A. H. Abedin and M. A. Rosen, A critical review of thermochemical energy storage systems, Open Renew, Energy J, vol.4, pp.42-46, 2011.
DOI : 10.2174/1876387101004010042

URL : http://benthamopen.com/contents/pdf/TOREJ/TOREJ-4-42.pdf

T. Block, N. Knoblauch, and M. Shmücker, The cobalt-oxide/iron-oxide binary system for use as high temperature thermochemical energy storage material, Thermochimica Acta, vol.577, pp.25-32, 2014.
DOI : 10.1016/j.tca.2013.11.025

C. Agrafiotis, M. Roeb, M. Schücker, and C. Sattler, Exploitation of thermochemical cycles based on solid oxide redox systems for thermochemical storage of solar heat. Part 2: Redox oxide-coated porous ceramic structures as integrated thermochemical reactors/heat exchangers, Solar Energy, vol.114, pp.440-458, 2015.
DOI : 10.1016/j.solener.2014.12.036

C. Agrafiotis, S. Tescari, M. Roeb, M. Schücker, and C. Sattler, Exploitation of thermochemical cycles based on solid oxide redox systems for thermochemical storage of solar heat. Part 3: Cobalt oxide monolithic porous structures as integrated thermochemical reactors/heat exchangers, Solar Energy, vol.114, pp.459-475, 2015.
DOI : 10.1016/j.solener.2014.12.037

M. Neises, S. Tescari, L. De-oliveira, M. Roeb, C. Sattler et al., Solar-heated rotary kiln for thermochemical energy storage, Solar Energy, vol.86, issue.10, pp.3040-3048, 2012.
DOI : 10.1016/j.solener.2012.07.012

S. Tescari, C. Agrafiotis, S. Breuer, L. De-oliveira, M. Nieses-von-puttkamer et al., Thermochemical Solar Energy Storage Via Redox Oxides: Materials and Reactor/Heat Exchanger Concepts, Energy Procedia, vol.49, pp.49-1034, 2014.
DOI : 10.1016/j.egypro.2014.03.111

URL : https://doi.org/10.1016/j.egypro.2014.03.111

G. Karagiannakis, C. Pagkoura, A. Zygogianni, S. Lorentzou, and A. G. Konstandopoulos, Monolithic Ceramic Redox Materials for Thermochemical Heat Storage Applications in CSP Plants, Energy Procedia, vol.49, pp.49-820, 2014.
DOI : 10.1016/j.egypro.2014.03.089

URL : https://doi.org/10.1016/j.egypro.2014.03.089

A. J. Carrillo, D. P. Serrano, P. Pizarro, and J. M. Coronado, Redox Couple by the Incorporation of Iron, ChemSusChem, vol.35, issue.11, pp.1947-1954, 2015.
DOI : 10.1016/j.ijhydene.2010.07.125

C. Pagkoura, G. Karagiannakis, A. Zygogianni, S. Lorentzou, M. Kostoglou et al., Cobalt oxide based structured bodies as redox thermochemical heat storage medium for future CSP plants, Solar Energy, vol.108, pp.146-163, 2014.
DOI : 10.1016/j.solener.2014.06.034

L. André, S. Abanades, and G. Flamant, Screening of thermochemical systems based on solid-gas reversible reactions for high temperature solar thermal energy storage, Renewable and Sustainable Energy Reviews, vol.64, pp.703-715, 2016.
DOI : 10.1016/j.rser.2016.06.043

A. J. Carrillo, D. P. Serrano, P. Pizarro, and J. M. Coronado, redox couple: influence of the initial particle size on the morphological evolution and cyclability, J. Mater. Chem. A, vol.79, issue.45, pp.19435-19443, 2014.
DOI : 10.1111/j.1151-2916.1996.tb07993.x

A. J. Carrillo, D. P. Serrano, P. Pizarro, and J. M. Coronado, Manganese oxide-based thermochemical energy storage: Modulating temperatures of redox cycles by Fe???Cu co-doping, Journal of Energy Storage, vol.5, pp.169-176, 2016.
DOI : 10.1016/j.est.2015.12.005

I. H. Jung, S. A. Decterov, A. D. Pelton, H. M. Kim, and Y. B. Kang, Thermodynamic evaluation and modeling of the Fe???Co???O system, Thermodynamic evaluation and modeling of the Fe-Co-O system, pp.507-519, 2004.
DOI : 10.1016/j.actamat.2003.09.034

W. Zhang and M. Chen, Thermodynamic modeling of the Co?Fe?O system, pp.41-76, 2013.

Y. B. Kang and I. H. Jung, Thermodynamic modeling of oxide phases in the Fe???Mn???O system, Journal of Physics and Chemistry of Solids, vol.98, pp.237-246, 2016.
DOI : 10.1016/j.jpcs.2016.07.017

L. Kjellqvist and M. Selleby, Thermodynamic Assessment of the Fe-Mn-O System, Journal of Phase Equilibria and Diffusion, vol.20, issue.Suppl C1, pp.31-113, 2010.
DOI : 10.2320/matertrans1960.24.514

E. Beche, G. Peraudeau, V. Flaud, and D. Perarnau, XPS unvestigation of (La 2 O 3 ) 1?x (CeO 2 ) 2x (ZrO 2 ) 2 compounds elaborated by solar energy, Surf. Interface Anal, pp.44-1045, 2012.

J. I. Lai, K. V. Shafi, A. Ulman, N. Yang, M. Cui et al., Mixed Iron???Manganese Oxide Nanoparticles, The Journal of Physical Chemistry B, vol.108, issue.39, pp.729-730, 2003.
DOI : 10.1021/jp049913w

C. W. Bale, E. Bélisle, P. Chartrand, S. A. Decterov, G. Eriksson et al., thermochemical software and databases, pp.2010-2016, 2016.

M. Hillert, The compound energy formalism, Journal of Alloys and Compounds, vol.320, issue.2, pp.161-176, 2001.
DOI : 10.1016/S0925-8388(00)01481-X

B. Ehrhart, E. Coker, N. Siegel, and A. Weimer, Thermochemical Cycle of a Mixed Metal Oxide for Augmentation of Thermal Energy Storage in Solid Particles, Energy Procedia, vol.49, pp.49-762, 2014.
DOI : 10.1016/j.egypro.2014.03.082

T. Block and M. Schmucker, Metal oxides for thermochemical energy storage: A comparison of several metal oxide systems, Solar Energy, vol.126, pp.195-207, 2016.
DOI : 10.1016/j.solener.2015.12.032

A. J. Carrillo, D. P. Serrano, P. Pizarro, and J. M. Coronado, Understanding Redox Kinetics of Iron-Doped Manganese Oxides for High Temperature Thermochemical Energy Storage, The Journal of Physical Chemistry C, vol.120, issue.49, pp.27800-27812, 2016.
DOI : 10.1021/acs.jpcc.6b08708

F. Agnoli, B. Albouy, P. Tailhades, and A. Rousset, Manganites de Fer de Structure Spinelle Déformée à Très Fort Champ Coercitif, Exemple de l?Oxyde Lacunaire Mixte Mn1.7Fe1.3O4+?, C. R. Acad. Sci, pp.525-530, 1999.
DOI : 10.1016/s1387-1609(00)86438-5