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Abstract

A multi-scale model is presented for predicting t@gnitude and rate of powder mixing in a
Tote blender. The model combines patrticle diffustorrelations calibrated from experiments
with transient advective flow field information frofinite element method simulations.
Predictions of the mixing rate from the multi-scaledel compare well quantitatively to
published experimental data. The multi-scale magiete it does not directly model individual
particles, is expected to scale well to systemadistrial interest.
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1 I ntroduction

Granular material blending plays an important molenany industries ranging from those that
manufacture pharmaceuticals to those producingchgruoicals. The ability to create
homogeneous powder blends can be critical to tiad firoduct quality. For example,

insufficient blending of a pharmaceutical formubatimay have serious consequences on product
efficacy and safety.

A wide variety of blenders are available in the ke#place [1,2]. However, predictive
engineering design of industrial powder blendensaias underdeveloped due to the lack of
guantitative modeling tools. As a result, desigd acale-up of blending equipment often relies
on empirical studies. Discrete element method (DEM)putational models are considered
state-of-the-art for predicting blending of partate materials; however, this modeling approach
is not well-suited for modeling industrial-scalebtlers due to computational limitations [3].
Moreover, determining particle-level input paramet® use in such models is challenging and
not widely agreed upon [4-6].

In recent work by Liu et al. [7], a multi-scale n@bdvas developed by combining particle
diffusion coefficient correlations with advectiiew field information from finite element
method (FEM) simulations. The model was able tangjtatively predict the magnitude and rate
of powder blending in a two-dimensional rotatingrdrblender and was computationally faster
than DEM simulations. The current work extends thidti-scale modeling approach to a more
complex, three-dimensional blender geometry wiingrent powder dynamics.



2 Background

Most models that track the spatial and temporalutvm of particle blending can be categorized
as being either of the discrete or continuum tyiscrete algorithms model the dynamics of
each particle individually while continuum algortk ignore individual particles and instead
assume that the particle assembly is a continuum.

The computational discrete element method (DEM)dess used extensively for predicting
particle blending dynamics and is considered stét&e-art [8—11]. Although these studies have
provided valuable qualitative insight, they areitad in their quantitative predictions by
computational requirements. Even a small, lab-doi@leder containing 10@m particles

contains more than @articles, far exceeding what is possible to med# standard
computational tools. Typically, modelers will inese the particle size or decrease the
workspace size in order to reduce the number digbes that must be modeled; however,
previous work [8,12] has shown that particle siae bave an influence on the rate and extent of
blending. Hence, DEM may not produce quantitatiagurate results for systems of industrial
interest.

Analytical continuum models have also been propdsethodeling mixing and segregation
[13-15]. To be tractable analytically, these eantydels oversimplified the effects of key
physical properties and the predictions from thmsely theoretical studies were not very
accurate. To improve the accuracy of these modstsnt works [16,17¢ombined DEM-
calculated correlations for particle diffusion asefjregation at a local scale with analytically-
derived flow fields. These models have been shanwprdvide quantitatively accurate
predictions; however, since they depend on analysiclutions for the macroscopic flow field,
their use is restricted to simple two-dimensioredmetries, such as a simple heap flow.

Recently, researchers have utilized multi-scaleetiod approaches to make quantitative
blending predictions. Bertuola et al. [18] combivetbcity field data predicted from finite
element method (FEM) simulations, which treat thenglar material as a generalized
Newtonian fluid, with local-scale mixing and segrégn relations derived from previous works
[16,19]. Key model parameters needed to be fihéoexperimental data for quantitative
agreement. Bai et al. [20] used an FEM model assgiiohr-Coulomb constitutive behavior to
predict the velocity field in a cylindrical, bladegixer, which was shown to be qualitatively
accurate compared to DEM simulations. They alsdipted the degree of blending by assuming
convective mixing only (neglecting diffusive mixindput observed a dependence of the mixing
rate on FEM mesh size. Liu et al. [7] also invesiggl particle blending using a multi-scale
modeling approach. An FEM model, which assumed Motulomb material behavior, was
used to predict the velocity field in a two-dimeasal rotating drum. This information was then
combined with particle diffusion correlations. Tim@del was shown to quantitatively predict the
magnitude and rate of blending when compared to BiEMilations without the need for back-
fitted parameters.

The current work extends the work by Liu et al. @ Jnvestigate blending in a more
industrially-relevant Tote blender. Several key iempentation details are also different. First,
the model utilizes transient velocity field infortian from the FEM simulations instead of a



steady velocity field. Second, the governing equettiare extended to three dimensions instead
of two dimensions. Together, these two modificatigreatly increase the flexibility of the

model. In addition, rotating drum experiments ageduto calibrate the diffusion coefficient used
in the multi-scale model and the model predictiarescompared against published experimental
results. Section 3 of this paper introduces the Faddeling approach and implementation for
the current work. Section 4 describes the advedifinsion equation used in the multi-scale
model and the numerical method used to solve dti@e5 describes the material calibration
methods and experiments. And in Section 6, compasisre made between published
experimental results and the multi-scale model ipteahs.

3 Finite element method model

A three-dimensional, coupled Eulerian-LagrangidalFmodel is used in the present work to
provide predictions of the advective flow fieldarirote blender. Previous works [21-25] have
shown that FEM models can accurately simulate daamuaterial behavior well, including
advective flow fields [21,22]. Details of the mod@plementation can be found in previous
work [7]. The following sub-sections describe thedal geometry, boundary conditions, and
initial conditions.

3.1 Mode geometry and boundary conditions
The commercial FEM package Abaqus/Explicit v6.1d9ed to perform the bulk flow
simulations. The geometry of the simulated Totetide is based on the experiments by Sudah et
al. [26]. Those experiments were carried out idd IGE| Gallay Tote blender. Details of the
geometry and dimensions of the blender are predémtieir work [26]. For convenience, the
dimensions are also shown in Figure 1.

a) b)

L=

¥V =102 mm

Figure 1. Dimensions of the GEA Gallay Tote blengszd in the FEM simulation.

A Mohr-Coulomb elastoplastic model is used in ther@ent work to describe the stress-strain
behavior of the particulate material. This moded baen shown previously to accurately
describe granular flow fields [21,22]. The matepgedperties needed in the model are bulk



density, Young’'s modulus, Poisson’s ratio, and mi@tenternal friction angle. The methodology
for obtaining those material properties was descriln detail in previous work [7].

Boundary conditions applied in the model include thaterial-wall friction angle, the rotational
speed along the axis of rotation, and the grawitali accelerationg(= 9.8 m/$ directed in the
negativey direction in Figure 1).

3.2 Initial conditions

The coupled Eulerian-Lagrangian approach implentemébaqus is adopted in the current
model. Details of this approach were described@vipus work [7]. As shown in Figure 2, the
Eulerian mesh covers the entire material domainegrsdires that no material leaks outside of the
mesh. The Eulerian Volume Fraction (EVF) valuessedito determine the volume of material
within each element. A value of EVF = 0 indicatleattno material is present in the element
while EVF = 1 indicates that the element is conglefilled with material.

Tote blender mesh

Eulerian mesh

A

Initial material domai

Figure 2. A schematic of the FEM model domain. Eéerian mesh is shown in grey, the Tote
blender mesh is shown in blue, and the outlingb@initial material domain are shown in red.

The initial bed state is generated by filling actran of the elements with material. Details of the
process can be found in previous work [7]. For ntiserse mixing, material loadings were
achieved by assigning user-defined field variablesach material point to represent the initial
material concentration. Details of this field véat@approach can be found in the Abaqus
documentation [27]. An example of left-right initiaading is shown in Figure 3. The color
represents a field variable value from 0 (blu€) {oed). For monodisperse mixing with materials
A and B, the field variable represents the mateaaicentration of A. A field variable value of
one indicates that the element is completely filketh material A, while a value of zero

indicates that the element is completely filledhwmaterial B.



Axis of Rotation

Figure 3. Initial material concentration for a siation with left-right loading. The color
represents field variable value from zero (bluednie (red). The materials in this simulation
have homogeneous properties, except for color.

The simulation process consists of two steps.,Rlistmaterial is allowed to settle as the
gravitational acceleration is slowly increased fro@no to its final value. The blender remains
stationary during this step. This procedure is usegliminate the transient oscillations of
material as it settles and results in a stablecoatpbressed under its own weight. Next, the
blender is allowed to rotate immediately at thation speed and the simulation is considered
started.

4 The multi-scale blending model

The current multi-scale model is extended fromevmusly published two-dimensional model
[7]. Details of the model description and developt@n be found in this previous work. The
following sub-sections summarize the main aspeictiseomodel and highlight its extension to
transient, three-dimensional problems.

4.1  Advection-diffusion equation

The advection-diffusion equation is used in the@urwork to model the spatiotemporal
evolution of the concentration of a particular mialespecies¢. The governing equation is
derived as,

%zDEﬂDDc)—DEch), (4.1)
wherec is the local concentration of a particular speoiematerial D is the diffusion
coefficient tensor for that species, ang the local advective velocity vector. Using tbeal
mass conservation equation and assuming an incgsiple material, i.e.,

Ow=0, (4.2)
the governing equation can be written in index totaform as,

oc_ 0 D oc Jc

o_0|,0c| o 4,
ot ox | ' ox i 0x, (4.3)



The self-diffusion coefficienD is a tensor quantity with componeillg and with off-diagonal
component®j; (i # j) an order of magnitude smaller than the diagoaalmonent®Di; (i = j)
[7]. By neglecting off-diagonal components of tledfsliffusion coefficient tensor, the index
notation form of Eq. (4.3) in three-dimensionalnfois

2 2
ac:(anx _ijachD 0 c+[aDyy _Vy]ac+D d c+(6DZZ _sz@+D
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The self-diffusion coefficienD is also proportional to the local shear rgteand the local mean

particle diameted [7]. The particle diffusivity is approximately 1tBnes larger along the mean
flow direction than it is in the perpendicular ditien, according to work by Utter et al. [28].
Thus, the shear rate-dependent diffusion coeffidlecan be written as,

D, =k d”+k, (y, +,)d?

D,, =k, d®+k, (y5 +,)d?, (4.5)
Dzz = klyzaz +k2(yx +yy)az

+|avz/ax|), v, =(|ov,/ay| +|ov,/ay]) . and , = (|avx/az| +‘avy/az‘). The
constank: can be found from experiments or small-scale DitWutations, withk, = 1.%;.

where j, = (‘avy/ax

4.2  Numerical method

A finite difference method using a central explstheme is used to solve Eq. (4.4) due to its
simplicity and computational efficiency [7]. Otheumerical methods are also available to solve
the system of partial differential equations, sastthe finite element method, finite volume
method, domain decomposition method, and the matagping method [16,17].

A second-order Tylor Lax-Wendroff scheme is useddnerate the finite difference expression
of the governing equation [7],

nl _ An n 1 n n 1 n
ijl =Gk _{VXAXOCUK _(EVXZ +/’Ixj5x2ijj| _|:VyAyOC|jk _(_2V312+#yja—yzcljk:|

, (4.6)
n 1 n n n n
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AX
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v, = ( W)”k- , (4.8)
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v,+0,(D,). |At
v, =t 0(Da)y , (4.9)
Az



U, = (Dxx)ijkm, (4.10)
Y, = (DW)HKAA;Z, (4.11)
U, = (Dz)ijk%, (4.12)
A oC = Gy G ;C'n*i‘lk , (4.13)
A€l = Gagx ~Gragi ;C'n‘” K, (4.14)
AoCl = —C'n'i*k”;qﬁ" =3 (4.15)
Gl = Cjase =205 + Gy (4.16)
chirj]k = qul,j,k _2Ci?k +qn—1,j Ko (4.17)
5ZZQ?k = qr,]j,k+1 - ZQTK +qn,j K17 (4.18)
Dol oGl = (C|n+1,j+1k ~Gl1jia ;qu ox HCl g x) | (4.19)
B oD Cl = (Sper™ G l; SIS ' (4.20)
Dol ol = (qn,j+1,k+1_cln,j—1k+ 1; e PG ) | @.21)
Bo(Dy), = (Ouc) s ;(DXX)”"“‘ , (4.22)
A,(Dy),, = G ;(DW)““ k., and (4.23)
8,(D,),, = (DZZ)”*”;(DE)” o1 (4.24)

This finite difference formula is illustrated usititge computational molecule shown in Figure 4.
Details of the Taylor series expansion and stgtolithe numerical computations can be found
in the previous work [7].
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Figure 4. Computational molecule for gerond-order, three-dimensional Taylor Lax-Wendroff
scheme.

It should be emphasized that transient velocitigéeare included in the solution to the
advection-diffusion equation, Eq. (4.4), by extewgihe work by Liu et al. [7]. Therefore, a C++
post-processing script was developed to procesBEM output files (.obd files [27]) and handle
the large amount of data from these simulations.

As mentioned in Section 3, the initial particle centrations used in the model are determined
by the loading conditions, and the user-defineld ariable used in the FEM simulation is set
accordingly, as in Figure 3. Since transient v&joltelds are used in the current model, the
boundaries of the material domain change througtimuéntire computation. These boundaries
are computed within the FEM simulation from the EX&fues and, similarly, are determined by
the advection-diffusion solver, after reading E\d&ues from the FEM output file at each time
step. Specifically, the advection-diffusion boundeonditions at the free surface are enforced by
setting the material concentration of the boundenye equal to the value of the node that is one
grid point inward in the direction normal to thefsige. This approach is similar to the

polynomial fitting approach often used in computaél fluid dynamics (CFD) [29].

Next, a MATLAB program is used to iterate the fendifference form of the advection-diffusion
equation given in Eq. (4.6). After generating mlifparticle concentrations using the extracted
field variable values, the material concentrativaletion is iterated using the transient velocity
field obtained from the FEM simulation for each ¢istep. A threshold is set to ensure the
material concentration value remains between zedooae, and a small time step is carefully
chosen to ensure the stability of the explicit ssbeDetails of the iteration algorithm were
presented in the work by Liu et al. [7].

To achieve a converged result, the number of elesnesed in the advection-diffusion
MATLAB program should be much larger than the numifeelements in the FEM simulation.
Hence, a linear interpolation algorithm is introddan the MATLAB program to generate
enough elements and ensure convergence. The MATiwABerical algorithms are parallelized
to divide the computational domain onto differeotes. By using the full processing power of
an eight-core desktop, the iteration runs approtetp#-8 times faster than on a single core.



5 Calibration of material properties

51 Material propertiesfor the FEM simulation

The published experimental work for monodisperséigde mixing by Sudah et al. [26] was

used to validate the multi-scale model predictiditese experiments utilized a 14-L GEI Gallay
Tote blender containing 12-mm diameter glass beatlgo different colors.

The material density, elastic modulug, and Poisson’s ratio are known to have little
influence on the material flow behavior [7]. Moreoythe mixing process was shown to be
unaffected by the wall friction anglg within a rotating blender since the free surfacgl@a
remains constant. Hence, the material densitytiela®dulus, Poisson’s ratio, and wall friction
angle used in the current FEM simulation are adldoleon values from previous work for hard
spheres [7]. In addition, the Mohr-Coulomb dilatemgle of the material was set to 0.1°, since
the dilation of cohesionless granular materialssigally small.

The internal friction angle has been shown to efice the mixing rate [7] and, hence, must be
calibrated. Previous work has shown that the ir@leiniction angle is not sensitive to particle

size or consolidation stress for the same mat@®32]. Hence, 1-mm diameter glass beads, as
opposed to the 12 mm beads used in the Sudahextpatiments [26], were used in the current
work to calibrate the internal friction angle. AHBtze Ring Shear Tester (Model RST-XS) was
used to make these measurements, obtaining vatagardo those reported in the literature
[33,34]. A summary of all of the material paramstesed in the FEM simulation is given in
Table 1. It is worth noting that these parameteed@und from independent, standard material
tests, rather than being back-fit to match expemtadedata with the multi-scale blending
simulation results.

Table 1. Parameters used in the FEM simulation.

Parameter Value
Material density (kg/r¥) 1500
Young’s modulus (MPa) 3.65
Poisson’s ratio (-) 0.065
Internal friction angle (degree) 27.1
Cohesion (Pa) 87
Dilation angle (degree) 0.1
Wall friction coefficient (-) 0.324

5.2  Experimental calibration of the diffusion constant

One significant parameter needed in the multi-sgaldel is the spanwise diffusion constint
To calibratek; for glass beads, a lab-scale rotating drum exparirwas performed. A
photograph of the experiment setup is shown inréigu An acrylic circular drum of diametBr
=150 mm and widthWW = 50 mm was used to contain the material, andstvadts were used to
stabilize and rotate the drum. The driving torquses wrovided by a gear motor that rotated one
of the shafts. Rubber bands covered the shafteetgept slipping. Values for the experiment
parameters are listed in Table 2.



Figure 5. The rotating drum experiment setup.

Table 2. The rotating drum experiment parameters.

Parameter Value
Inner drum diameter (mm) 150
Inner drum width (mm) 50
Glass sphere diameter (mm) 1
Filling level (% of max level depth) 32
Drum rotation speed (rpm) 3.26

As shown in Eq. (4.5), the influence of particlardieter on the diffusion coefficient has been
included explicitly and thus diffusion constakti@ndk. should be independent of particle
diameters. Hence, the drum was filled side by siidfle 1 mm red and blue glass spheres. To
facilitate filling of the drum, the front side di¢ drum was made removable and a separate
barrier was used to help fill each side of the dmaith equal volumes of red and blue glass
beads. Friction tape was used to seal the drumcaaltbw the container to rotate smoothly. To
analyze the degree of mixing, a high-speed camasaused to film the front of the drum. Once
the drum was filled, the drive shift started toatetand the mixing process was recorded. Several
snapshots of the system at different times are showigure 6. Qualitatively, the mixing
dynamics in the experiment followed the same tr@nthe simulations reported in previous work

[7].
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% 2.0 Revolutions 2.6 Revolutions 3.5 Revolutions 6.0 Revolutions

Figure 6. Snapshots showing the state of partickengnfor different numbers of drum
revolutions in the rotating drum experiments.

To compute the segregation intensity as a funafdhe number of drum revolutions, a
MATLAB code was developed to analyze the video iesagnd derive the spatial distribution of
material concentrations. Details of the image pserg algorithm are included in Appendix A.

The experimental results were compared with pregistfrom the 2-D multi-scale model
developed in the previous work [7]. To justify angmarison, the system geometry and operating
conditions, such as the drum diameter, drum wigldinticle diameter, filling level, and rotation
speed, were consistent between the experimenhanulti-scale model. The material
parameters used in the FEM simulation are showrabie 1 for glass beads.

The segregation intensitywas computed to compare the experiment resultstivet 2-D multi-
scale model predictions and calibrate the spaneifeigsion constank;. The segregation
intensityl is defined as,

l, ==, (5.1)
o? =Mi_1::l(q G (5.2)
o; =¢(1-¢), (5.3)
G=s3G,. 5
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In these relationsg? is the measured variance of comporientoncentration (here component

is the red particles)p? is the variance of componerg concentration for a fully segregated
systemg; is the measured mean concentration of companantM is the total number of
samples used to calculate the mean and varianeescéte of scrutiny does affect the

calculation, with larger scales of scrutiny havemgaller segregation intensities. Hence, the same
grid size used to analyze the experiment resudtdeacribed in Appendix A, was used in the 2-D
multi-scale model. Computationally, the concentratralues of all the nodes within one grid

cell were averaged to compute the material conatair for the cell. A cell size of five particle
diameters was used.

Due to the fact that a continuum is assumed il simulations, the multi-scale model
would predict an asymptotic segregation intensityearly zero, corresponding to a perfectly
mixed state. However, a perfectly mixed state rsegally not achievably in practice and instead
a randomly mixed state is the expected asympttdte sFor a randomly mixed system, the
segregation intensity is derived as,

~ JRZ — 1
LRt (5.5)
whereN is the number of particles in the cell used taulalte the concentration. The segregation
intensity for a randomly mixed system in the cutmeark isl = 0.04, which is shown in Figure 7
as the dashed line. To save computation time,ithelation was stopped once the segregation
intensity reached the randomly mixed state.

B Experiment Data

-1 =001
K1=0.02
K1=0.04

||
a8 4\_:u~._r:..-_~. 2 -8-3--8-8

0 1 2 3 4 5 6 7 8
Revs

Figure 7. Segregation intensity with respect torthmber of drum revolution for the experiment
and the 2-D multi-scale model using differ&nvalues.

Segregation intensity plotted as a function ofrtheber of drum revolutions is plotted in Figure
7 for different assumed values of the spanwiseausifin constark;. Figure 8 shows the sum of
the absolute differences between the segregatiensities measured from experiments and
computed from the 2-D multi-scale model for difierk; values. It can be seen that the
segregation intensities computed from the 2-D rradéile model match best with the values
measured from experiments whar= 0.01. Hence, a calibrated spanwise diffusion @omg;

for glass beads equal to 0.01 is adopted. Notethleaisymptotic value of the experimental

12



results is slightly larger than the value for taedomly mixed state. This difference is because
the image correction algorithm described in Appgrdintroduces some error into the system
and the perfectly random mixed state cannot bensshc

0.5

0.4

03
2lAI
02
01
0

0.014 0.012 0.01 0.008 0.006
ky

Figure 8. Sum of the absolute differences betwkerségregation intensities measured from
experiments and computed from the 2-D multi-scabelehfor differentk; values.

6 Comparison of the experiments and multi-scale model results

An FEM simulation was performed to predict the adive flow field information for the Sudah
et al. Tote blender [26] using a rotation speefi®fpm and the material properties shown in
Table 1. Furthermore, since transient velocitydfieiformation was used in the current work, the
velocity components in all three directions neettelde outputted at every time step, which
generates considerable amounts of data. Althougkedlocity field is not constant within a Tote
blender single revolution, the material reacheeréodic steady state condition after a few initial
revolutions. Table 3 shows the averaged velocitfginces between subsequent revolutions,
defined as,

N ! —v)
%m :Z Vo | (6.1)
i lave N

wherei is the direction of the velocity componepis the revolution number, amdlis the total
number of nodes within the material domain. Itvglent that the periodic steady state condition
is reached after the first revolution. Therefooesave computational effort without losing
accuracy, the FEM simulation was only performedifay revolutions and the velocity fields
within the second revolution were used in the nadille model subsequently.

13



Table 3. The averaged velocity differences betvwsdrsequent revolutions.

Revolution numbers (j, j+1) (1,2) (2,3) (3,4)
A, v, 3.95% 0.56% 1.85%
av, 1v,| 2.30% 0.38% 3.03%
A, 1v,| 2.91% 1.18% 2.53%

In the experiments reported by Sudah et al. [2@kemals were initially loaded into the Tote
blender in two different ways: top-bottom loadingldeft-right loading. Two filling levels were
also studied — 40% fill and 60% fill. The same lio@dconditions and filling levels were

modeled in the current work, as shown in FigurEiQure 10 shows the evolution of the material
domain within the first revolution for left-rightb&ding and 40% fill.

a) b)

Figure 9. The left-right (a) and top-bottom (bi@i loadings for 40% fill.

14
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Figure 10. Snapshots showing the change of therimlad@main in the FEM simulation (a) and
multi-scale model (b) for left-right loading and%ill. The vertical color scale in (b) is the red
particle concentration.

The state of mixing predicted by the multi-scaledel@fter different numbers of revolutions is
shown in Figure 11. As expected, as time incretisedegree of mixing increases, with both
advection and diffusion contributing to the mixipigpcess. Moreover, the top-bottom loaded
materials mix much faster than the left-right lodaeaterials since the advective mixing is much
stronger in the top-bottom loading case.
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Figure 11. Snapshots showing the state of mixirtgeaend of each revolution for (a) left-right
loading and (b) top-bottom loading and 40% fill.elWertical color scale is the red particle
concentration for (a) and (b).
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In the experiments by Sudah et al. [26], mixingvesrwere constructed by plotting the relative
standard deviatiorRSD) as a function of mixing time. The relative startdeviation is
calculated as,

o
RD=Z 6.2
c (6.2)

1 ¥ 2
g’=——>(c-c ). 6.3
M _1m:1( ' ) ( )

In the above equationg? is the measured variance of comporientoncentrationg is the

mean concentration of componénandM is the total number of samples used to calculede t
mean and variance. The relative standard deviaaoes from zero, corresponding to perfect
mixing, to one, which is a fully segregated statee RSD value was also computed using the
multi-scale model to compare with the publishedegkpental results. Note that in the multi-
scale model, every node at which a concentraticalsulated is used in the evaluation of the
segregation intensity, while in the experimentserdore samples were used [26]. Although the
scale of scrutiny plays a role in the calculatexiifts, as shown in previous work [7], the
predicted values using different grid sizes arselm each other.

Figure 12 plots th&SD values with respect to the number of revolutiarstdp-bottom and left-
right initial loading patterns for the multiscaleadel and experiments. Results for 40% and 60%
fill levels were compared. In the current work, andlion cells were used to maintain accuracy
and computational efficiency (i.e., 100 cells ictedirection). A mesh dependency study was
performed to ensure solution convergence and tioe was found to be within 5% between one
million cells (i.e., 100 cells in each directiomyda3.375 million cells (i.e., 150 cells in each
direction). As shown in Figure 12, there is goodrmjitative agreement between the multi-scale
model predictions and experimental measuremertsugh it does appear that there is some
offset for the case with 40% fill and top-bottonadling. There is no error information given for
the experimental results so it is difficult to deténe how significant this difference is. The total
wall-clock time required to run a single case orcafes, including the FEM simulation and
MATLAB processing, was approximately 2.5 days.
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Figure 12. Mixing state comparison between pubtistiegperimental results and the multi-scale
model predictions. The random mixing state is re@néed by horizontal dashed lines and the
spanwise diffusion constantks= 0.01.

7 Conclusions

In this work, a three-dimensional transient mutiéle modeling approach is described for
predicting blending in particulate systems. Thigdelas extended from a previously published
two-dimensional steady model [7]. This three-dimenal model combines, within the
advection-diffusion equation, finite element metlyatherated transient macroscopic velocity
fields with experimentally-obtained particle diffas correlations at a local scale. The model is
applied here to a three-dimensional Tote blendediBtions of the mixing rate from the multi-
scale model compare well quantitatively to publék&perimental data [26].

A significant advantage of the multi-scale blendmgdel over a DEM-only model is that the
multi-scale model is more computationally efficiémt industrially-relevant system sizes. This is
because the number of DEM patrticles increasestiveltube of the ratio of the system size to
particle size, while the FEM nodes do not necelysagied to increase since the mesh size
increases linearly with the system size. Furtheemibiparticle size is reduced in the DEM
simulations, then the integration time step alsoelses, further increasing the time required to
complete DEM simulations. In addition, all of ther@ameters used in the multi-scale model can
be measured from independent, standard testsibratad from simple two-dimensional
experiments (such as the material internal fricaagle, the wall friction angle, and the diffusion
constant). No back-fitting of the Tote blender teswas used in the current work.

17



Future work should focus on expanding the multiescaodel to consider segregation of
different materials, which is important in induatrpractice. In addition, a simple, standard
method should be developed to calibrate the diffusionstants. The current work used a two-
dimensional blender experiment, but other systasons) as a 2-D heap flow, may be considered.

Appendix A Image Processing algorithm

A flowchart of the image processing algorithm usethe current work is shown in Figure Al.
For each image, the material domains (red anddihss beads) were extracted using the
freeware program ImageJ [35], which was used totifyeonly the glass beads among a white
background. This RGB image was further analyzesktoact only the red component of each
image’s pixels, with a value ranging between Orga) and 255 (all red). A threshold value of
80 was selected to differentiate between the reldoture pixels. A value larger than 80 indicated
that a pixel corresponded to a red particle whialae smaller than 80 indicated that it was a
blue particle. This threshold value was chosemBuee that at any point in time the fraction of
red pixels in the entire system was5@6 since the system consisted of 50% red beads.

2
Image with
Just Beads

3

4 5

Image After error

&
. 4 if

Figure Al. The image analysis algorithm for a snghage. The steps proceed from 1 to 5.

After distinguishing red and blue pixels, a blacklavhite binary image was generated, with
black corresponding to the blue pixels and whiteesponding to the red ones. Note that since
spherical glass beads were used in the experimedlgictions and shadows were introduced due
to the light source. An image correction algorittwas developed in the MATLAB program in

an attempt to account for these effects.

The corrected binary image was used to computsdbeegation intensity. A non-overlapping
grid of square cells was used in the current araly$e cell size varied from 3 to 10 particle
diameters on a side. To avoid using samples cantpdata outside the cylinder boundary,
boundary flags were used to make sure each samplaiced at least 95% material. All of the
gualified samples were then used to calculateeagesgation intensity for the current time step.
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