Generalized Hermite Reduction, Creative Telescoping and Definite Integration of D-Finite Functions

Alin Bostan 1 Frédéric Chyzak 1 Pierre Lairez 1 Bruno Salvy 2
2 ARIC - Arithmetic and Computing
Inria Grenoble - Rhône-Alpes, LIP - Laboratoire de l'Informatique du Parallélisme
Abstract : Hermite reduction is a classical algorithmic tool in symbolic integration. It is used to decompose a given rational function as a sum of a function with simple poles and the derivative of another rational function. We extend Hermite reduction to arbitrary linear differential operators instead of the pure derivative, and develop efficient algorithms for this reduction. We then apply the generalized Hermite reduction to the computation of linear operators satisfied by single definite integrals of D-finite functions of several continuous or discrete parameters. The resulting algorithm is a generalization of reduction-based methods for creative telescoping.
Type de document :
Communication dans un congrès
ISSAC 2018 - International Symposium on Symbolic and Algebraic Computation, Jul 2018, New York, United States. pp.1-8, 2018, 〈http://www.issac-symposium.org/2018/〉. 〈10.1145/3208976.3208992〉
Liste complète des métadonnées

Littérature citée [45 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01788619
Contributeur : Frédéric Chyzak <>
Soumis le : mercredi 9 mai 2018 - 11:39:00
Dernière modification le : mardi 22 mai 2018 - 10:10:54

Fichier

redct-final.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Alin Bostan, Frédéric Chyzak, Pierre Lairez, Bruno Salvy. Generalized Hermite Reduction, Creative Telescoping and Definite Integration of D-Finite Functions. ISSAC 2018 - International Symposium on Symbolic and Algebraic Computation, Jul 2018, New York, United States. pp.1-8, 2018, 〈http://www.issac-symposium.org/2018/〉. 〈10.1145/3208976.3208992〉. 〈hal-01788619〉

Partager

Métriques

Consultations de la notice

225

Téléchargements de fichiers

52