Cellular automata over generalized Cayley graphs

Pablo Arrighi 1 S. Martiel 2 V. Nesme
1 CANA - Calcul Naturel
LIS - Laboratoire d'Informatique et Systèmes
Abstract : Cayley graphs have a number of useful features: the ability to graphically represent finitely generated group elements and their relations ; to name all vertices relative to a point; and the fact that they have a well-defined notion of translation. We propose a notion of graph associated to a language, which conserves or generalizes these features. Whereas Cayley graphs are very regular; associated graphs are arbitrary, although of a bounded degree. Moreover, it is well-known that cellular automata can be characterized as the set of translation-invariant continuous functions for a distance on the set of configurations that makes it a compact metric space; this point of view makes it easy to extend their definition from grids to Cayley graphs. Similarly, we extend their definition to these arbitrary, bounded degree, time-varying graphs. The obtained notion of Cellular Automata over generalized Cayley graphs is stable under composition and under inversion.
Type de document :
Article dans une revue
Mathematical Structures in Computer Science, Cambridge University Press (CUP), 2018, 18, pp.340-383
Liste complète des métadonnées

Littérature citée [32 références]  Voir  Masquer  Télécharger

Contributeur : Kévin Perrot <>
Soumis le : lundi 7 mai 2018 - 15:42:11
Dernière modification le : vendredi 7 septembre 2018 - 13:56:03
Document(s) archivé(s) le : mardi 25 septembre 2018 - 16:08:10


Fichiers produits par l'(les) auteur(s)


  • HAL Id : hal-01785458, version 1



Pablo Arrighi, S. Martiel, V. Nesme. Cellular automata over generalized Cayley graphs. Mathematical Structures in Computer Science, Cambridge University Press (CUP), 2018, 18, pp.340-383. 〈hal-01785458〉



Consultations de la notice


Téléchargements de fichiers