A duality formula and a particle Gibbs sampler for continuous time Feynman-Kac measures on path spaces

Abstract : Continuous time Feynman-Kac measures on path spaces are central in applied probability, partial differential equation theory, as well as in quantum physics. This article presents a new duality formula between normalized Feynman-Kac distribution and their mean field particle interpretations. Among others, this formula allows us to design a reversible particle Gibbs-Glauber sampler for continuous time Feynman-Kac integration on path spaces. This result extends the particle Gibbs samplers introduced by Andrieu-Douce-Holenstein [2] in the context of discrete generation models to continuous time Feynman-Kac models and their interacting jump particle interpretations. We also provide new propagation of chaos estimates for continuous time genealogical tree based particle models with respect to the time horizon and the size of the systems. These results allow to obtain sharp quantitative estimates of the convergence rate to equilibrium of particle Gibbs-Glauber samplers. To the best of our knowledge these results are the first of this kind for continuous time Feynman-Kac measures.
Type de document :
Pré-publication, Document de travail
2018
Liste complète des métadonnées

Littérature citée [30 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01787257
Contributeur : Marc Arnaudon <>
Soumis le : lundi 7 mai 2018 - 14:21:36
Dernière modification le : mardi 15 mai 2018 - 01:19:30

Fichiers

duality-FK-continuous-time-v8....
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01787257, version 1
  • ARXIV : 1805.05044

Collections

Citation

Marc Arnaudon, Pierre Del Moral. A duality formula and a particle Gibbs sampler for continuous time Feynman-Kac measures on path spaces. 2018. 〈hal-01787257〉

Partager

Métriques

Consultations de la notice

40199

Téléchargements de fichiers

22