M. K. Waldor, M. , and J. J. , Lysogenic Conversion by a Filamentous Phage Encoding Cholera Toxin, Science, vol.170, issue.2, 1910.
DOI : 10.1093/infdis/170.2.278

A. Mai-prochnow, J. G. Hui, S. Kjelleberg, J. Rakonjac, D. Mcdougald et al., ???Big things in small packages: the genetics of filamentous phage and effects on fitness of their host???, FEMS Microbiology Reviews, vol.4, issue.4, pp.465-487, 2015.
DOI : 10.1016/S0958-1669(98)80017-7

J. Rakonjac, N. J. Bennett, J. Spagnuolo, D. Gagic, R. et al., Filamentous bacteriophage: biology, phage display and nanotechnology applications. Current issues in molecular biology, p.51, 2011.

P. Holliger and L. And-riechmann, A conserved infection pathway for filamentous bacteriophages is suggested by the structure of the membrane penetration domain of the minor coat protein g3p from phage fd, Structure, vol.5, issue.2, pp.265-275, 1997.
DOI : 10.1016/S0969-2126(97)00184-6

A. J. Heilpern and M. K. Waldor, pIIICTX, a Predicted CTX?? Minor Coat Protein, Can Expand the Host Range of Coliphage fd To Include Vibrio cholerae, Journal of Bacteriology, vol.185, issue.3, pp.1037-1044, 2003.
DOI : 10.1128/JB.185.3.1037-1044.2003

A. J. Heilpern and M. K. Waldor, CTXphi Infection of Vibrio cholerae Requires the tolQRA Gene Products, Journal of Bacteriology, vol.182, issue.6, pp.1739-1747, 2000.
DOI : 10.1128/JB.182.6.1739-1747.2000

L. Deng and R. N. Perham, Delineating the Site of Interaction on the pIII Protein of Filamentous Bacteriophage fd with the F-pilus of Escherichia coli, Journal of Molecular Biology, vol.319, issue.3, pp.603-614, 2002.
DOI : 10.1016/S0022-2836(02)00260-7

J. Lubkowski, F. Hennecke, A. Plückthun, and A. Wlodawer, Filamentous phage infection: crystal structure of g3p in complex with its coreceptor, the C-terminal domain of TolA, Structure, vol.7, issue.6, pp.711-722, 1999.
DOI : 10.1016/S0969-2126(99)80092-6

J. Lubkowski, F. Hennecke, A. Plückthun, and A. Wlodawer, The structural basis of phage display elucidated by the crystal structure of the N-terminal domains of g3p, Nature Structural Biology, vol.33, issue.2, pp.140-147, 1998.
DOI : 10.1107/S0021889892009944

S. Pommier, M. Gavioli, E. Cascales, and R. Lloubes, Tol-Dependent Macromolecule Import through the Escherichia coli Cell Envelope Requires the Presence of an Exposed TolA Binding Motif, Journal of Bacteriology, vol.187, issue.21, pp.7526-7534, 2005.
DOI : 10.1128/JB.187.21.7526-7534.2005

L. Riechmann and P. Holliger, The C-Terminal Domain of TolA Is the Coreceptor for Filamentous Phage Infection of E. coli, Cell, vol.90, issue.2, pp.351-360, 1997.
DOI : 10.1016/S0092-8674(00)80342-6

C. Deprez, R. Lloubès, M. Gavioli, D. Marion, F. Guerlesquin et al., Solution Structure of the E.coli TolA C-terminal Domain Reveals Conformational Changes upon Binding to the Phage g3p N-terminal Domain, Journal of Molecular Biology, vol.346, issue.4, pp.1047-1057, 2005.
DOI : 10.1016/j.jmb.2004.12.028

N. J. Bennett, R. , and J. , Unlocking of the Filamentous Bacteriophage Virion During Infection is Mediated by the C Domain of pIII, Journal of Molecular Biology, vol.356, issue.2, pp.266-273, 2006.
DOI : 10.1016/j.jmb.2005.11.069

D. Ng, T. Harn, T. Altindal, S. Kolappan, J. M. Marles et al., The Vibrio cholerae Minor Pilin TcpB Initiates Assembly and Retraction of the Toxin-Coregulated Pilus, Structures of a CTX pIII Domain Unbound and in Complex with a Vibrio cholerae TolA Domain Reveal Novel Interaction Interfaces, pp.36258-36272, 2012.
DOI : 10.1371/journal.ppat.1006109.s007

R. Lloubès, E. Cascales, A. Walburger, E. Bouveret, C. Lazdunski et al., The Tol-Pal proteins of the Escherichia coli cell envelope: an energized system required for outer membrane integrity?, Research in Microbiology, vol.152, issue.6, pp.523-529, 2001.
DOI : 10.1016/S0923-2508(01)01226-8

J. N. Sturgis, Organisation and evolution of the tol-pal gene cluster, J Mol Microbiol Biotechnol, vol.3, pp.113-135, 2001.

A. N. Gray, A. J. Egan, I. L. Van-'t-veer, J. Verheul, A. Colavin et al., Coordination of peptidoglycan synthesis and outer membrane constriction during Escherichia coli cell division A protein network for phospholipid synthesis uncovered by a variant of the tandem affinity purification method inEscherichia coli, Elife. PROTEOMICS, vol.4, issue.6, pp.282-293, 2006.

E. Cascales, M. Gavioli, J. N. Sturgis, and R. Lloubès, Proton motive force drives the interaction of the inner membrane TolA and outer membrane Pal proteins in Escherichia coli, Molecular Microbiology, vol.263, issue.4, pp.904-915, 2000.
DOI : 10.1016/S0378-1097(98)00147-5

E. Cascales, R. Lloubes, S. , and J. N. , The TolQ?TolR proteins energize TolA and share homologies with the flagellar motor proteins MotA?MotB. Molecular microbiology, pp.795-807, 2001.

A. Walburger, C. Lazdunski, C. , and Y. , The Tol/Pal system function requires an interaction between the C-terminal domain of TolA and the N-terminal domain of TolB. Molecular microbiology, pp.695-708, 2002.

E. Cascales and R. Lloubès, Deletion analyses of the peptidoglycan-associated lipoprotein Pal reveals three independent binding sequences including a TolA box, Molecular Microbiology, vol.49, issue.3, pp.873-885, 2003.
DOI : 10.1128/jb.178.14.4031-4038.1996

R. Lloubès, E. Cascales, A. Walburger, E. Bouveret, C. Lazdunski et al., The Tol-Pal proteins of the Escherichia coli cell envelope: an energized system required for outer membrane integrity?, Research in Microbiology, vol.152, issue.6, pp.523-529, 2001.
DOI : 10.1016/S0923-2508(01)01226-8

M. A. Gerding, Y. Ogata, N. D. Pecora, H. Niki, and P. A. De-boer, The trans envelope Tol-Pal complex is part of the cell division machinery and required for proper outermembrane invagination during cell constriction in E. coli. Molecular Microbiology, pp.1008-1025, 2007.

T. M. Santos, T. Lin, M. Rajendran, S. M. Anderson, and D. B. Weibel, chemoreceptors requires an intact Tol-Pal complex, Molecular Microbiology, vol.80, issue.5, pp.985-1004, 2014.
DOI : 10.1111/j.1365-2958.2011.07577.x

URL : http://onlinelibrary.wiley.com/doi/10.1111/mmi.12609/pdf

C. Li, Y. Zhang, M. Vankemmelbeke, O. Hecht, F. S. Aleanizy et al., Periplasm, Journal of Biological Chemistry, vol.179, issue.23, pp.19048-19057, 2012.
DOI : 10.1007/s00018-006-6055-1

G. Karimova, J. Pidoux, A. Ullmann, and D. Ladant, A bacterial two-hybrid system based on a reconstituted signal transduction pathway, Proceedings of the National Academy of Sciences, vol.16, issue.3, pp.5752-5756, 1998.
DOI : 10.1038/ng0797-277

R. Derouiche, G. Zeder-lutz, H. Bénédetti, M. Gavioli, A. Rigal et al., Binding of colicins A and El to purified TolA domains, Microbiology, pp.143-3185, 1997.

J. Lobstein, C. A. Emrich, C. Jeans, M. Faulkner, P. Riggs et al., SHuffle, a novel Escherichia coli protein expression strain capable of correctly folding disulfide bonded proteins in its cytoplasm The folding mechanism of a two-domain protein: folding kinetics and domain docking of the gene-3 protein of phage fd, Microb. Cell Fact. J. Mol. Biol, vol.11, issue.329, pp.599-610, 2003.

J. Ghrayeb, H. Kimura, M. Takahara, H. Hsiung, Y. Masui et al., Secretion cloning vectors in Escherichia coli, EMBO J, vol.3, pp.2437-2442, 1984.

J. Meury and G. Devilliers, Impairment of cell division in tolA mutants of Escherichia coli at low and high medium osmolarities, Biology of the Cell, vol.91, issue.1, pp.67-75, 1999.
DOI : 10.1111/j.1768-322X.1999.tb01085.x

S. K. Levengood, W. F. Beyer, and R. E. Webster, TolA: a membrane protein involved in colicin uptake contains an extended helical region., Proceedings of the National Academy of Sciences, vol.88, issue.14, pp.5939-5943, 1991.
DOI : 10.1073/pnas.88.14.5939

D. W. Buchan, F. Minneci, T. C. Nugent, K. Bryson, and D. T. Jones, Scalable web services for the PSIPRED Protein Analysis Workbench, Nucleic Acids Research, vol.41, issue.W1, pp.349-357, 2013.
DOI : 10.1093/nar/gks1211

M. Tomasi, A. Battistini, A. Araco, L. G. Roda, D. Agnolo et al., The Role of the Reactive Disulfide Bond in the Interaction of Cholera-Toxin Functional Regions, European Journal of Biochemistry, vol.15, issue.3, pp.621-627, 1979.
DOI : 10.1093/infdis/133.Supplement_1.S55

L. Craig, M. E. Pique, and J. A. Tainer, Type IV pilus structure and bacterial pathogenicity, Nature Reviews Microbiology, vol.166, issue.5, pp.363-378, 2004.
DOI : 10.4049/jimmunol.166.11.6764

Y. Gao, C. A. Hauke, J. M. Marles, T. , and R. K. , ABSTRACT, Journal of Bacteriology, vol.198, issue.20, pp.2818-2828, 2016.
DOI : 10.1128/JB.00309-16

M. Yang, Z. Liu, C. Hughes, A. M. Stern, H. Wang et al., Bile salt-induced intermolecular disulfide bond formation activates Vibrio cholerae virulence, Proceedings of the National Academy of Sciences, vol.194, issue.6, pp.2348-2353, 2013.
DOI : 10.1128/JB.06055-11

URL : http://www.pnas.org/content/110/6/2348.full.pdf

S. J. Morgan, E. L. French, J. J. Thomson, C. P. Seaborn, C. A. Shively et al., ABSTRACT, Journal of Bacteriology, vol.198, issue.3, pp.498-509, 2015.
DOI : 10.1128/JB.00338-15

V. H. Fengler, E. C. Boritsch, S. Tutz, A. Seper, H. Ebner et al., Disulfide Bond Formation and ToxR Activity in Vibrio cholerae, PLoS ONE, vol.17, issue.10, pp.47756-47800, 2012.
DOI : 10.1371/journal.pone.0047756.s004

URL : https://doi.org/10.1371/journal.pone.0047756

S. P. Ouellette, E. Gauliard, Z. Antosová, and D. Ladant, -compatible bacterial adenylate cyclase-based two-hybrid system, Environmental Microbiology Reports, vol.76, issue.3, pp.259-267, 2014.
DOI : 10.1128/MMBR.05021-11

J. I. Handford, B. Ize, G. Buchanan, G. P. Butland, J. Greenblatt et al., Conserved Network of Proteins Essential for Bacterial Viability, Journal of Bacteriology, vol.191, issue.15, pp.4732-4749, 2009.
DOI : 10.1128/JB.00136-09

L. Houot, A. Fanni, S. De-bentzmann, and C. Bordi, A bacterial two-hybrid genome fragment library for deciphering regulatory networks of the opportunistic pathogen Pseudomonas aeruginosa, Microbiology, vol.103, issue.1, pp.1964-1971, 2012.
DOI : 10.1073/pnas.0507407103

URL : https://hal.archives-ouvertes.fr/hal-01458241

J. A. Gaspar, J. A. Thomas, C. L. Marolda, and M. A. Valvano, Surface expression of O-specific lipopolysaccharide in Escherichia coli requires the function of the TolA protein, Molecular Microbiology, vol.35, issue.2, pp.262-275, 2000.
DOI : 10.1016/S0065-2911(08)60099-5

J. J. Dennis, E. R. Lafontaine, and P. A. Sokol, Identification and characterization of the tolQRA genes of Pseudomonas aeruginosa., Journal of Bacteriology, vol.178, issue.24, pp.7059-7068, 1996.
DOI : 10.1128/jb.178.24.7059-7068.1996

S. H. Lorenz, R. P. Jakob, U. Weininger, J. Balbach, H. Dobbek et al., The Filamentous Phages fd and IF1 Use Different Mechanisms to Infect Escherichia coli, Journal of Molecular Biology, vol.405, issue.4, pp.989-1003, 2011.
DOI : 10.1016/j.jmb.2010.11.030

M. J. Basse, S. Betzi, R. Bourgeas, S. Bouzidi, B. Chetrit et al., 2P2Idb: a structural database dedicated to orthosteric modulation of protein???protein interactions, Nucleic Acids Research, vol.28, issue.D1, pp.824-827, 2013.
DOI : 10.1093/nar/28.1.235

URL : https://hal.archives-ouvertes.fr/hal-01307114

M. Basse, S. Betzi, X. Morelli, P. D. Roche, O. Hecht et al., 2016) 2P2Idb v2: update of a structural database dedicated to orthosteric modulation of protein-protein interactions. Database (Oxford). 10.1093/database Allosteric beta-propeller signalling in TolB and its manipulation by translocating colicins, EMBO J, vol.28, pp.2846-2857, 2009.

N. Sinha and S. J. Smith-gill, Electrostatics in Protein Binding and Function, Current Protein & Peptide Science, vol.3, issue.6, pp.601-614, 2002.
DOI : 10.2174/1389203023380431

S. M. Faruque, . Asadulghani, M. N. Saha, A. R. Alim, M. J. Albert et al., Analysis of clinical and environmental strains of nontoxigenic Vibrio cholerae for susceptibility to CTXPhi: molecular basis for origination of new strains with epidemic potential, Infect. Immun, vol.66, pp.5819-5825, 1998.

N. A. Hasan, D. Ceccarelli, C. J. Grim, E. Taviani, J. Choi et al., ABSTRACT, Applied and Environmental Microbiology, vol.79, issue.18, pp.5782-5785, 2013.
DOI : 10.1128/AEM.01113-13

D. Ceccarelli, A. Chen, N. A. Hasan, S. M. Rashed, A. Huq et al., Non- O1/non-O139 Vibrio cholerae carrying multiple virulence factors and V. cholerae O1 in the, Appl. Environ. Microbiol, vol.81, 1909.
DOI : 10.1128/aem.03540-14

URL : http://aem.asm.org/content/81/6/1909.full.pdf

S. Jiang, W. Chu, and W. Fu, Prevalence of Cholera Toxin Genes (ctxA and zot) among Non-O1/O139 Vibrio cholerae Strains from Newport Bay, California, Applied and Environmental Microbiology, vol.69, issue.12, pp.7541-7544, 2003.
DOI : 10.1128/AEM.69.12.7541-7544.2003

A. Sarkar, R. K. Nandy, G. B. Nair, and A. C. Ghose, Vibrio Pathogenicity Island and Cholera Toxin Genetic Element-Associated Virulence Genes and Their Expression in Non-O1 Non-O139 Strains of Vibrio cholerae, Infection and Immunity, vol.70, issue.8, pp.4735-4742, 2002.
DOI : 10.1128/IAI.70.8.4735-4742.2002

E. F. Boyd, K. E. Moyer, L. Shi, and M. K. Waldor, Infectious CTXPhi and the Vibrio Pathogenicity Island Prophage in Vibrio mimicus: Evidence for Recent Horizontal Transfer between V. mimicus and V. cholerae, Infection and Immunity, vol.68, issue.3, pp.1507-1513, 2000.
DOI : 10.1128/IAI.68.3.1507-1513.2000

E. Bille, J. Zahar, A. Perrin, S. Morelle, P. Kriz et al., A chromosomally integrated bacteriophage in invasive meningococci, The Journal of Experimental Medicine, vol.222, issue.12, pp.1905-1913, 2005.
DOI : 10.1128/IAI.70.12.7063-7072.2002

A. Derbise, V. Chenal-francisque, F. Pouillot, C. Fayolle, M. Prévost et al., A horizontally acquired filamentous phage contributes to the pathogenicity of the plague bacillus, Molecular Microbiology, vol.24, issue.4, pp.1145-1157, 2007.
DOI : 10.1099/00221287-148-6-1687

M. D. Gonzalez, C. A. Lichtensteiger, R. Caughlan, and E. R. Vimr, Conserved Filamentous Prophage in Escherichia coli O18:K1:H7 and Yersinia pestis Biovar orientalis, Journal of Bacteriology, vol.184, issue.21, 2002.
DOI : 10.1128/JB.184.21.6050-6055.2002

URL : http://jb.asm.org/content/184/21/6050.full.pdf

J. B. Goforth, N. E. Walter, E. Karatan, W. W. Metcalf, W. Jiang et al., Effects of polyamines on Vibrio cholerae virulence properties. PLoS ONE. 8, e60765 65 Conditionally replicative and conjugative plasmids carrying lacZ alpha for cloning, mutagenesis, and allele replacement in bacteria, Plasmid, vol.35, pp.1-13, 1996.

L. Houot and P. I. Watnick, A Novel Role for Enzyme I of the Vibrio cholerae Phosphoenolpyruvate Phosphotransferase System in Regulation of Growth in a Biofilm, Journal of Bacteriology, vol.190, issue.1, pp.311-320, 2007.
DOI : 10.1128/JB.01410-07

M. Z. Li and S. J. Elledge, Harnessing homologous recombination in vitro to generate recombinant DNA via SLIC, Nature Methods, vol.14, issue.3, pp.251-256, 2007.
DOI : 10.1101/gr.4.3.172

J. Jeong, H. Yim, J. Ryu, H. S. Lee, J. Lee et al., One-step sequence-and ligation-independent cloning as a rapid and versatile cloning method for functional genomics studies RF cloning: a restriction-free method for inserting target genes into plasmids, Appl. Environ. Microbiol. J. Biochem. Biophys. Methods, vol.78, issue.67, pp.5440-5443, 2006.

L. Guzman, D. Belin, M. J. Carson, and J. O. Beckwith, Tight regulation, modulation, and high-level expression by vectors containing the arabinose PBAD promoter., Journal of Bacteriology, vol.177, issue.14, pp.4121-4130, 1995.
DOI : 10.1128/jb.177.14.4121-4130.1995

B. Das, J. Bischerour, M. Val, and F. Barre, Molecular keys of the tropism of integration of the cholera toxin phage, Proceedings of the National Academy of Sciences, vol.169, issue.17, pp.4377-4382, 2010.
DOI : 10.1016/j.plasmid.2004.02.003

URL : https://hal.archives-ouvertes.fr/inserm-01285612

T. J. Kirn, M. J. Lafferty, C. M. Sandoe, T. , and R. K. , Delineation of pilin domains required for bacterial association into microcolonies and intestinal colonization by Vibrio cholerae. Molecular microbiology, pp.896-910, 2000.

H. Mcwilliam, W. Li, M. Uludag, S. Squizzato, Y. M. Park et al., Analysis Tool Web Services from the EMBL-EBI, Nucleic Acids Research, vol.6, issue.W1, pp.597-600, 2013.
DOI : 10.1371/journal.pone.0024914

A. M. Waterhouse, J. B. Procter, D. M. Martin, M. Clamp, and G. J. Barton, Jalview Version 2--a multiple sequence alignment editor and analysis workbench, PDB #1TOL). (B) Bacterial two hybrid assay: E. coli BTH101 or Oxi-BTH reporter cells producing the, pp.1189-1191, 2009.
DOI : 10.1186/1471-2105-7-318

URL : https://academic.oup.com/bioinformatics/article-pdf/25/9/1189/526576/btp033.pdf