such down-sampled co-presence data in data-driven simulations of epidemic
processes, and in identifying efficient containment strategies. We show that the
performance of the various sampling methods strongly varies depending on
context. We discuss the consequences of our results with respect to data
collection strategies and methodologies.

Keywords: face-to-face contacts; co-presence; digital epidemiology; complex
networks

1 Introduction
In the recent years, several methods have been developed to gather quantitative data

on human interactions using wearable sensors and complement more traditional

methods based on surveys [1, 2, 3]. Current data collection methods range from the

use of Bluetooth or WiFi signals in mobile phones [4, 5, 6, 7, 8, 9] to the specific de-

velopment of dedicated sociometric sensors [10, 11, 12, 13, 14, 15, 16, 17, 18, 19] and

enable researchers to record and measure physical proximity events between indi-

viduals in various social contexts. Depending on the specific technology considered

however, spatial resolution varies and the resulting “contacts” detected can range

from co-presence in a room or a part of a building to close face-to-face encounters.

The resulting data is often temporally resolved and has been increasingly used in

various contexts including the study of human behaviour, the validation of models

of human interactions and data-driven models of epidemic spreading [20, 21, 3].

Despite the increasing availability of techniques to measure even high-resolution

temporal contact networks however, a number of limitations remain. In particular,
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measures cannot be carried out for arbitrarily large population sizes. It is thus

of crucial interest to infer contacts or build contact proxies from data with lower

spatial resolution data or coming from other sources. In this spirit, several studies

have considered the issue of inferring social ties from email exchanges [22], mobile

phone data [23], or co-location at geographic scale [24]. Other works try to infer

close proximity in specific settings from individual attributes [25] or from a very

precise localisation of individuals [17], or, at geographical scale, from the similarity

of the WiFi signals received from a large enough number of WiFi routers [26].

Here instead, we do not try to infer specific contacts between pairs of individuals

but rather investigate if a coarse co-location information on individuals allows us

to reach an overall picture of the contact patterns in the population of interest.

To this aim, we leverage several data sets collected by the SocioPatterns collabora-

tion [27, 13] in various contexts: these data include both detailed information about

close, face-to-face encounters between individuals and a location tracking of individ-

uals with low spatial resolution. It is thus possible to build two temporal networks

where nodes represent individuals and links correspond respectively to a face-to-

face contact or to a co-presence event, where co-presence is defined with respect to

the localisation of two individuals within the same spatial area. We first compare

the structural and statistical properties of these two temporal networks and show

that they share some important properties, although the co-presence network is

much denser, due to the lower spatial resolution involved in its definition. We thus

investigate several methods of down-sampling the co-presence signal in order to

create surrogate contact networks, in the spirit of [28, 29], and compare these sur-

rogate data to the actual networks of face-to-face contacts. We focus first on several

statistical characteristics of temporal and aggregated networks, and quantify the

ability to identify central nodes in the contact network from the surrogate data. We

then consider the possibility to use the surrogate data in numerical simulations of

data-driven models for epidemic spread. In particular, we compare the outcome of

simulations of a standard model of epidemic propagation when surrogate or actual

contact data are used, and we explore the possibility to identify the most efficient

containment strategies from this limited information [30]. Our results turn out to

depend strongly on the data collection context, highlighting the limitations of coarse

co-presence networks with respect to detailed face-to-face data.

2 The co-presence network
2.1 Data sets

We use data collected by the SocioPatterns collaboration in various contexts. These

data were gathered using wearable sensors able to detect face-to-face close range

proximity (1.5 m) of participants wearing the sensors on their chests. In addition,

the sensors broadcast a signal that can be received by RFID readers located in the

environment. In open space, each reader can receive signals from sensors situated

within a range of ∼ 30 m, while the actual reception range in a building depends on

its specific structure and on the nature of its walls, floors and ceilings. Each reader

thus defines a coarse spatial area and the sensors’ signals can be followed when

the individuals carrying them change area. For each sensor, we define its “spatial

location” at each time as the set of readers receiving its broadcasted signal at this
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time, and we define two individuals to be in co-presence if they share the same

spatial location, i.e., the same exact set of readers have received signals from both

individuals.

Table 1 Characteristics of the data sets.

Data set Location Year Np Na T Ref
InVS13 Fr. Health Obs. 2013 92 27 2 weeks [31]
InVS15 Fr. Health Obs. 2015 232 45 2 weeks
LH10 Hospital 2010 81 8 3 days [32]

LyonSchool Primary school 2009 242 15 2 days [33]
SFHH Conference 2009 403 12 2 days [34]

Thiers13 High school 2013 326 18 1 week [35]
Np is the number of participants, Na the number of RFID readers, T the total duration of the data

collection.

We use data sets from various social contexts: a workplace, with data collected in

two different years (InVS13, InVS15), a hospital (LH10), a primary school (Lyon-

School), a scientific conference (SFHH) and a high school (Thiers13), see Table 1. In

each case, we thus consider a temporal network of face-to-face contacts and a tem-

poral network of co-presence between individuals, both at the temporal resolution

of 20s. A contact (resp. co-presence) event between two individuals is then defined

as a set of successive time-windows of 20s during which the individuals are detected

in contact (resp. co-presence), while they are not in the preceding nor in the next

20s time window. While the conference data does not include any other informa-

tion on the participants and does not exhibit any particular group structure [36],

the other populations under study can each be divided into groups: departments

for the workplace, classes for the school and the high school, and roles (patients,

doctors, nurses) in the hospital. In these cases, the overall structure of networks

aggregated over a certain time window can be summarised, in addition to usual

quantities such as the density, the clustering coefficient or the degree distribution,

by contact (resp. co-presence) matrices that give the fraction of pairs of individu-

als of different groups who have been in contact (resp. in co-presence). Moreover,

temporal features of interest include the distributions of durations of contact or

co-presence events, of the time elapsed between successive events, of the numbers

and aggregated durations of such events between pairs of individuals (the latter

quantity yields a natural definition of the weight of a link between individuals in

the aggregated network).

We will show in the main text the results corresponding to the InVS15 data set,

and we refer to the Supplementary Information for the results obtained with the

other data sets. We make also available as Supplementary Files the temporally

resolved contact and co-presence networks.

2.2 Co-presence and contact networks

We first compare some features of the co-presence and contact networks, both

temporal and for networks aggregated either on the whole data gathering period or

over daily temporal windows. We show in Fig. 1 the distributions of event and inter-

event duration, as well as the distributions of number and cumulative duration of

events for individual pairs. The co-presence events show broad distributions of these

quantities, similarly to the contact events and with similar slopes: using only co-

presence data yields approximate information on the functional shape of the contact
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Figure 1 Temporal distributions for co-presence and contact events — InVS15. We show for
both the contact and co-presence of the same data set the distributions of event and inter-event
duration, link weights (as total contact duration) and number of contacts per link.

duration distributions. The distributions of durations and numbers of events are

however typically broader for co-presence, with heavier tails, and the distribution

of inter-event durations tend to be less broad (see also SI). This is not surprising

as the criterion for being in co-presence is less strict than for being in contact.

We observe the strongest differences between co-presence and contact distribution

functional shapes for the primary school data. This could be related by the fact

that the spatial resolution is in that case quite low, with all the schoolyard being

covered by one single reader, and some readers covering more than one classroom.

Overall, using only co-presence data would lead to over-estimations of the contact

durations and aggregate durations.

Table 2 Similarity between contact matrices.

InVS13 InVS15 LH10 LyonSchool Thiers13
Co-presence 0.790 0.710 0.968 0.706 0.681
Sampling 1 0.946 0.829 0.960 0.845 0.857
Sampling 2 0.958 0.901 0.894 0.945 0.937
Sampling 3 0.888 0.816 0.958 0.738 0.691

For each data set we compute the cosine similarity between the average daily contact matrix and the
co-presence matrix, as well as for the contact matrices obtained for each sampling method of the

co-presence data, averaged over 100 realisations for each sampling method.

We compare moreover in Figs. 2 - 3 and Tables 2 - 3 the overall structures of

the contact and co-presence networks, aggregated over daily time windows. The

co-presence aggregated networks are much denser than the contact network, with

a larger average degree, a larger average clustering coefficient and larger cliques,

as expected once again given the lower spatial resolution required for co-presence
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Table 3 Characteristics of the contact, co-presence, and sampled co-presence networks.

InVS13 InVS15 LH10 LyonSchool SFHH Thiers13
k̄c 2.9 6.4 14.0 47.3 28.8 13.5
k̄` 20.9 35.0 18.2 194.5 234.3 126.8
k̄1 5.8 14.2 14.4 101.3 116.7 52.2
k̄2 0.9 3.6 7.7 36.9 45.2 5.2
k̄3 5.3 5.0 14.0 21.2 40.4 4.1

ρc 0.030 0.028 0.175 0.196 0.072 0.041
ρ` 0.211 0.152 0.227 0.807 0.807 0.383
ρ1 0.058 0.061 0.179 0.420 0.290 0.158
ρ2 0.009 0.016 0.097 0.153 0.112 0.016
ρ3 0.054 0.022 0.175 0.088 0.101 0.013

ωc 4.4 7.6 14.3 22.5 11.0 9.4
ω` 18.8 38.7 22.7 141.0 * 74.6
ω1 6.6 10.3 17.2 41.5 34.7 33.8
ω2 3.0 5.3 8.6 12.8 12.2 3.9
ω3 5.5 4.8 17.1 6.3 9.0 3.8

c̄c 0.178 0.239 0.428 0.520 0.260 0.379
c̄` 0.417 0.409 0.491 0.868 0.880 0.581
c̄1 0.255 0.266 0.432 0.596 0.442 0.586
c̄2 0.045 0.139 0.309 0.370 0.212 0.092
c̄3 0.205 0.101 0.426 0.193 0.161 0.047

We compare the average degree (k̄) network density (ρ), clique number (ω) and average clustering
(c̄) of daily aggregated networks, for the contact network (c subscript), the co-presence network (`

subscript), and the sampled co-presence networks (subscripts 1 to 3 according to the sampling
method). Values are averaged over all the days of the study. In the case of SFHH, since on the second

day there was activity only during the morning, only the values of the first day are reported.
*The network is too large and too dense for the clique number to be determined in reasonable time

via the usual algorithm.

Figure 2 Contact and co-presence matrices — InVS15. Comparison between the average
matrices of link density for the contacts and the co-presence daily aggregated networks. Values are
averaged over all days of the data collection. Both plots have the same colour scale.

events. In some cases (school, conference), the aggregated networks are even close

to being fully connected (see for illustration Fig. 3). Despite this strong difference in

the overall density of links, the contact and co-presence matrices giving the density

of links between and within each group, averaged across days, are very similar

(Table 2). The similarity is particularly high for the hospital data and, even for the

lower value obtained for the high school data, the matrices displayed in the SI show

that the overall structure in classes and groups of classes can be inferred from the

co-presence data alone.
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Figure 3 Day 2 contact and co-presence networks — InVS15. This figure highlights the
difference in terms of link density when comparing contact and co-presence daily networks.
Different node colours correspond to the different administrative departments.

Figure 4 Number of contacts as a function of the number of individuals present — InVS15.
We plot the number of contacts ca(t) occurring at time t in a certain area a as a function of the
number of individuals na(t) present at the same time in a. The red line shows the median of the
scatter plot, with error bars defined by the 25 % and 75 % percentiles.

Given the simultaneous discrepancies in density values and similarities in the net-

works group structures, we investigate if the data exhibits a scaling law between the

number of individuals present in an area and their contact activity, as found at geo-

graphical scale in phone communication [37] and Twitter data [38]. Figure 4 and the

similar figures shown in SI show the results obtained in the various contexts. Apart

from the office cases (InVS13 and InVS15), we observe indeed a correlation between

the median of the number of contacts and the number of individuals present. This

correlation exhibits a power law shape, with an exponent around 1.5 (see figures

in SI). However, huge, context-dependent fluctuations are observed. For instance,

in the InVS15 case, the trend is strongly influenced by the numerous instances of

an absence of contacts despite potentially large values of the number of individuals

present in the area. This is a consequence of the fact that a given reader can receive



Génois and Barrat Page 7 of 17

signals from the sensors of individuals located in different offices. In other areas such

as a cafeteria, many more contacts occur with potentially a similar or even smaller

number of individuals. Overall, very large fluctuations of the number of contacts, at

given number of individuals present, are thus observed, because on the one hand of

the low spatial resolution of the co-presence data, and on the other hand of the va-

riety of contexts corresponding to the areas covered by different RFID readers. The

stronger correlation is observed for the SFHH conference data, probably because

the various areas covered by the readers corresponded to similar contexts, namely

different areas of the exhibition and poster rooms.

3 Sampling co-presence data
3.1 Sampling methods

As the temporal network of co-presence bears some similarities with the actual

contact data, but contains much more events and leads to much denser aggregated

networks, we consider the possibility to down-sample the co-presence data: for each

pair of individuals, each contact event is indeed included in a co-presence event of

the same individuals. Each co-presence event might thus correspond to one or more

contact events. As we cannot determine exactly the correct down-sampling to be

performed if we have access only to co-presence data, we study here three simple

sampling methods. We remind here that we do not try to infer the real contacts

but rather to obtain a down-sampled version of the co-presence network that is

statistically similar to the real contact data. Moreover, as the total number and

duration of actual contacts cannot either be easily guessed from the co-presence

data alone, we consider the actual total contact time Tc as the (only) parameter

of the sampling, and we fix it to its empirical value. The sampling methods we

consider are the following:

• Sampling 1: Sampling of co-presence times. We define a co-presence list

as a list of individuals present at the same time t in the same area. Each co-

presence list is thus stamped with its time of occurrence t. We create n` copies

of each co-presence list `, where n` is the number of distinct individuals in `,

and create in this way of a global pool of co-presence lists. We then sample Tc

lists uniformly at random from the pool without replacement. Each list has

thus a probability proportional to the number of individuals it contains to be

chosen. From each chosen list, we choose at random a pair i, j of individuals,

obtaining a triplet (t, i, j) where t is the time-stamp of the list (we take care

to avoid repetitions: if (t, i, j) has already be obtained in a previous random

draw, we repeat the random selection). The sampled temporal co-presence

network (i.e., the surrogate contact network) is formed by the union of these

triplets.

• Sampling 2: Sampling of co-presence times with completion. We con-

stitute a pool of lists exactly like in the previous method. We then sample

a triplet (t, i, j) as in the previous method, and add all the other triplets

(t′, i, j) that belong to the same co-presence event to create the surrogate

contact event. We iterate this until we reach a cumulative contact time Tc,

while discarding repetitions.
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• Sampling 3: Sampling of co-presence events. We consider directly the

list of co-presence events between individuals, (t, i, j, τ) (co-presence event

between individuals i and j, starting at time t and with duration τ), and

sample events from this list, without replacement, adding them to the list of

surrogate contact events until we reach a cumulative contact time Tc.

For each data set, we create 100 instances of surrogate contact networks for each

sampling method. We compare in the following the properties of these surrogate

contact networks with the real face-to-face contact data.

3.2 Network comparison
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Figure 5 Properties of the sampled co-presence networks — InVS15. We compare several
properties of the contact network from the original data set with the surrogate contacts obtained
by sampling of the co-presence data: overall timeline of contact activity, distributions of degree,
weight w and number of contacts per link n in the network aggregated over the whole data
collection period, and distributions of the contact duration τc and inter-contact duration τi.

Figures 5 - 6 and Tables 2 - 3 provide elements of comparison between the sur-

rogate contact networks and the empirical data (see also SI). The first observation

is that the contact activity timelines are in general broadly recovered, except for

the primary school (see SI), while the detailed intra-day activity variations are not

always properly reconstructed in the surrogate data (except for the hospital data,

see SI). The strongest deviations are observed for the second sampling method for

the conference and high school data.

The first sampling method, given it samples separately times of co-presence, yields

an exponential distribution of surrogate contact duration, in contrast with actual

data and other sampling methods in which broad distributions are observed. Broad

distributions of inter-contact durations and of the numbers of contacts between

individuals are also obtained, with however slopes that depend on the context.



Génois and Barrat Page 9 of 17

t
0

10

20

30

40

50

60

70

80

〈k
(t

)〉

0 10000 20000 30000 40000 50000 60000
t

0

100

200

300

400

500

600

700

〈s
(t

)〉

Data

Sampling 1

Sampling 2

Sampling 3

Figure 6 Evolution of the mean aggregated degree and strength. InVS15 data set We compare
how the average degree 〈k(t)〉 and the average strength 〈s(t)〉 grow as we aggregate the network
on increasing time-windows, for the real contact data and each sampling method.

For instance, the second sampling method systematically leads to a distribution

of contact durations that is broader than for the real contacts. The third method

yields a distribution of contact durations similar to the real one for the InVS13,

LH10, and SFHH cases, but gives results similar to the second method in the other

cases.

We now turn to the properties of networks aggregated over daily periods or over

the whole data collection. At the daily level, we show in Table 2 that the similarity

of the contact matrices obtained from the surrogate data with the empirical one

is very high, and most often larger than the similarity of the original co-presence

matrix. For networks aggregated over the whole data collection, Fig. 5 shows the

distributions of degrees and of weights (see also SI). The first sampling method

leads to an overestimation of degree values (resulting in a shift of the distribution),

the second method tends to shift the distribution to lower degree values (except

for the conference case), and the third method yields context-dependent over- or

under-estimations of degree values. Note that the distributions of degrees of the co-

presence networks are not shown in the figure as the degree values are very strongly

overestimated. Distributions of weights (aggregated contact durations) recover well

the ones of the data for all sampling methods, and are closer than the ones of the

co-presence networks.

Table 4 Average similarity between daily networks.

InVS13 InVS15 LH10 LyonSchool Thiers13
Contact 0.333 0.305 0.351 0.643 0.431

Co-presence 0.415 0.348 0.449 0.806 0.683
Sampling 1 0.361 0.344 0.436 0.749 0.515
Sampling 2 0.388 0.271 0.403 0.175 0.084
Sampling 3 0.286 0.205 0.437 0.042 0.071
Null model 0.022 0.010 0.061 0.046 0.010

For each data set we compute the cosine similarity between the neighbourhoods of each nodes from
each daily network, averaged for all nodes and all pairs of daily networks. The neighbourhood of a

node n is defined as the vector of the link weights between n and every other nodes (if the link does
not exist the weight is set to zero). We compare the values obtained for the contact data, the

co-presence data, and for the networks generated by each sampling method of the co-presence data,
averaged over 100 realisations for each sampling method. For reference, we also compute as null

model the average similarity when links in the contact data are shuffled randomly within each daily
network.
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To investigate intermediate timescales of aggregation, Table 4 quantifies the simi-

larity between networks aggregated in different days. The measure is defined as the

average cosine similarity between all pairs of instances of a node’s neighbourhood,

averaged over all nodes. We see that the similarity is higher for the co-presence net-

works, as expected since the networks are denser. The sampling method 1 generates

networks that are more similar than the data, and the other two methods generate

networks that are less similar (with the exception of the LH10 case, and the method

2 in the InVS13 case). In the cases of the method 2 for the LyonSchool data, and

the methods 2 and 3 for the Thiers13 data, the sampled networks are even almost

as different as they would be after a random shuffling of the links.

In addition, Fig. 6 gives the evolution of the average degree and strength for

networks aggregated in increasingly long time windows. First, the evolution of the

real average aggregated strength is usually better recovered than for the degree

by the various sampling better. Second, which sampling method recovers better

the evolution of the degree is again context dependent. However, in all cases the

sampled data are much closer to the contact data than the co-presence network,

which overestimates very strongly these quantities.

3.3 Node centralities
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Figure 7 Node ranking similarity. InVS15 data set We plot for each co-presence sampling
method the Jaccard similarity between the top N % nodes in the real and surrogate contact data,
when ranked according to their degree k, their strength s or their betweenness centrality b vs. N .
The plot shows the median similarity and the shaded areas give the 90 % confidence interval.

In a network, more “central” nodes are usually considered as important, as they

might play an important role for instance in spreading processes (or other dynamical

phenomena) occurring in the network. It is thus of interest to understand whether
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the most central nodes in the contact network can be identified either in the raw

co-presence data or in the surrogate contact data built from the co-presence infor-

mation. As there are several ways of determining central nodes in a network, we

consider here three of the most well-known centrality measures and apply them

to the networks aggregated over the whole data collection: degree k, strength s

and betweenness b of nodes in the aggregated networks. For each instance of each

sampling method, we thus build the resulting surrogate aggregated contact network

and rank nodes according to each centrality measure. We then compute the Jaccard

similarity index between the top N % nodes in the real contact network and in the

surrogate one. We plot in Fig. 7 the median similiarity with the 90 % confidence

interval, as a function of N , for the InVS15 case (see SI for the other cases).

Table 5 Comparison of the maximum k-core properties.

InVS13 InVS15 LH10
Contact 11 25 23

Co-presence 78 (0.607) 112 (0.681) 32 (0.682)
Sampling 1 22.5 (0.660) 57.8 (0.719) 26.0 (0.683)
Sampling 2 5.23 (0.479) 17.4 (0.692) 16.4 (0.655)
Sampling 3 28.1 (0.591) 27.4 (0.639) 25.5 (0.693)

LyonSchool SFHH Thiers13
Contact 47 33 24

Co-presence 181 (0.615) 320 (0.522) 210 (0.684)
Sampling 1 99.8 (0.638) 111 (0.575) 76.7 (0.640)
Sampling 2 39.7 (0.501) 41.4 (0.555) 17.7 (0.375)
Sampling 3 28.4 (0.360) 42.6 (0.559) 15.8 (0.117)

For each dataset we compute the maximum coreness, and report between parenthesis the Jaccard
index between the k-core of the contact network and the k-core in the original and sampled

co-presence data (results are averaged over 100 realisations for each sampling method).

In general, no sampling method recovers correctly the most central nodes for low

values of N . The best results are obtained for the conference data with similarities

around 0.2−0.4. The similarity values increase as N increases but reach most often

only values of ∼ 0.5 when considering the top 50 % nodes, meaning that only 25 %

of the most central nodes are identified when using the surrogate data. The best

results are obtained for the first sampling method for the LyonSchool case and for

the LH10 case, with similarities reaching 0.6−0.7. Results are typically better than

the random baseline but do not outperform the detection of most central nodes

based on the whole co-presence network. In terms of the most central nodes as

defined by the k-core decomposition (we recall that the k-core of a network is the

maximal subgraph such that all nodes in the subgraph have at least degree k, and

k is called the coreness), the overestimation of degrees in the co-presence network

leads to an overestimation of the maximum coreness, while sampling leads to values

closer to the ones of the contact data, but once again in a context-dependent way.

The maximum core itself is only partially recovered in the whole and in the sampled

co-presence networks (see Table 5).

4 Using surrogate contact data in epidemic simulations
We have seen in the previous section that none of the three sampling methods yields

a perfectly accurate description of all the relevant features of the true contact net-

work: each sampling method yields surrogate data with both interesting similarities

and potentially important discrepancies with respect to the original contact data.

We now consider the issue of using such surrogate data in simulations of spreading
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processes: as precise data on face-to-face contacts is not always available, it is im-

portant to understand if co-presence information can allow us to obtain on the one

hand an accurate prediction of the outcome of an epidemic process, and on the other

hand a reliable estimation of the impact of containment measures. In particular, it

is important to be able to classify potential containment strategies to determine

which one(s) are most adequate.

To this aim, we consider the paradigmatic Susceptible-Infectious-Recovered (SIR)

model for epidemic spreading. In this model, susceptible (S) individuals can become

infectious (I) at rate β when in contact with an infectious node. Infectious nodes

recover spontaneously at rate µ and enter an immune recovered (R) state. Simu-

lations start with a single infectious individual chosen at random and carried out

until there are no infectious individuals left in the population, i.e., individuals are

either still susceptible or have been infectious and have then recovered. The impact

of the epidemics is then quantified by the final fraction ni of individuals in the R

state.

We set β = 0.0004 and vary µ by tuning the reproductive number R = β/µ.

For each value of R, we measure the fraction P (ni > 20 %) of “large” outbreaks

in which the fraction ni of the population that was reached by the outbreak is at

least 20 % and the distribution of the sizes ni of these large outbreaks. We average

the results over 10 000 simulations performed on the empirical contact network. For

each sampling method, we build 100 different instances of the surrogate contact

network, and perform 100 simulations on each surrogate network.

We also consider several simple methods to mitigate the spread, namely the vac-

cination of a number of individuals in the population, under the assumption of

a perfect vaccine efficiency: vaccinated individuals cannot become infectious nor

transmit the disease and thus slow down and hinder the propagation. We consider

the vaccination of (i) 5, 10 or 20 individuals chosen at random (ii) the most central

5, 10 or 20 individuals, where centrality is measured according to either degree,

strength or betweenness in either the real or surrogate contact networks (iii) when

the population is structured in groups, the vaccination of all individuals in one

group.

Figures 8 and 9 summarize our results for the InVS15 dataset (see SI for the figures

obtained with the other datasets). In terms of the evaluation of the impact of a

spreading process, results are context dependent. The simulations performed on the

surrogate data obtained with the first method generally lead to an overestimation

of the epidemic risk, except for the hospital data. When using the second sampling

method, we obtain a good estimation of the risk for the conference, school and

highschool data but an underestimation for offices and hospital data. The third

method on the other hand leads to a correct estimation for the offices and hospital

data but an underestimation for the school and highschool and an overestimation

for the conference.

We show in Fig. 9 the impact of the various vaccination strategies, quantified

through the ratio of the probabilities of large outbreaks with and without vaccina-

tion, as well as the ratio between the median sizes of these large outbreaks. We rank

the strategies according to their efficiency in the real contact network, in order to

visualize easily whether the surrogate networks lead to the same classification of the
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Figure 8 Epidemic prevalence. InVS15 data set. We plot the fraction of the total number of
outbreaks that reach at least 20 % of the population (crosses) and the distribution of the sizes of
these outbreaks (boxplots) for several values of the reproductive number R, for the original and
the surrogate contact networks.
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Figure 9 Vaccination strategies. InVS15 data set. We plot the ratio between the vaccination and
no vaccination cases of the fraction of the total number of outbreaks that reach at least 20 % of
the population (top), and of the median size of these outbreaks (bottom) for different vaccination
strategies, for the original data and the reconstructed networks. The vaccination strategies are
ordered by decreasing efficiency, based on the effect on the real contact data. The group *
strategies consist in vaccinating one or several groups entirely; the group rand strategy vaccinates
ng random nodes, where ng is the average group size; the rand n strategies randomly vaccinates
a specified fraction n of nodes; the b n, k n, s n strategies vaccinate the top n% nodes according
to, respectively, betweenness centrality, degree and stregnth ranking.
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strategies: indeed, even when the impact of each specific strategy is not accurately

quantified, it would be interesting at least to understand which methods are most

efficient.

Table 6 Comparison of the vaccination strategy rankings.

InVS13 InVS15 LH10
P n P n P n

Sampling 1 0.515 0.235 0.377 0.766 0.397 0.412
Sampling 2 0.324 0.382 0.377 0.481 0.456 0.412
Sampling 3 0.279 0.235 0.394 0.706 0.324 0.426

LyonSchool SFHH Thiers13
P n P n P n

Sampling 1 -0.012 -0.051 0.485 0.818 0.048 0.299
Sampling 2 0.091 0.083 0.758 0.485 -0.074 -0.108
Sampling 3 0.020 0.162 0.636 0.545 0.299 -0.108

For each sampling method we compute Kendall’s tau between the list of vaccination strategies ranked
by increasing efficiency for the contact data and for the sampled co-presence networks, both in terms

of the fraction of large outbreaks (P ) and of median sizes of the large outbreaks (n).

Results are once again uneven and context dependent (see also Table 6). In several

cases such as SFHH the ranking of strategies obtained from the sampled co-presence

is overall respected (Kendall’s tau of 0.818 for the sampling method 1 on the size

of outbreaks), while it can be strongly reshuffled in other cases (for instance in the

Thiers13 case).

5 Discussion and conclusion
In this paper, we have investigated whether low resolution co-presence informa-

tion can be used as a substitute for detailed face-to-face proximity data, both from

the point of view of extracting large-scale structural and statistical features of the

temporal contact network in a population and in data-driven models of epidemic

processes in a population. We have considered several data sets collected in various

contexts that contain both high-resolution data on face-to-face contacts between

individuals and a coarser location data, both with temporal resolution. The loca-

tion data can thus be transformed into a co-presence temporal network between

individuals. Given its lower spatial resolution, this co-presence data contains much

more events than the contact data, leading to much denser aggregated networks:

indeed, all individuals in a given area are considered as co-present, while only some

of them are typically engaged in a face-to-face contact. Despite this expected issue,

a number of properties related to group structure and statistical distributions of

temporal properties are similar in contact and co-presence data, with similar ma-

trices of densities of links between groups and broad distributions of (aggregate)

contact durations.

We have thus examined several methods to downsample the co-presence networks

to create surrogate contact networks with overall the same amount of contact time

than the real contact data. The surrogate data statistics are in general closer to the

real contact data than the raw co-presence, in particular regarding the distribution

of node degrees and link weights (and their evolution in networks aggregated over

increasing time windows). These results mean in particular that the distribution of

aggregate contact durations, a very important property that has a strong impact

on the unfolding of processes on networks such as epidemic processes, could be

approximately retrieved from simple sampling processes of the co-presence data
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and thus fed into data-driven models of populations. Several other properties, such

as precise value of the average degree, average clustering or size of largest cliques

and cores, turn out however to be strongly context-dependent. Moreover, the most

central nodes of the contact network are not better identified than using the bare

co-presence information.

We have moreover investigated the use of such surrogate contact data in numerical

simulations of spreading processes in a population. Overall, simulations performed

on surrogate data obtained with one of the sampling method yield results close

to the ones obtained with the real data, while the other methods over- or under-

estimate these results, but the best method turns out to depend on context (Note

however that all these methods give obviously results much closer to the one of the

real contact network than if raw co-presence is used, given co-presence overestimates

strongly the contacts and thus yields a strongly overestimated epidemic risk). We

moreover investigated the possibility to rank containment strategies according to

their efficiency, and found that this ranking is once again context dependent: in

some cases, simulations on sampled co-presence networks allow us to uncover the

most efficient vaccination strategies for containing a spread on the real contact data,

while in other cases the rankings differ quite strongly.

In conclusion, we showed that co-presence data, while yielding interesting in-

sights into some of the large scale properties of the contact network, is not easily

usable to build in a reliable and systematic fashion surrogate contact data that

reproduces detailed features of the real contacts and could be used in numerical

simulations to predict the outcome of spreading processes and the impact of con-

tainment strategies, at least for processes involving contagion at short distances [39]

(note that, while more sophisticated sampling procedures might be devised, they

would most probably involve more parameters and/or more additional information

not present in the raw co-presence data, and would also most probably still give

context-dependent results). We note however that even coarse location information

has been shown to be a useful additional information whenever the precise contact

data is incomplete [29]. Optimally, data collection with wearable sensors should thus

contain both high resolution data about relative positions of individuals, in order

to detect face-to-face proximity, and coarser co-presence information to inform for

instance on mobility patterns within buildings or complement potential data losses.
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