G. Schneider, Virtual screening: an endless staircase?, Nature Reviews Drug Discovery, vol.51, issue.4, pp.273-276, 2010.
DOI : 10.1021/cen-v081n009.p051

S. Vasudevan and G. Churchill, Mining free compound databases to identify candidates selected by virtual screening, Expert Opinion on Drug Discovery, vol.4, issue.9, pp.901-906, 2009.
DOI : 10.1073/pnas.0812657106

B. Villoutreix, R. N. Lagorce, D. Sperandio, O. Montes, M. Miteva et al., Free Resources to Assist Structure-Based Virtual Ligand Screening Experiments, Current Protein & Peptide Science, vol.8, issue.4, pp.381-411, 2007.
DOI : 10.2174/138920307781369391

L. Xing, J. Mcdonald, S. Kolodziej, R. Kurumbail, J. Williams et al., Discovery of Potent Inhibitors of Soluble Epoxide Hydrolase by Combinatorial Library Design and Structure-Based Virtual Screening, Journal of Medicinal Chemistry, vol.54, issue.5, pp.1211-1222, 2011.
DOI : 10.1021/jm101382t

J. Hermann, R. Marti-arbona, A. Fedorov, E. Fedorov, S. Almo et al., Structure-based activity prediction for an enzyme of unknown function, Nature, vol.63, issue.7155, pp.775-779, 2007.
DOI : 10.1016/0076-6879(85)15014-7

G. Pandey, V. Kumar, and M. Steinbach, Computational Approaches for Protein Function Prediction: A Survey, 2006.

W. Jorgensen, Efficient Drug Lead Discovery and Optimization, Accounts of Chemical Research, vol.42, issue.6, pp.724-733, 2009.
DOI : 10.1021/ar800236t

URL : http://europepmc.org/articles/pmc2727934?pdf=render

D. Joseph-mccarthy, J. Baber, E. Feyfant, D. Thompson, and C. Humblet, Lead optimization via high-throughput molecular docking, Curr Opin Drug Discov Devel, vol.10, pp.264-274, 2007.

A. Leach, B. Shoichet, and C. Peishoff, Prediction of Protein???Ligand Interactions. Docking and Scoring:?? Successes and Gaps, Journal of Medicinal Chemistry, vol.49, issue.20, pp.5851-5855, 2006.
DOI : 10.1021/jm060999m

B. Waszkowycz, D. Clark, and E. Gancia, Outstanding challenges in protein-ligand docking and structure-based virtual screening, Wiley Interdisciplinary Reviews: Computational Molecular Science, vol.106, issue.2, pp.229-259, 2011.
DOI : 10.1073/pnas.0812657106

N. Huang, C. Kalyanaraman, K. Bernacki, and M. Jacobson, Molecular mechanics methods for predicting protein???ligand binding, Phys. Chem. Chem. Phys., vol.26, issue.44, pp.5166-5177, 2006.
DOI : 10.1002/jcc.20292

W. Mooij and M. Verdonk, General and targeted statistical potentials for protein-ligand interactions, Proteins: Structure, Function, and Bioinformatics, vol.16, issue.2, pp.272-287, 2005.
DOI : 10.1021/ci00057a005

H. Gohlke, M. Hendlich, and G. Klebe, Knowledge-based scoring function to predict protein-ligand interactions, Journal of Molecular Biology, vol.295, issue.2
DOI : 10.1006/jmbi.1999.3371

R. Friesner, J. Banks, R. Murphy, T. Halgren, J. Klicic et al., Glide:?? A New Approach for Rapid, Accurate Docking and Scoring. 1. Method and Assessment of Docking Accuracy, Journal of Medicinal Chemistry, vol.47, issue.7, pp.1739-1749, 2004.
DOI : 10.1021/jm0306430

A. Krammer, P. Kirchhoff, X. Jiang, C. Venkatachalam, and M. Waldman, LigScore: a novel scoring function for predicting binding affinities, Journal of Molecular Graphics and Modelling, vol.23, issue.5, pp.395-407, 2005.
DOI : 10.1016/j.jmgm.2004.11.007

D. Mobley, Let???s get honest about sampling, Journal of Computer-Aided Molecular Design, vol.5, issue.2, pp.93-95
DOI : 10.1021/ct800409d

O. Guvench and A. Mackerell, Computational evaluation of protein???small molecule binding, Current Opinion in Structural Biology, vol.19, issue.1, pp.56-61, 2009.
DOI : 10.1016/j.sbi.2008.11.009

P. Ballester and J. Mitchell, A machine learning approach to predicting protein???ligand binding affinity with applications to molecular docking, Bioinformatics, vol.4, issue.9, pp.1169-1175, 2010.
DOI : 10.1371/journal.pone.0004783

B. Baum, L. Muley, M. Smolinski, A. Heine, D. Hangauer et al., Non-additivity of Functional Group Contributions in Protein???Ligand Binding: A Comprehensive Study by Crystallography and Isothermal Titration Calorimetry, Journal of Molecular Biology, vol.397, issue.4, pp.1042-1054, 2010.
DOI : 10.1016/j.jmb.2010.02.007

H. Li, K. Leung, M. Wong, and P. Ballester, Improving AutoDock Vina Using Random Forest: The Growing Accuracy of Binding Affinity Prediction by the Effective Exploitation of Larger Data Sets, Molecular Informatics, vol.50, issue.2-3, pp.115-126, 2015.
DOI : 10.1021/ci100244v

S. Huang, S. Grinter, and X. Zou, Scoring functions and their evaluation methods for protein???ligand docking: recent advances and future directions, Physical Chemistry Chemical Physics, vol.49, issue.40, pp.12899-12908, 2010.
DOI : 10.1021/ci049970m

T. Cheng, Q. Li, Z. Zhou, Y. Wang, and S. Bryant, Structure-Based Virtual Screening for Drug Discovery: a Problem-Centric Review, The AAPS Journal, vol.14, issue.1, pp.133-141, 2012.
DOI : 10.1208/s12248-012-9322-0

C. Sotriffer, Scoring Functions for Protein-Ligand Interactions, 2012.
DOI : 10.1002/anie.200200539

J. Lahti, G. Tang, E. Capriotti, T. Liu, and R. Altman, Bioinformatics and variability in drug response: a protein structural perspective, Journal of The Royal Society Interface, vol.463, issue.7280, pp.1409-1437
DOI : 10.1038/nature08675

D. Ma, D. Chan, and C. Leung, Drug repositioning by structure-based virtual screening, Chemical Society Reviews, vol.55, issue.5, pp.2130-2141, 2013.
DOI : 10.1021/jm300671m

E. Yuriev, J. Holien, and P. Ramsland, Improvements, trends, and new ideas in molecular docking: 2012-2013 in review, Journal of Molecular Recognition, vol.55, issue.14, 2015.
DOI : 10.1021/jm300068n

D. Hecht and G. Fogel, Computational Intelligence Methods for Docking Scores, Current Computer Aided-Drug Design, vol.5, issue.1, pp.56-68, 2009.
DOI : 10.2174/157340909787580863

J. Wright, J. Anderson, H. Shadnia, T. Durst, and J. Katzenellenbogen, Experimental versus predicted affinities for ligand binding to estrogen receptor: iterative selection and rescoring of docked poses systematically improves the correlation, Journal of Computer-Aided Molecular Design, vol.17, issue.8, 2013.
DOI : 10.1002/(SICI)1096-987X(199604)17:5/6<490::AID-JCC1>3.0.CO;2-P

S. Betzi, K. Suhre, B. Chétrit, F. Guerlesquin, and X. Morelli, GFscore:?? A General Nonlinear Consensus Scoring Function for High-Throughput Docking, Journal of Chemical Information and Modeling, vol.46, issue.4, pp.1704-1712, 2006.
DOI : 10.1021/ci0600758

URL : https://hal.archives-ouvertes.fr/hal-00475665

D. Houston and M. Walkinshaw, Consensus Docking: Improving the Reliability of Docking in a Virtual Screening Context, Journal of Chemical Information and Modeling, vol.53, issue.2, pp.384-390, 2013.
DOI : 10.1021/ci300399w

A. Varnek and I. Baskin, ?, Journal of Chemical Information and Modeling, vol.52, issue.6, pp.1413-1437, 2012.
DOI : 10.1021/ci200409x

J. Mitchell, Machine learning methods in chemoinformatics, Wiley Interdisciplinary Reviews: Computational Molecular Science, vol.53, issue.5, 2014.
DOI : 10.1021/ci4001376

J. Gertrudes, V. Maltarollo, R. Silva, P. Oliveira, K. Honório et al., Machine Learning Techniques and Drug Design, Current Medicinal Chemistry, vol.19, issue.25, pp.4289-4297
DOI : 10.2174/092986712802884259

Y. Saeys, I. Inza, and P. Larrañaga, A review of feature selection techniques in bioinformatics, Bioinformatics, vol.7, issue.5, pp.2507-2517, 2007.
DOI : 10.1186/1471-2105-7-197

N. Sukumar, M. Krein, and M. Embrechts, Predictive Cheminformatics in Drug Discovery: Statistical Modeling for Analysis of Micro-array and Gene Expression Data, Bioinformatics and Drug Discovery, vol.910, issue.2012, pp.165-194
DOI : 10.1007/978-1-61779-965-5_9

T. Cheng, X. Li, Y. Li, Z. Liu, and R. Wang, Comparative Assessment of Scoring Functions on a Diverse Test Set, Journal of Chemical Information and Modeling, vol.49, issue.4
DOI : 10.1021/ci9000053

Y. Li, L. Han, Z. Liu, and R. Wang, Comparative Assessment of Scoring Functions on an Updated Benchmark: 2. Evaluation Methods and General Results, Journal of Chemical Information and Modeling, vol.54, issue.6, pp.1717-1736, 2014.
DOI : 10.1021/ci500081m

R. Smith, J. Dunbar, P. Ung, E. Esposito, C. Yang et al., CSAR Benchmark Exercise of 2010: Combined Evaluation Across All Submitted Scoring Functions, Journal of Chemical Information and Modeling, vol.51, issue.9, pp.2115-2131, 2011.
DOI : 10.1021/ci200269q

J. Truchon and C. Bayly, Evaluating Virtual Screening Methods:?? Good and Bad Metrics for the ???Early Recognition??? Problem, Journal of Chemical Information and Modeling, vol.47, issue.2, pp.488-508, 2007.
DOI : 10.1021/ci600426e

N. Triballeau, F. Acher, I. Brabet, J. Pin, and H. Bertrand, Virtual screening workflow development guided by the 'receiver operating characteristic' curve approach Application to high-throughput docking on WIREs Computational Molecular Science Machine-learning SFs to improve structure-based binding affinity prediction and virtual screening The Authors. WIREs Computational Molecular Science metabotropic glutamate receptor subtype 4, J Med Chem, vol.5, issue.48, pp.2534-2547, 2005.

P. Ballester, Ultrafast shape recognition: method and applications, Future Medicinal Chemistry, vol.11, issue.1, pp.65-78, 2011.
DOI : 10.1038/nchembio.118

S. Swamidass, C. Azencott, K. Daily, and P. Baldi, A CROC stronger than ROC: measuring, visualizing and optimizing early retrieval, Bioinformatics, vol.10, issue.2, pp.1348-1356, 2010.
DOI : 10.1186/1471-2105-10-225

W. Zhao, K. Hevener, S. White, R. Lee, and J. Boyett, A statistical framework to evaluate virtual screening, BMC Bioinformatics, vol.10, issue.1, p.225, 2009.
DOI : 10.1186/1471-2105-10-225

N. Huang, B. Shoichet, and J. Irwin, Benchmarking Sets for Molecular Docking, Journal of Medicinal Chemistry, vol.49, issue.23, pp.6789-6801, 2006.
DOI : 10.1021/jm0608356

URL : http://europepmc.org/articles/pmc3383317?pdf=render

S. Rohrer and K. Baumann, Maximum Unbiased Validation (MUV) Data Sets for Virtual Screening Based on PubChem Bioactivity Data, Journal of Chemical Information and Modeling, vol.49, issue.2, pp.169-184, 2009.
DOI : 10.1021/ci8002649

G. Warren, C. Andrews, A. Capelli, C. B. Lalonde, J. Lambert et al., A Critical Assessment of Docking Programs and Scoring Functions, Journal of Medicinal Chemistry, vol.49, issue.20, pp.5912-5931, 2006.
DOI : 10.1021/jm050362n

W. Deng, C. Breneman, and M. Embrechts, Predicting Protein???Ligand Binding Affinities Using Novel Geometrical Descriptors and Machine-Learning Methods, Journal of Chemical Information and Computer Sciences, vol.44, issue.2, pp.699-703, 2004.
DOI : 10.1021/ci034246+

S. Rännar, F. Lindgren, P. Geladi, and S. Wold, A PLS kernel algorithm for data sets with many variables and fewer objects. Part 1: Theory and algorithm, Journal of Chemometrics, vol.2, issue.2, pp.111-125, 1994.
DOI : 10.1016/B978-0-12-416550-2.50008-X

S. Zhang, A. Golbraikh, and A. Tropsha, Development of Quantitative Structure???Binding Affinity Relationship Models Based on Novel Geometrical Chemical Descriptors of the Protein???Ligand Interfaces, Journal of Medicinal Chemistry, vol.49, issue.9, pp.2713-2724, 2006.
DOI : 10.1021/jm050260x

N. Artemenko, Distance Dependent Scoring Function for Describing Protein???Ligand Intermolecular Interactions, Journal of Chemical Information and Modeling, vol.48, issue.3
DOI : 10.1021/ci700224e

S. Das, M. Krein, and C. Breneman, Binding Affinity Prediction with Property-Encoded Shape Distribution Signatures, Journal of Chemical Information and Modeling, vol.50, issue.2, pp.298-308, 2010.
DOI : 10.1021/ci9004139

URL : http://europepmc.org/articles/pmc2846646?pdf=render

C. Sotriffer, P. Sanschagrin, H. Matter, and G. Klebe, SFCscore: Scoring functions for affinity prediction of protein-ligand complexes, Proteins: Structure, Function, and Bioinformatics, vol.65, issue.Database issue, pp.395-419, 2008.
DOI : 10.1021/ci049733j

J. Durrant and J. Mccammon, NNScore: A Neural-Network-Based Scoring Function for the Characterization of Protein???Ligand Complexes, Journal of Chemical Information and Modeling, vol.50, issue.10, pp.1865-1871, 2010.
DOI : 10.1021/ci100244v

O. Trott and A. Olson, AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading, Journal of Computational Chemistry, vol.17, pp.455-461, 2010.
DOI : 10.1002/jcc.21334

J. Durrant and J. Mccammon, BINANA: A novel algorithm for ligand-binding characterization, Journal of Molecular Graphics and Modelling, vol.29, issue.6, pp.888-893, 2011.
DOI : 10.1016/j.jmgm.2011.01.004

X. Ouyang, S. Handoko, and C. Kwoh, CSCORE: A SIMPLE YET EFFECTIVE SCORING FUNCTION FOR PROTEIN???LIGAND BINDING AFFINITY PREDICTION USING MODIFIED CMAC LEARNING ARCHITECTURE, Journal of Bioinformatics and Computational Biology, vol.31, issue.supp01, pp.1-14, 2011.
DOI : 10.1093/nar/gkg500

K. Hsin, S. Ghosh, and H. Kitano, Combining Machine Learning Systems and Multiple Docking Simulation Packages to Improve Docking Prediction Reliability for Network Pharmacology, PLoS ONE, vol.34, issue.12, p.83922, 2013.
DOI : 10.1371/journal.pone.0083922.s011

L. Li, B. Wang, and S. Meroueh, Support Vector Regression Scoring of Receptor???Ligand Complexes for Rank-Ordering and Virtual Screening of Chemical Libraries, Journal of Chemical Information and Modeling, vol.51, issue.9, pp.2132-2138, 2011.
DOI : 10.1021/ci200078f

C. Koppisetty, M. Frank, G. Kemp, and P. Nyholm, Computation of Binding Energies Including Their Enthalpy and Entropy Components for Protein???Ligand Complexes Using Support Vector Machines, Journal of Chemical Information and Modeling, vol.53, issue.10, pp.2559-2570, 2013.
DOI : 10.1021/ci400321r

P. Ballester, Machine Learning Scoring Functions Based on Random Forest and Support Vector Regression, Lecture Notes in Computer Science], vol.7632, pp.14-25
DOI : 10.1007/978-3-642-34123-6_2

G. Li, L. Yang, W. Wang, L. Li, and S. Yang, ID-Score: A New Empirical Scoring Function Based on a Comprehensive Set of Descriptors Related to Protein???Ligand Interactions, Journal of Chemical Information and Modeling, vol.53, issue.3, pp.592-600, 2013.
DOI : 10.1021/ci300493w

Q. Liu, C. Kwoh, and J. Li, Contacts and B Factor, Journal of Chemical Information and Modeling, vol.53, issue.11, pp.3076-3085, 2013.
DOI : 10.1021/ci400450h

D. Zilian and C. Sotriffer, : A Random Forest-Based Scoring Function for Improved Affinity Prediction of Protein???Ligand Complexes, Journal of Chemical Information and Modeling, vol.53, issue.8, pp.1923-1933, 2013.
DOI : 10.1021/ci400120b

P. Ballester, A. Schreyer, and T. Blundell, Does a More Precise Chemical Description of Protein???Ligand Complexes Lead to More Accurate Prediction of Binding Affinity?, Journal of Chemical Information and Modeling, vol.54, issue.3, pp.944-955, 2014.
DOI : 10.1021/ci500091r

J. Durrant and J. Mccammon, NNScore 2.0: A Neural-Network Receptor???Ligand Scoring Function, Journal of Chemical Information and Modeling, vol.51, issue.11, pp.2897-2903, 2011.
DOI : 10.1021/ci2003889

URL : https://doi.org/10.1021/ci2003889

H. Li, K. Leung, M. Wong, and P. Ballester, Substituting random forest for multiple linear regression improves binding affinity prediction of scoring functions: Cyscore as a case study, BMC Bioinformatics, vol.15, issue.1, p.291, 2014.
DOI : 10.1186/1471-2105-15-291

URL : https://hal.archives-ouvertes.fr/inserm-01097969

S. Kinnings, N. Liu, P. Tonge, R. Jackson, L. Xie et al., A Machine Learning-Based Method To Improve Docking Scoring Functions and Its Application to Drug Repurposing, Journal of Chemical Information and Modeling, vol.51, issue.2, pp.408-419, 2011.
DOI : 10.1021/ci100369f

H. Ashtawy and N. Mahapatra, A Comparative Assessment of Predictive Accuracies of Conventional and Machine Learning Scoring Functions for Protein-Ligand Binding Affinity Prediction, IEEE/ACM Transactions on Computational Biology and Bioinformatics, vol.12, issue.2, pp.335-347, 2015.
DOI : 10.1109/TCBB.2014.2351824

C. Kramer and P. Gedeck, Leave-Cluster-Out Cross-Validation Is Appropriate for Scoring Functions Derived from Diverse Protein Data Sets, Journal of Chemical Information and Modeling, vol.50, issue.11, pp.1961-1969, 2010.
DOI : 10.1021/ci100264e

P. Ballester and J. Mitchell, Comments on ???Leave-Cluster-Out Cross-Validation Is Appropriate for Scoring Functions Derived from Diverse Protein Data Sets???: Significance for the Validation of Scoring Functions, Journal of Chemical Information and Modeling, vol.51, issue.8, pp.1739-1741, 2011.
DOI : 10.1021/ci200057e

Y. Wang, Y. Guo, Q. Kuang, X. Pu, J. Y. Zhang et al., A comparative study of family-specific protein???ligand complex affinity prediction based on random forest approach, Journal of Computer-Aided Molecular Design, vol.49, issue.4, pp.349-360, 2015.
DOI : 10.1021/ci9000053

A. Amini, P. Shrimpton, S. Muggleton, and M. Sternberg, A general approach for developing system-specific functions to score protein-ligand docked complexes using support vector inductive logic programming, Proteins: Structure, Function, and Bioinformatics, vol.40, issue.4, pp.823-831, 2007.
DOI : 10.1021/ci0498719

Z. Zsoldos, D. Reid, A. Simon, S. Sadjad, and A. Johnson, eHiTS: A new fast, exhaustive flexible ligand docking system, Journal of Molecular Graphics and Modelling, vol.26, issue.1, pp.198-212, 2007.
DOI : 10.1016/j.jmgm.2006.06.002

W. Zhan, D. Li, C. J. Zhang, L. , Y. B. Hu et al., Integrating docking scores, interaction profiles and molecular descriptors to improve the accuracy of molecular docking: Toward the discovery of novel Akt1 inhibitors, European Journal of Medicinal Chemistry, vol.75, pp.11-20, 2014.
DOI : 10.1016/j.ejmech.2014.01.019

A. Bortolato, B. Tehan, M. Bodnarchuk, J. Essex, and J. Mason, Antagonists as a Case Study, Journal of Chemical Information and Modeling, vol.53, issue.7, pp.1700-1713, 2013.
DOI : 10.1021/ci4001458

L. Breiman, Random forests, Machine Learning, vol.45, issue.1, pp.5-32, 2001.
DOI : 10.1023/A:1010933404324

C. Springer, H. Adalsteinsson, M. Young, P. Kegelmeyer, and D. Roe, PostDOCK:?? A Structural, Empirical Approach to Scoring Protein Ligand Complexes, Journal of Medicinal Chemistry, vol.48, issue.22, pp.6821-6831, 2005.
DOI : 10.1021/jm0493360

T. Sato, T. Honma, and S. Yokoyama, Combining Machine Learning and Pharmacophore-Based Interaction Fingerprint for in Silico Screening, Journal of Chemical Information and Modeling, vol.50, issue.1, pp.170-185, 2010.
DOI : 10.1021/ci900382e

A. Gaulton, L. Bellis, A. Bento, J. Chambers, M. Davies et al., ChEMBL: a large-scale bioactivity database for drug discovery, Nucleic Acids Research, vol.158, issue.7296, 2011.
DOI : 10.1111/j.1476-5381.2009.00499.x

X. Xie, Exploiting PubChem for virtual screening, Expert Opinion on Drug Discovery, vol.116, issue.4, pp.1205-1220, 2010.
DOI : 10.1021/ci700092v

URL : http://europepmc.org/articles/pmc3117665?pdf=render

G. Morris, R. Huey, W. Lindstrom, M. Sanner, R. Belew et al., AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility, Journal of Computational Chemistry, vol.22, issue.16, pp.2785-2791, 2009.
DOI : 10.1002/jcc.21256

URL : http://onlinelibrary.wiley.com/doi/10.1002/jcc.21256/pdf

J. Durrant, A. Friedman, K. Rogers, and J. Mccammon, Comparing Neural-Network Scoring Functions and the State of the Art: Applications to Common Library Screening, Journal of Chemical Information and Modeling, vol.53, issue.7, pp.1726-1735, 2013.
DOI : 10.1021/ci400042y

S. Kinnings, N. Liu, P. Tonge, R. Jackson, L. Xie et al., Correction to ???A Machine Learning-Based Method To Improve Docking Scoring Functions and Its Application to Drug Repurposing???, Journal of Chemical Information and Modeling, vol.51, pp.408-419, 2011.
DOI : 10.1021/ci2001346

L. Li, M. Khanna, J. I. Wang, F. Ashpole, N. Hudmon et al., Target-Specific Support Vector Machine Scoring in Structure-Based Virtual Screening: Computational Validation, In Vitro Testing in Kinases, and Effects on Lung Cancer Cell Proliferation, Journal of Chemical Information and Modeling, vol.51, issue.4, pp.755-759, 2011.
DOI : 10.1021/ci100490w

P. Ballester, M. Mangold, N. Howard, R. Robinson, C. Abell et al., Hierarchical virtual screening for the discovery of new molecular scaffolds in antibacterial hit identification, Journal of The Royal Society Interface, vol.14, issue.3, 2012.
DOI : 10.1016/j.cbpa.2010.03.024

P. Ballester and W. Richards, Ultrafast shape recognition for similarity search in molecular databases, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.463, issue.2081, pp.1307-1321, 2007.
DOI : 10.1098/rspa.2007.1823

G. Jones, P. Willett, R. Glen, A. Leach, and R. Taylor, Development and validation of a genetic algorithm for flexible docking 1 1Edited by F. E. Cohen, Journal of Molecular Biology, vol.267, issue.3, pp.727-748, 1997.
DOI : 10.1006/jmbi.1996.0897

H. Li, K. Leung, P. Ballester, and M. Wong, istar: A Web Platform for Large-Scale Protein-Ligand Docking, PLoS ONE, vol.49, issue.1, p.85678, 2014.
DOI : 10.1371/journal.pone.0085678.s008

J. Irwin, T. Sterling, M. Mysinger, E. Bolstad, and R. Coleman, ZINC: A Free Tool to Discover Chemistry for Biology, Journal of Chemical Information and Modeling, vol.52, issue.7, pp.1757-1768, 2012.
DOI : 10.1021/ci3001277

B. Ding, J. Wang, N. Li, and W. Wang, Characterization of Small Molecule Binding. I. Accurate Identification of Strong Inhibitors in Virtual Screening, Journal of Chemical Information and Modeling, vol.53, issue.1, pp.114-122, 2013.
DOI : 10.1021/ci300508m

H. Li, K. Leung, M. Wong, and P. Ballester, The impact of docking pose generation error on the prediction of binding affinity, In: Lecture Notes in Bioinformatics, vol.8623, 2015.
URL : https://hal.archives-ouvertes.fr/inserm-01370615

M. Wójcikowski, P. Zielenkiewicz, and P. Siedlecki, Open Drug Discovery Toolkit (ODDT): a new open-source player in the drug discovery field, Journal of Cheminformatics, vol.31, issue.1, p.26, 2015.
DOI : 10.1093/bioinformatics/btu626

M. Rupp, M. Bauer, R. Wilcken, A. Lange, M. Reutlinger et al., Machine Learning Estimates of Natural Product Conformational Energies, PLoS Computational Biology, vol.14, issue.1, p.1003400, 2014.
DOI : 10.1371/journal.pcbi.1003400.s008

Z. Yan and J. Wang, Optimizing the affinity and specificity of ligand binding with the inclusion of solvation effect, Proteins: Structure, Function, and Bioinformatics, vol.54, issue.9, 2015.
DOI : 10.1021/ci500406k

Y. Cao and L. Li, Improved protein???ligand binding affinity prediction by using a curvature-dependent surface-area model, Bioinformatics, vol.101, issue.12, pp.1674-1680, 2014.
DOI : 10.1016/j.bpj.2011.09.012

X. Li, M. Zhu, X. Li, H. Wang, S. Wang et al., Protein-Protein Binding Affinity Prediction Based on an SVR Ensemble, Intelligent Computing Technology, pp.145-151
DOI : 10.1007/978-3-642-31588-6_19

W. Wang, W. He, X. Zhou, and X. Chen, Optimization of molecular docking scores with support vector rank regression, Proteins: Structure, Function, and Bioinformatics, vol.131, issue.8, pp.1386-1398, 2013.
DOI : 10.1021/ja9039373

H. Li, K. Leung, M. Wong, and P. Ballester, Low-Quality Structural and Interaction Data Improves Binding Affinity Prediction via Random Forest, Molecules, vol.7632, issue.6, pp.10947-10962, 2015.
DOI : 10.1021/ci500081m

URL : https://hal.archives-ouvertes.fr/hal-01205333

H. Dragos, M. Gilles, and V. Alexandre, Predicting the Predictability: A Unified Approach to the Applicability Domain Problem of QSAR Models, Journal of Chemical Information and Modeling, vol.49, issue.7, pp.1762-1776, 2009.
DOI : 10.1021/ci9000579

R. Sheridan, Using Random Forest To Model the Domain Applicability of Another Random Forest Model, Journal of Chemical Information and Modeling, vol.53, issue.11, pp.2837-2850, 2013.
DOI : 10.1021/ci400482e

M. Toplak, R. Mo-cnik, M. Polajnar, Z. Bosni-c, L. Carlsson et al., Assessment of Machine Learning Reliability Methods for Quantifying the Applicability Domain of QSAR Regression Models, Journal of Chemical Information and Modeling, vol.54, issue.2, pp.431-441, 2014.
DOI : 10.1021/ci4006595

L. Zhang, D. Fourches, A. Sedykh, H. Zhu, A. Golbraikh et al., Discovery of Novel Antimalarial Compounds Enabled by QSAR-Based Virtual Screening, Journal of Chemical Information and Modeling, vol.53, issue.2, 2012.
DOI : 10.1021/ci300421n

G. Van-westen, A. Gaulton, J. Overington, S. Langdon, P. Ertl et al., Chemical, Target, and Bioactive Properties of Allosteric Modulation, PLoS Computational Biology, vol.405, issue.4, pp.1003559-104366, 2010.
DOI : 10.1371/journal.pcbi.1003559.s014

J. Ma, R. Sheridan, A. Liaw, G. Dahl, and V. Svetnik, Deep Neural Nets as a Method for Quantitative Structure???Activity Relationships, Journal of Chemical Information and Modeling, vol.55, issue.2, 2015.
DOI : 10.1021/ci500747n

I. Sushko, S. Novotarskyi, R. Körner, A. Pandey, M. Rupp et al., Online chemical modeling environment (OCHEM): web platform for data storage, model development and publishing of chemical information, Journal of Computer-Aided Molecular Design, vol.10, issue.6, pp.533-554, 2011.
DOI : 10.1016/S1359-6446(05)03584-1

D. V. Pires, R. De-melo-minardi, C. Da-silveira, F. Campos, and M. W. , aCSM: noise-free graph-based signatures to large-scale receptor-based ligand prediction, Bioinformatics, vol.267, issue.web server issue, pp.855-861, 2013.
DOI : 10.1006/jmbi.1996.0859

URL : https://academic.oup.com/bioinformatics/article-pdf/29/7/855/17344077/btt058.pdf

P. Gramatica, Principles of QSAR models validation: internal and external, QSAR & Combinatorial Science, vol.15, issue.5, pp.694-701, 2007.
DOI : 10.1002/9783527615452.ch5

I. Cortés-ciriano, Q. Ain, V. Subramanian, E. Lenselink, O. Méndez-lucio et al., Polypharmacology modelling using proteochemometrics (PCM): recent methodological developments, applications to target families, and future prospects, MedChemComm, vol.503, issue.suppl. 1
DOI : 10.1016/S0166-1280(99)00360-7