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1 INTRODUCTION 

In a typical thermoforming process, a polymeric 
sheet is heated to its forming temperature and 
brought into contact with a mold of the desired 
shape. Owing to the low polymer thermal 
conductivity (0.29 W/m/K for PET), the heating step 
is performed using infrared lamps, which enable 
short thermoplastic sheet heating times. The final 
thickness of the part, and consequently the final 
product quality, is drastically controlled by the 
initial temperature distribution inside the sheet. For 
this reason, optimizing the heating stage is crucial in 
order to ensure an improved process control. 
The thermal problem during thermoforming process 
results from a coupling of conductive, convective 
and radiative three-dimensional unsteady transfers. 
Moreover, the modelling of heating device, 
composed by different rows of lamps associated to 
reflectors, is complex. Thus, to find optimum 
process parameters, inverse methods are generally 
used.  

1.1 Thermoforming optimization approaches 

Different recent optimization process investigations 
have been studied by using commercial software 
such as POLYFLOW® [1] and T-SIM® [2]. Some 
investigators, as Wang and Nield [3], developed 
their own thermoforming simulation software. Both 
of these studies, based on mechanical stage 
simulation, focused on evaluating the possibility to 
obtain uniform thickness by controlling the initial 
polymer sheet temperature field. However, ovens 
parameters were not linked to the temperature 
distribution. 
Duarte and Covas [4], and Throne [5], proposed 
algorithms to solve the inverse heating problem, in 
order to find the heater temperature pattern 
associated to a uniform sheet temperature field. Both 
of these studies were based on solving the one-
dimensional unsteady heat conduction problem, 
using radiative and convective boundary conditions. 
As a conclusion, no inverse method has been used to 
find oven optimum geometric parameters.  
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1.2 Goals of the present study 

We propose an inverse method, permitting to 
optimize the oven geometry, and to obtain a three-
dimensional temperature pattern at the end of the 
heating stage. This method can be decomposed into 
three coupling steps:   
• Optimization of the heat flux over the sheet 

surface, using an analytical model coupled to a 
non linear constrain optimization method 
(Sequential Quadratic Programming). The goal is 
to find the best set of oven geometric parameters. 

• Accurate simulation of radiative transfers, based 
on raytracing method, with optimized parameters 
obtained in the first step. 

• Computation of the 3D temperature pattern, using 
THERMORAY, a heat transfers solver (developed 
in CROMeP [6]) based on control-volume 
method. The absorption of the irradiation 
calculated in the second step, is approximated 
using the Rosseland model. 

2 HEAT BALANCE EQUATION 

In its classical form, the heat balance equation can 
be written as: 
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where T = temperature, qc = conduction heat flux, 
qr = radiation heat flux, ρ = density, cp = specific 
heat, k = thermal conductivity. To compute the temperature 
distribution through the thickness of the sheet, this 
equation is solved using a 3D control-volume 
software, named THERMORAY [6].  

2.1 Control-volume method 

The sheet is meshed using cubic or hexahedral 
elements called control volumes.  The equation (1) is 
integrated over each control volume and over the 
time from t to t+∆t: 
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where Ωe = control volume. The unknown temperatures 
are computed at the cell centres of each element. 
Different ways exist to approximate the radiation 
heat flux absorption. One of them is the Rosseland 
model. 

2.2 Rosseland approximation 

This method allows to approximate the irradiation 
absorption. Though it avoids long computation 
times, it is reserved to optically thick media [7]. The 
main idea of this approximation is to consider that 
the irradiation is diffused inside the medium. Thus, 
the heat balance equation is solved in a pure 
conduction approach; in other words, the radiation 
heat flux reduces to: 
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Optical properties inside the polymer are taken into 
account via the Rosseland conductivity defined as:  
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where σ = Stefan-Boltzmann constant, Kross = 
Rosseland mean coefficient obtained versus 
temperature by integration over the frequency: 
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where κ = absorption coefficient, ν = frequency, B = 
black body intensity (Planck function). 

2.3 Raytracing method 

In order to compute the irradiance, a raytracing 
method has been implemented [8]. This method 
permits to model accurately the IR lamps, taking 
into account emitters geometry and optical 
properties, which depend on temperature and 
frequency, as well as back reflectors. 

2.4 Analytical model 

Raytracing method is very accurate. Unfortunately, 
it is also very slow. In order to reduce the time 
consumed by the optimisation step, an analytical 
model is used. It is based on the expression of the 
irradiance of a surface element, from an isotropic 
emitter point. Meshing Nl lamps in Ns elements, and 
using irradiance additive property, the irradiance E 
on a rectangular sheet element is given by (6). 
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Where Pij = power emitted by each source point, and 
Hij, xij defined as shown in figure 1. 
    
 
 

 

 

 

 

Fig. 1. Analytical model: adopted notations. 

3 INFRARED OVEN OPTIMIZATION 

The analytical computation of irradiance is coupled 
to an optimization method, to automatically modify 
oven geometric parameters at each iteration, as 
shown in figure 2. The problem being non linear, 
continuous, and constrained, an adapted Sequential 
Quadratic Programming method is used in Matlab® [9]. 
 

     
Fig. 2. Heat transfer simulation / optimization coupling. 

3.1 Cost function 

The optimisation objective is mathematically 
represented by a cost function F to minimize, 
function of oven geometric parameters X. We 
propose to establish the function (7) related to 
radiation heat flux uniformity at the surface of the 
sheet, and to a desired mean value of irradiance. 
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where E(X) = mean irradiance computed at each 
iteration, EOBJ =  desired mean irradiance, σ(X) = 
standard deviation of computed irradiances at each 
iteration, σ0 = standard deviation of computed 
irradiances with initial conditions, n = number of 
sheet surface elements. This function permits to 
obtain not only a uniform irradiance field, but a 
desired mean value of irradiance too. 

3.2 Parameters 

Both process and geometric parameters can be 
included in the optimisation. In this study, we focus 
on geometry only. Parameters concerned are: IR 
lamps positions for the two rows (Xs, Ys, Xi, Yi), the 
distance between lamps and sheet (H), and the 
distance between lamps (D), as shown in figure 3. 
  

 

 

 

 

 

 

 

 

 

Fig. 3. Adopted configuration / parameters notation. 

3.3 Constraints 

Geometric parameters are bounded. For example the 
distance between lamps must be greater than 20 mm, 
not to damage IR lamps. These constraints can be 
expressed as inequality relations between several 
parameters. For example: Xs + 3D < 550.  

4 APPLICATION 

The method developed is used to optimize the 
geometry of an oven constituted of eight lamps 
Philips 1 KW clear, according to the cost function 
(7). The objective mean value of irradiance is 6000 
W/m². Dimensions of the PSB (PolyStyrene Black) 
sheet are: 350x350x2 mm. It is meshed into 1225 
rectangular elements. Results are reported in table 1.   
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Table1. Initial and final parameters 
Parameters 
(mm) H D Xs Ys Xi Yi 

Initial 100 100 -90 300 -25 -115 

Final 146 151 -88 477 -23 -121 

 
 
 
 
 
 
 

CPU time: 385 s (AMD Athlon XP 2600+, RAM: 500 Mo). 
Number of iterations: 26.  
 
 
For the raytracing, 563 million of rays are followed.  
The value of the convective coefficient, applied at 
sheet surface during heating stage, is 15 W/m²K. 
The value of the PSB thermal diffusivity is 1.92 .10-7 
m²/s.  
 

  
 

Fig. 4. Front surface temperature distribution after 15 s heating. 
Initial and updated oven geometry. 

 

 
 

Fig. 5. Convergence curve. 

 
As it is shown in figures 4, a more homogeneous 
temperature distribution over the sheet surface is 
obtained using updated oven geometry, even after 15 
s heating. The maximum temperature difference is 
around 3°C. 
 

5 CONCLUSIONS 

A complete numerical model of the heating stage 
has been developed. Using THERMORAY, a 
control-volume software, and the raytracing method, 
the 3D heat balance equation is solved with 
convective and radiative boundary conditions. The 
irradiation absorption is approximated by the 
Rosseland model. Concerning the optimization, the 
SQP algorithm coupled to an analytical model, 
permits to design optimally ovens geometry, in order 
to increase the surface temperature uniformity.   
The future work will consist in taking into account 
reflectors in optimization, which are generally used 
to increase the process efficacy. Moreover it is 
crucial to enlarge the model to optically thin media, 
and thus, to compute the irradiation absorption using 
a more accurate method.  
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objective  

Initial 4350 10345 

Final 233 6000 
6000 
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