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Fig. 1. We introduce a BSDF model to render plane-parallel layered materials using an analysis of the directional statistics of light interaction with microfacet

geometry and participating media. Our model closely matches the reference and supports an arbitrary number of textured layers while being energy conserving,

free from heavy per-material precomputation, and compatible with real-time constraints.

We derive a novel framework for the e�cient analysis and computation of

light transport within layered materials. Our derivation consists of two steps.

First, we decompose light transport into a set of atomic operators that act

on its directional statistics. Speci�cally, our operators consist of re�ection,

refraction, sca�ering, and absorption, whose combinations are su�cient

to describe the statistics of light sca�ering multiple times within layered

structures. We show that the �rst three directional moments (energy, mean

and variance) already provide an accurate summary. Second, we extend the

adding-doubling method to support arbitrary combinations of such operators

e�ciently. During shading, we map the directional moments to BSDF lobes.

We validate that the resulting BSDF closely matches the ground truth in

a lightweight and e�cient form. Unlike previous methods, we support

an arbitrary number of textured layers, and demonstrate a practical and

accurate rendering of layered materials with both an o�ine and real-time

implementation that are free from per-material precomputation.
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1 INTRODUCTION

Elaborate shading models allow the realistic reproduction of the

diversity and complexity of surface appearance found in nature

or man-made objects. A simple way to enrich a set of materials

is to coat them with one or many strata of glazing or clear coat.

�is is typically what happens when objects are wet or paints are

glazed. For example, applying a clear coat on a rough metal will

create a distinctive hazy look. Unfortunately, coatings increase the

di�culty of modeling the resulting appearance and design e�cient

shading models for rendering. Up to now, no one has provided a

comprehensive model of the Bidirectional Sca�ering Distribution
Function (BSDF) of coated materials. In this work, we focus on a

subset of coatings called layered materials [Jakob et al. 2014].

Layered Materials. Layered materials assume that the coating

layers are plane parallel with respect to the shading normal and

separated by rough interfaces. It is also assumed that geometrical

optics fully describes the appearance. �us, the thicknesses of layers

is larger than the wavelengths of visible light (removing wave optics

from our study). However, the number of layers can be arbitrary

and thus light can bounce many times before exiting the material,

which makes evaluation di�cult. O�ine productions [Hery et al.

2017; Kulla and Conty 2017; Langlands 2014] and the real-time com-

munity [Drobot 2017] have expressed interest in those appearance.

However, they limit themselves to only two layers evaluated with

a single re�ection per layer (that is paths directly re�ected by the

top layer (denoted R) and paths transmi�ed by the top layer and

re�ected by the base layer (denotedTRT )). �us, more general – yet

e�cient – models are needed by the community.

ACM Transactions on Graphics, Vol. 37, No. 4, Article 73. Publication date: August 2018.



73:2 • L. Belcour

a) Global statistics b) Atomic Operator

on Statistics

c) Combining Layers Statistics d) Resulting Mixture of BSDFs

Fig. 2. We express the directional statistics (energy, mean and variance) of a layered BSDF in the projected plane (a). Instead of computing the complete

transport, we track statistical summary at each step. We first study the impact on directional statistics of di�erent atomic operations, i.e. reflection, refraction,
sca�ering, and absorption. For example, rough reflection increases the variance of the incident radiance (b). We evaluate multiple sca�ering between layers by

combining those atomic operators with a new adding-doubling algorithm working on those statistics (c). Finally, we instantiate multiple BRDF lobes from

those statistics to approximate the entire layered BSDF (d).

Technical Di�culties. A key di�culty is to provide a realistic

model that works with an arbitrary number of layers (possibly tex-

tured), accounts for multiple sca�ering, is energy conserving, requires

li�le storage, has a short precomputation time, supports good impor-
tance sampling and is symmetric with respect to light transport eval-

uation (to be compatible with bidirectional rendering techniques).

In the pursuit of some of those goals, researchers o�en rely on

heavy precomputation and/or tabulate much of the data [Jakob et al.

2014] to faithfully reproduce the target appearance or devise ap-

proximative light transport schemes [Weidlich and Wilkie 2007]

that unfortunately miss some important e�ects. �e main objective

of our work is to reach a quality comparable to tabulated meth-

ods, while providing a lightweight solution that is e�cient like

the approximative methods. While we are inspired by how Jakob

et al. [2014] compute multiple sca�ering between layers, we use

a lighter representation. Our insight is that light interaction with

individual layers is simple and o�en results in only stretches, com-

pressions, and blurs of the directional distribution of light. It is the

combination of interactions in the structure that creates complex

appearance. �us, our idea is to work at the level of individual layers

where light-ma�er interaction is described with simple transport

operators (re�ection, refraction, absorption, and sca�ering) to keep

derivation tractable and to use an e�cient combination algorithm

to build complex sca�ering functions.

We make the following contributions:

• We introduce a statistical framework to estimate the energy,
mean, and variance of the BSDF for any layered material

con�guration (Fig. 2(a)). Our framework builds upon the

statistics of projected directions (Section 3)

• We provide a set of atomic operators (re�ection, refrac-

tion, absorption, and sca�ering) within our framework and

derive close approximations of light interaction with inter-

faces or media (Section 4 and Fig. 2(b)).

• We derive a new method, similar to the one of Jakob et

al. [2014], that works on statistics and allows us to e�-

ciently evaluate the directional statistics due to multiple

sca�ering in the layered structure (Section 5, and Fig. 2(c)).

• Using our framework, we implement a new BSDF models

for o�ine and real-time rendering of layered materials that

is energy conserving, requires li�le storage, is free from

per-material precomputation, and has good importance

sampling (Section 6, and Fig. 2(d)). Our o�ine BSDF model

is also symmetric.

Assumptions & Limitations. In this work, we assume that all in-

terfaces are composed of specular microfacets following the GGX

distribution. Due to our approximations, our model accurately re-

produces the ground truth for low and moderate roughness only

(see Section 7.3). Our current formulation does not support other

surface models, e.g. Lambertian di�use layers.

2 PREVIOUS WORK

Specialized models. Many models were derived for a speci�c con-

�guration of a layered structure. For example, Dorsey and Hanrahan

[1996] introduced a model for aging of metals, Jensen et al. [1999]

derived a model accounting for a water layer on top of objects, Stam

[2001] derived a BSDF model for human skin by layering a dielectric

surface on a participating medium, Ershov et al. [2001] derived a

model of �akes in a coating, Dai et al. [2009] modeled the refraction

of light by two parallel rough microfacets, etc. While e�cient, those

models can be di�cult to extend beyond their original purpose. In

contrast, we propose a general formulation, that is not restricted to

a particular layered con�guration.

Spatial Di�usion. It is also possible to model the di�usion of light

in highly di�using layered materials [Donner and Jensen 2005]. �is

usually results in a Bidirectional Subsurface Sca�ering Re�ectance
Distribution Function (BSSRDF) model as the spatial di�usion of light

in the medium is accounted for. We do not try to reproduce this

e�ect and restrict ourselves to the case in which the approximation

that light enters and exits the layered structure at the same position

is valid.

General models. Some models reproduce the appearance of strati-

�ed materials without the explicit evaluation of all light transport.

Weidlich and Wilkie [2007] used strati�ed microfacets models [Wal-

ter et al. 2007] to model transmissive rough interfaces but simpli�ed

the transport in the layered structure by refracting query rays with

respect to a single microfacet. �is unfortunately fails to correctly

capture the blur due to a stack of layers as shown in Fig. 13. Jakob

et al. [2014] introduced a numerical scheme to compute and store a
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tabulated representation of layered BRDFs that accounts for multiple

sca�ering between layers using the adding-doubling method [van

de Hulst 1980]. However, it is impractical for production scenarios

or real-time rendering. One of its drawbacks is that it is not memory
bound as it relies on a Fourier decomposition of the BSDFs. Con-

sequently, a single BSDF can weight more than a gigabyte in their

framework.

Real-time models. To gain e�ciency, it is possible to restrict lay-

ered BSDFs to two rough interfaces and approximate the resulting

transport by two BSDF lobes at the shading point (denoted bi-model

here). A �rst BSDF lobe accounts for the �rst interface (or clear-

coat) and the second lobe accounts for the remaining interfaces.

For example, Elek [2010] uses Weidlich and Wilkie [2007] micro-

facet interfaces with further simpli�cations. Blur induced by the

clear-coat is approximated by taking the max roughness. Guo et al.

[2016] use two von Mises-Fisher (vMF) lobes at the surface of the

object. �ey approximate the convolution of vMF lobes to model

the impact of the clear-coat. vMF lobes are unlikely to be applied in

production as they miss the heavy tails required to model metals.

Furthermore, speci�c precomputations are required (e.g. precom-

puted environment maps and area lights) for real-time rendering.

Similarly, De Rousiers et al. [2011] approximated the refraction of

two successive rough interfaces using vMF lobes, sharing the same

drawbacks.

Summary. In this work, we provide a new model for layered ma-

terials that permits real-time usage but without sacri�cing much

of the �delity with respect to the reference light transport. We

were inspired by the use of the adding-doubling algorithm [Jakob

et al. 2014] but we forbade the use of any parameter-dependent or

per-material time-consuming tabulation. Instead, we developed a

statistical analysis of light interaction with the layered structure

and tailored the adding-doubling method to track the energy, mean,

and variance of the BSDF. To do so, we model the interactions of

light in a layered structure as operators on statistics and apply the

adding-doubling method to e�ciently evaluate multiple sca�ering.

�anks to all this, we apply our solution to an arbitrary number of

textured layers and show that, for low and moderate roughnesses,

our solution is close to the reference appearance and energy con-

serving, but at the same time lightweight and e�cient. We further

show how to e�ciently importance sample our model and how to

make it symmetric. We demonstrate our model tailored to both

o�ine and real-time scenarios.

3 DIRECTIONAL STATISTICS

Our insight is to estimate the directional statistics of a layered

material for a given incidence and to inject those statistics into a

BSDF for e�cient shading. In this work, we restrict our statistical

study to the energy e , the mean µ and the variance σ of a BSDF lobe
1
.

We focus on the GGX microfacet model [Walter et al. 2007], but our

ideas apply to other BSDF models. We build on the property that,

for isotropic microfacet BSDF models like GGX or Beckmann, the

bijective mapping from the parameters of the BSDF to its directional

1
We deliberately omit the square on σ for be�er readability.
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Fig. 3. Our statistical analysis is done on the projective plane of directions

[u, v] =
[
ωx , ωy

]
(le� inset). We study the mean and variance of the

outgoing distribution in this space. We show in the right inset the variance

of a GGX lobe at normal incidence with respect to roughness (in blue) as

well as the variance of light bouncing twice on parallel surfaces with the

same roughness (in red).

statistics enables us to instantiate a BSDF lobe from the knowledge

of its energy, mean, and variance.

Statistics in the Projected Plane. To compute directional mean

and variance, we need a parametrization. We use the orthographic

projection of 3D coordinates of directions to the (x ,y) plane (see

Fig. 3). �at is, we compute the mean and variance with respect to

[u,v ] =
[
ωx ,ωy

]
, where ax is the x-component of vector a. We

experienced that in this space, an isotropic GGX peak is close to a

circular shape. Löw et al. [2012, see Fig. 5] reported a similar behav-

ior in the MERL database. We will use this property and assume that

the projected BSDF is a radially symmetric function. �us, we only

need to track a 1D variance. Note that for grazing angles, GGX is

notably skewed. However, since GGX lobes are parametrized by an

energy, an incident direction and a roughness, we have no control

over the higher order statistics of this distribution.

Equivalent Roughness. A BSDF lobe is not stable under convolu-

tion. �us, the statistics specify an equivalent lobe that is an approx-

imation since the shape of the spherical function is not preserved.

In the following, we will display and use the equivalent roughness
of a directional statistic using the mapping between roughness and

variance and its inverse (see Fig. 3(b)).

4 ATOMIC OPERATORS ON STATISTICS

In this section, we describe statistical atomic operators approximat-

ing the e�ect of speci�c light transport interactions. �ose operators

will later be used to evaluate BSDF lobe statistics (Section 5) and

instantiate an equivalent BSDF model (Section 6). �e di�erent

operators we use are summarized in Table 1. We will discuss them

in the following order: re�ection by a rough surface (Section 4.1), re-

fraction by a rough surface (Section 4.2), transmission and sca�ering

in plane-parallel participating media (Section 4.3 and 4.4).

4.1 Reflection by a Rough Interface

A rough surface distributes the incoming light based on its Bidi-
rectional Re�ectance Distribution Function (BRDF). For a microfacet
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Table 1. We summarize the di�erent atomic operators and how we approximate the outgoing energy e , mean µ , and variance σ given the incident energy ei ,
mean µi , and variance σi . For each statistic, we indicate with an exponent whether it has to be used for a reflected or transmi�ed lobe (for example σR for

the variance of a reflected lobe). This notation will be reused in the adding-doubling method. In this table, we use the convention that incident and outgoing

vectors leave the surface. This explains why both reflection and refraction negate the mean.

Rough Re�ection Rough Refraction Absorption Forward Scattering

en
er
gy

eR = ei × FGD
∞ eT = ei × [1 − FGD

∞] eT = ei exp

[
− σth√

1−|µi |2

]
eT =ei [ σs h√

1−|µi |2
] exp

[
− σt h√

1−|µi |2

]

m
ea
n

µR = −µi µT = −η12 µi µT = −µi µT = −µi

va
ri
an

ce

σR = σi + σR
12

σT =
σi
η12

+ f (s × α12) σT = σi σT = σi + σд

BRDF, it can be described by:

Lo (ωo ) =
∫
Ω
F (〈ωi , h〉)

G(ωi ,ωo )D(h)
4〈ωi ,n〉〈ωo ,n〉

Li (ωi )〈ωi ,n〉 dωi , (1)

where Lo (resp. Li ) is the outgoing (resp. incoming) radiance, Ω
is the upper hemisphere, h = (ωi+ωo )/| |ωi+ωo | | is the half-vector,

〈ωo ,n〉 denotes the dot product, and F ,G , and D describe the BRDF:

F is the Fresnel term, D the Normal Distribution Function (NDF) and

G the associated shadowing/masking.

Energy. �e amount of energy re�ected by the surface is called

the directional albedo. For microfacet models, it is directly de�ned

by the integrated Fresnel FGD:

FGD =

∫
Ω
F (〈ωi , h〉)

G(ωi ,ωo )D(h)
4〈ωi ,n〉〈ωo ,n〉

〈ωi ,n〉 dωo (2)

We will omit all parameters for FGD = FGD(ωi ,α ,η + iκ), where

η + iκ is the complex index of refraction (IOR) at the interface. For

isotropic BRDFs, the elevation is su�cient to parametrize the incom-

ing direction. We approximate the energy of the outgoing radiance

by decoupling FGD from incident radiance:∫
Ω
Lo (ωo )dωo ' FGD ×

∫
Ω
Li (ωi )dωi . (3)

Since no closed form exists for FGD, we precompute it in a 4D table

parametrized by an elevation, a roughness, and a complex index of

refraction.

Mean. Largarde and De Rousiers showed that the mean of the re-

�ected lobe is shi�ed towards the normal [Lagarde and De Rousiers

2014, Section 3.1.4]. �is is typically used to fetch preintegrated

environment maps in video-game engines. Note that this shi� is

directly integrated into the FGD texture. �ey showed that a good

approximation of this shi� is:

ω ′r |xy = βn |xy + (1 − β)ωr |xy , (4)

where ω |xy = [ω .x ,ω .y] is the vector in the tangential plane,

and β depends on the shadowing-masking term (see Lagarde and

De Rousiers [2014] for details). However, this shi� is only important

for rough con�gurations and we neglect it during the estimation
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Fig. 4. We plot the equivalent roughness of two bounces of light on parallel

layers with di�erent micro-geometries using a normal incidence |µi | = 0.

The first layer is depicted with color, from red α = 0 to blue α = 1, and the

second layer is specified by the abscissa. The equivalent roughness does

not linearly depend on the input roughnesses. We found a transform (b)

mapping roughness to a space of linear variance for reflection. We show

our approximation in dashed.

of the BSDF. It can be applied later on, during shading, to correct

misalignment of the preintegrated environment maps.

Variance. A rough surface increases the variance of the incident

distribution [Durand et al. 2005]. However, this increase is not linear

with respect to roughness. It is approximately linear with respect to

variance for small roughnesses (α < 0.2). For higher roughnesses,

we can �nd a space where rough re�ections have a linear behavior

(see Appendix A). �at is, the variance of the light bouncing twice

on parallel surfaces with roughnesses α1 and α2 is:

σ12 = f (α1) + f (α2), (5)

where f (α) is the transform of roughness to variance. We display

this transformation in Fig. 4(b). We convert roughness to linear

variance using:

σ = f (a) ≈ a1.1

(1 − a1.1)
, (6)

and from linear variance to roughness using the inverse. �is trans-

form does not perfectly �t the linear-space mapping, but it approx-

imates the outgoing directional statistics of two light bounces on
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Fig. 5. We display the mean of the transmi�ed lobe µt = sin(θt ) with
respect to the incident direction (specified by |µi | = | sin(θi ) |) for di�erent
refractive index. We also display (in dashed) the refracted direction sin(θr ).
We can see very li�le deviation of the mean transmi�ed direction from the

refracted direction for small roughnesses (a), but a noticeable one for higher

roughnesses (b).

microfacet interfaces of moderate roughnesses (below 0.4) well, as

shown in Fig. 4(a). An interactive demo of this approximation using

a two bounce setup is available in our supplemental material
2
.

Energy Conservation. �e classical microfacet theory only ac-

counts for single sca�ering in the microgeometry and thus omits

the energy due to multiple bounces in the microgeometry. Accord-

ing to Heitz et al. [2016], a scaling factor of the directional albedo

approximates multiple sca�ering well. �us, it should have no ef-

fect on the mean and variance and only a�ect the energy term. We

incorporate it directly into the FGD term during precomputation.

For a rough interface, we replace the previously de�ned FGD term

by FGD
∞

which is the result of the stochastic evaluation of Heitz

et al.’s model. �is new table has the same 4D parametrization.

Summary. Given an incident directional function with energy

ei , mean µi and variance σi , the re�ected energy eR , mean µR , and

variance σR are approximated by:

eR = ei × FGD
∞

(7)

µR = −µi (8)

σR = σi + f (α) (9)

4.2 Refraction by a Rough Interface

A rough dielectric interface distributes light in both the upper and

lower hemisphere of local directions. �e later is described by the

BTDF and, in the context of microfacet theory, its de�nition is

similar to the BRDF [Walter et al. 2007]. In the following, we will

note η12 =
η1

η2

the ratio of refractive indices of the two media.

Energy. �e energy scaling of an incident angular �eld by a rough

dielectric interface is given by 1 − FGD
∞

. �is also ensures energy

conservation between the re�ected and refracted directional �elds.

Mean. For rough interfaces, the transmi�ed lobe peak is not the

refracted incident direction. We found that, as with o�-specular

re�ection, the mean refracted direction is roughness dependent

2
See webgl/validate reflection.html
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Fig. 6. The transmi�ed lobe (in blue) has, for the same roughness, a di�erent

angular width compared to the reflected lobe (in red). We analyze them in

the sca�ering plane, parametrized by the sine of the outgoing angle for an

incident angle of 30 degrees (c). We scaled the reflectance and transmi�ance

to one to compare the width of both lobes.
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2

Fig. 7. To compute the variance we fake rough refraction using a rough

reflection with a new incidence direction µr = η12 µi (le�, in green). The

transmi�ed roughness we use is αr = s × α , where α is the roughness of

the microgeometry. We show that our fake refraction (le�, in green) closely

matches the reference curve (le�, in blue), while the one of Kulla and Conty

[2017] (le�, in red) overestimates it.

(see Fig. 5). Its direction also depends on the refractive index. At

grazing angles, and for higher refractive index ratio, the peak of the

lobe di�ers more from the refracted incident direction. However,

we empirically found that using the purely refracted direction was

su�cient (see our supplemental material).

Variance. Due to Snell’s law, light rays are bent when passing

through a dielectric interface. Likewise, the incident variance is

scaled by the ratio of the index of refraction when transmi�ed. As

in the re�ection case, this scaled incident variance is increased by

the roughness of the surface. We derive this property by consid-

ering transmission like a re�ection. For the same roughness and

incident direction, the refracted and transmi�ed lobes have di�erent

widths (see Fig. 6). We use the notion of transmi�ed roughness to

analyze the variance of the transmi�ed lobe. �e idea is to fake the

transmi�ed lobe using a re�ection from underneath the interface

(see Fig. 7 (a) in green). To match the reference transmi�ed lobe, we

scale the roughness of our fake transmission. For stretch-invariant

microfacet distributions, the scale s is the ratio of the derivatives of

the transmi�ed and re�ected half vector’s tangents:

s =
1

2

[
1 + η12

〈ωi · n〉
〈ωt · n〉

]
. (10)

We detail its derivation in Appendix B.

Kulla and Conty [2017] derived a similar scaling factor by equat-

ing the fake re�ected and transmi�ed lobe peaks but it overestimates
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the transmi�ed roughness. Guo et al. [2016] approximated a von

Mises-Fisher exponent similar to our equivalent roughness. How-

ever, neither of them provide a close match to the reference BSDF.

We compare our scaling factor to the one of Kulla and Conty [2017]

in Fig. 7 (b). An interactive demo of the o�-specular transmi�ed

direction and the di�erent scaling factors is available in our supple-

mental material
3
.

Summary. Given an incident directional function with energy ei ,
mean µi and variance σi , the transmi�ed energy eT , mean µT , and

variance σT are approximated by:

eT = ei × (1 − FGD
∞) (11)

µT = −η12 µi (12)

σT =
σi
η12

+ f (s × α) (13)

4.3 Volume Absorption

Assuming that the interface between the medium and the outside

(be it air or another medium) is already resolved (as discussed in the

previous sections), we can study the changes in energy, mean and

variance due to a participating media. In this Section, we cover how

absorption a�ects statistics. �e impact of sca�ering on statistics

will be covered in Section 4.4. As in Monte-Carlo rendering, we

treat them separately and combine them together a�erwards.

Energy. �e a�enuation of the incident light-�eld by a random

medium is described by Beer-Lambert’s law. It states that the inci-

dent radiance is scaled down depending on the optical depth:

Lo (ωo ) = exp

[
−σt

h

〈ωo ,n〉

]
Li (ωo ), (14)

where σt is the transmi�ance cross-section and h is the depth of the

layer. We approximate the average energy using the incident mean

a�enuation: eo = ei exp

(
− σth
〈ωo,n〉

)
.

Mean and Variance. Since the optical depth between the bo�om

and the top layers depends on the incident direction, the mean

and variance are also a�ected (see Fig. 8(a) for the variance). We

empirically found out that the impact of absorption on the mean

and variance is negligible. An interactive demo of this impact and

of our approximation is available in our supplemental material
4
.

Summary. Given an incident directional function with energy ei ,
mean µi and variance σi , we approximate the energy eT , mean µT ,

variance σT transmi�ed by volumetric absorption by:

eT = ei exp

(
− σth

〈ωo ,n〉

)
(15)

µT = −µi (16)

σR = σi (17)

3
See webgl/validate transmission.html

4
See webgl/validate absorption.html
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Fig. 8. We display the equivalent roughness of both absorption (a) and

sca�ering (b) of a participating layer with the Henyey-Greenstein (HG)

phase function. For the absorption, we used varying optical depths (from

h = 0 in red to h = 1 in blue). For both plots, we vary the anisotropy

parameter д ∈ [0, 1]. Our approximation of the HG roughness (in red)

closely matches the reference curve (in blue).

4.4 Volume Sca�ering

In this section, we restrict ourselves to the study of an optically thin

homogeneous slab of height h that does not emit light. In such a

case, single sca�ering is predominant and we can neglect multiple

sca�ering. Given the light incident to the slab Li (ω), the amount of

light sca�ered by the medium is [Pharr and Humphreys 2010]:

Lo (ω) = σs

∫ h

0

exp

[
− σt t

〈ω,n〉

]
Ls (t ,ω)dt , (18)

with Ls (t ,ω) =
∫
S2

p(ωi ,ω) exp

[
−σt (h − t)〈ωi ,n〉

]
Li (ωi )dωi , (19)

where σs is the sca�ering cross-section.

Energy and Mean. Assuming that the phase function is strongly

forward sca�ering (most of its energy is sca�ered forward), we

approximate the outgoing energy using the a�enuation evaluated

in the mean direction of the incoming light:∫
Ω
Lo (ω)dω ≈ σs h exp

[
− σth

〈ωo ,n〉

] ∫
Ω
Li (ω)dω. (20)

�is approximation assumes that the phase function does not “lose”

energy in the backward directions. However, it is possible to account

for backsca�ering by modulating this energy by the amount of

light the phase function sca�ers forward. For д ≥ 0.7, this scaling

is unnecessary. As for the absorption, we empirically found that

sca�ering did not alter the mean signi�cantly for forward phase

functions.

Variance. As for rough interfaces, the incident variance increases

by the width of the phase function in the forward direction Belcour

et al. [2014]. We empirically found a �t of the equivalent GGX

roughness for the Henyey-Greenstein phase function (HG) in the

forward direction (see Fig. 8). It is given by:

σд =

[
1 − д
д

]
0.8

1

1 + д
, (21)

where д is HG’s anisotropy factor. However, the Henyey-Greenstein

phase function can have a non-negligible backsca�ering when д �
0.7. �is creates two modes in directional statistics that need to be
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resolved separately in our methodology. We focused on forward

sca�ering only media and le� the derivation of the backsca�ering

variance to future work. An interactive demo of the impact of HG’s

д factor on the angular statistics and of our di�erent approximations

is available in our supplemental material
5
.

Summary. Given an incident directional function with energy

ei , mean µi and variance σi , the transmi�ed energy eT , mean µT ,

variance σT from volumetric sca�ering are approximated by:

eT = ei
σsh

〈ωo ,n〉
exp

(
− σth

〈ωo ,n〉

)
(22)

µT = −µi (23)

σR = σi + σд (24)

5 STATISTICS WITH MULTIPLE LAYERS

�e outgoing light distribution aggregates many light paths (e.g.

TRT andTRRRT paths). So far, our statistical analysis models groups

of paths undergoing similar transport (e.g. all TRT paths). �us, we

need to combine the statistics of those path groups in an e�cient

way. For that, we rely on the adding-doubling algorithm. We �rst

apply it to the case of energy (Section 5.1). �en, we apply it to

compute the variance (Section 5.2). Since the mean approximately

aligns with the re�ected or refracted direction, it is preserved a�er

multiple bounces and we do not treat it.

5.1 The Adding-Doubling Method

�e Adding-Doubling method (see Grant and Hunt [1969] for a

complete overview) allows up to express radiative transfer in plane

parallel media using a discrete form. �e idea is to model trans-

mission and re�ection due to a thin homogeneous slab with linear

operators and to combine them to estimate the transmission and

re�ection of a thick heterogeneous slab. We recall here its mathe-

matical principle in a simple form. For that, we will assume that the

interacting interfaces are purely smooth.

Adding-doubling requires the de�nition of the re�ection r and

transmission t coe�cients of radiance with respect to the light’s

direction of propagation: rk k+1
is the re�ection coe�cient of the

slab for light propagating downward and rk+1k is the re�ection

coe�cient of the slab for light propagating upward. With no light

source in the interface, the light exiting an interface upward can be

expressed as (see Fig. 9):

l+o = r12l
−
i + t21l

+
i , (25)

reads: light propagating upward from the slab is the incident light
propagating downward re�ected by the slab, plus the incident light
propagating upward transmi�ed by the slab. In the same fashion, we

can express the light propagating downward from the slab as:

l−o = r21l
+
i + t12l

−
i . (26)

5
See webgl/validate scattering.html

Fig. 9. Given the transmi�ance and reflectance r12, t12, r21, and t21 of a

layer (le�, between two media, η1 and η2). The adding-doubling method

permits to calculate the sca�ering properties of a stack of layers (right),

accounting for the inter-reflection between them (that is all TR+T paths).

We can express the global upward re�ectance summarizing light

transport between two layers r12 and r23 as:

r13 = r12 + t12r23t21 + t12r2

23
r21t21 + · · ·

= r12 +

∞∑
k=0

t12rk+1

23
rk
21
t21. (27)

�is form accounts for all bounces between the two layers. It can

be summarized using the analytic form of this arithmetic series:

r13 = r12 +
t12r23t21

1 − r23r21

. (28)

Similarly, we can express the global upward transmi�ance as:

t31 =
t32t21

1 − r23r21

. (29)

We can as well express the downward re�ectance and transmi�ance

as:

r31 = r32 +
t32r21t23

1 − r23r21

(30)

t13 =
t12t23

1 − r23r21

. (31)

�e adding algorithm iteratively expresses the re�ectance and trans-

mi�ance of an increasing number of interfaces by using r13, t31, r31,

and t31 as the re�ectance and transmi�ance of a virtual interface in

Equations 28 to 31.

�is method can also evaluate multiple sca�ering in a homoge-

neous medium of any depth with the doubling algorithm. Here, we

stack together the same layer to generate a virtual layer of twice the

depth. �at is, we apply Equations 28 to 31 with r12 = r23, t12 = t23,

r21 = r32, and t21 = t32. By iterating this operation on an input

layer of very small size (typically h = 10
−8

), we can increase the

depth of a layer to any size.

Using adding-doubling, we can now evaluate the directional

albedo of the layered BSDF. �is is done by replacing the di�er-

ent r and t terms with the re�ectance and transmi�ance terms

studied in Section 4. For a rough surface, we have: r12 = FGD
∞

,

t12 = [1 − FGD
∞], r21 = FGD

∞
, and t21 = [1 − FGD

∞].
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Total Internal Re�ection. While the de�ned adding-doubling al-

gorithm permits approximating multiple sca�ering between two

layers, it partially misses the impact of the totally re�ected light

by the upper Fresnel interfaces. In the case of a smooth interface,

there are angular con�gurations where no light is refracted and

the dielectric interface behaves like a pure mirror. �is behavior

is called Total Internal Re�ection (TIR). Transmission t21 does not

account for the angular spread of light re�ected on interface 2→ 3

and we need to bring this information back:

Lt (ωo ) =
∫
Ω
Li (ωi )T (ωt ) ρ(ωi ,ωt ,α23) dωt , (32)

where ωt = refract(ωo ,η12), T (ωt ) = 1 − F (ωt ) is the Fresnel

transmi�ance, and ρ(ωi ,ωt ,α23) is the microfacet BRDF of layer

interface 2→ 3. When TIR occurs, T (ωi ) = 0 for ωi outside of

the extinction cone. A solution to compute the amount of energy

lost due to TIR is to decouple its computation from the transport

integral:

Lt (ωo ) =
∫
Ω
Li (ωi ) ρ(ωi ,ωt ,α23) dωt

×
∫
Ω
(1 − F (ωt ))D(ωt ,α23) dωi︸                                  ︷︷                                  ︸

=TIR

, (33)

where D(ωi ,α23) is the NDF. �e second integral of this product is

similar to the FGD table. We thus precompute this term in a 3D table.

We show in our supplemental material
6

that this decoupling gives

good results in general. During the adding-doubling, we replace r21,

and t21 by:

r21 ← r21 + (1 − TIR) × t21 (34)

t21 ← TIR × t21 (35)

5.2 Adding-Doubling for Variance

We reuse the idea of adding-doubling for the case of variance. As

seen in Sections 4.1 and 4.4, the variance of the interaction with

an interface or medium has an a�ne form. Also, the variance

of a weighted sum of distributions sharing the same mean is the

weighted arithmetic mean of the individual variances. �ose proper-

ties permit the use of the adding-doubling methodology to compute

variance due to multiple sca�ering between layers.

Multiple Sca�ering. Given two interfaces, the unnormalized aver-

age variance σ̃R
13

accounting for multiple sca�ering is:

σ̃R
13
= r12 σ

R
12

+

+∞∑
k=0

[
t12 rk+1

23
rk
21

t21

] [
σT

12
+

(
(k + 1) sR

23
+ k σR

21

)
J21 + σ

T
21

]
,

(36)

where sRi j (resp. sTi j ) is the additional variance when re�ecting (resp.

transmi�ing) on a rough interface between indices of refraction i
and j, and Ji j is the transmission scaling factor. �is formula can

be separated into a geometric series and an arithmetico-geometric

6
See webgl/compute TIR.html

series. �e geometric series has the analytic form we saw for the

classical adding-doubling. �e arithmetico-geometric series has the

following analytic form [Riley et al. 2010]:

+∞∑
k=0

krk =
r

(1 − r )2
with r ∈ [0, 1[. (37)

Since r23r21 < 1 (or no light can enter the layer), Equation 36

simpli�es to:

σ̃R
13
= r12 σ

R
12
+

[
t12 r23 t21

1 − r23r21

] [
σT

12
+ σT

21

+ J21

(
σR

23
+

r23r21

1 − r23r21

σR
21

)]
. (38)

Similar forms can be derived for the transmi�ed average variance.

We detail them in Appendix C. �ey will be used in the next iteration

of the adding algorithm in place of σR
12

and σT
12

. For the case of

participating media, we use σR
12
= 0, σR

21
= 0, σT

12
= σд , σT

21
= σд ,

J12 = 1, and J21 = 1 (see Equation 21 for the de�nition of σд ).

Adding-Doubling. Using the multiple sca�ering equations, we

can build an adding-doubling algorithm. We start with an empty

layer, that is eRi j = eRji = 0, eTi j = eTji = 1, and σRi j = σRji = σTi j =

σTji = 0. For each interface in the stack (starting from the upper

one to the lower one) we apply the multiple sca�ering equations

on energies and variances (e.g. Equation 38 and 28 for the upper

re�ected distribution). We also need to track the refraction scaling

factors Ji j , and Jji during the process.

Limitations. Note that those derivations assume that all lobes

share approximately the same mean direction. Consequently, the

described adding-doubling method cannot work with multimodal

BSDFs without special-case handling. For example, to handle retro-

re�ective phase functions (e.g. HG with д < 0) we need to track

another set of statistics in the retro-re�ective direction.

6 IMPLEMENTATION

Based on our �ndings, we developed two BSDF models: one tailored

for forward path tracing and real-time rendering, denoted the For-

ward model (Section 6.1); and one tailored for bidirectional light

transport algorithms, denoted the Symmetric model (Section 6.2).

6.1 Forward Model

As illustrated in Fig. 10, to evaluate the BSDF, we start from a

unit energy ei = 1, the incident mean µi = [ωi |x ,ωi |y ], a zero

variance σi = 0, and evaluate the adding-doubling method to gather

intermediate variance (See Appendix C) and energy in a vector of

BRDF lobes
7
. For the transmi�ed lobe, we record the transmi�ed

statistics at the end of the adding-doubling algorithm
8

(Equation 49).

Each entry in the vector corresponds to a BSDF lobe and contains its

energy ek , mean µk , and variance σk . From this vector of statistics,

we instantiate an approximate BSDF model consisting of a weighted

sum of microfacet GGX lobes with Fresnel ek , incident direction

re�ect(µk ), and roughness f −1(σk ). We use our fake refraction

7
see our code mitsuba/plugins/layered forward.cpp, line 105

8
see our code mitsuba/plugins/layered dielectric.cpp, line 258
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a) Layered structure b) Adding: �rst iteration c) Adding: last iteration d) BRDF instantiation

Fig. 10. For shading, we track the BRDF lobe statistics starting from the incident directions (a). We estimate iteratively a vector of outgoing lobes using the

adding-doubling algorithm (b-c). Finally, we instantiate a set of BRDF lobes using the vector of statistics and the inverse mapping. This process outputs as

many lobes as there are layers. It is possible to merge statistics together to reduce the number of BRDF instances.

model for the transmi�ed lobe. �us the re�ection and transmission

models are:

ρ(ωi ,ωo ) =
N∑
k=0

ekρk (ωk ,ωo ,αk ) , (39)

with


αk = f −1(σk )
ωk = re�ect(µk )

ρk (ωk ,ωo ,αk ) =
D(h)G(ωk ,ωo )
4〈ωk ,n〉 〈ωo ,n〉

where ek , ωk and σk are the energy, mean, and variance for the kth

lobe respectively. For be�er performance, it is possible to merge

some of the variances (scaled by energies and then normalized by

the total energy). In our implementation, we kept all lobes as-is.

Importance Sampling & MIS. Since our models are a weighted

average of multiple lobes, we randomly select one based on the

energy and importance sample the visible normals [Heitz and d’Eon

2014] based on the fake incident direction and roughness. However,

this strategy is not optimal and creates �re�ies since the di�erent

lobes overlap. To avoid this we use multiple importance sampling

on the di�erent lobes with the balance heuristic [Veach 1998]. �e

contribution of a BRDF lobe sample becomes
9
:

p =
eall∑N
i=0

eipi

N∑
i=0

eiρi (ωi ,ωo ,αi ), (40)

where ωo is the outgoing direction selected by one of the strate-

gies, ei is the energy for the ith lobe, eall is the total energy, pi
is the probability density function (pdf) of sampling the vNDF for

roughness αi , and ρi is the pdf of the ith microfacet model.

Real-Time Model. For real-time scenarios, we reuse the Forward

model, restricted to two or three lobes. Since, in all real-time engines,

lights such as area lights and environment maps are preintegrated

with respect to a GGX model, we evaluate our model in this context.

6.2 Symmetric Model

For o�ine scenarios where symmetry of light transport ma�ers

(such as BDPT or MLT), we build an ad-hoc symmetrization from

the Forward model. As Weidlich and Wilkie [2007], we assume that

the incoming and outgoing directions share the same microfacet.

9
see our code mitsuba/plugins/layered forward.cpp, line 453

We further use the property that the refracted rays will share the

same half-vector (see Appendix E for proof). It is thus possible to use

our method with respect to the di�erence vector θd . �is virtually

injects the adding-doubling roughness on the half-vector normal.

�e resulting statistics might not match the Forward model, since

the FGD term is evaluated using cos(θd ) and not cos(θi ) and the

transmi�ed roughnesses will slightly di�er. �is doesn’t however

introduce an over-blur of the resulting lobe, and we found that the

results of the Symmetric model were o�en closer to the reference

(see our supplemental material). �e Symmetric model uses the

same importance sampling strategy as the Forward model.

7 RESULTS

In this section, we demonstrate the use of our di�erent models in

both o�ine (Section 7.1) and real-time (Section 7.2) contexts. All

results are computed on a 16 core i7 processor with 32GB of RAM

and an Nvidia GTX 980 graphics card. All computations are using

parallel computing as much as possible. For our o�ine method,

we precomputed the FGD using the complex index of refraction,

resulting in a 4D table, precomputed at a resolution of 64
4

(making

it 64MB in size). We used linear interpolation to evaluate it. For

the real-time method, we used the available FGD 2D texture that

performs a split sum of Schlick’s Fresnel [Karis 2013]. We also pre-

computed the 3D TIR table using a 64
3

resolution, making it 1MB

in size. Unless noted, we use the Symmetric model for our o�ine

results.

7.1 O�line Rendering

Validation. We validated our method against a stochastic ground

truth. See Appendix D and our supplemental material for more

details. We show that our model captures the color saturation due

to multiple sca�ering (Fig. 11) and is energy conserving (Fig. 12).

�anks to the adding method, we do not lose energy due to mul-

tiple sca�ering between layers. Even though the re�ectance and

transmi�ance terms are approximate, our model is close to the satu-

rated color of the reference. We also show in the Frosted Metal

scene (Fig. 13) that we correctly predict the rough appearance of

frosted paints. Here, we replicate a �gure of Weidlich and Wilkie

[2007]: a rough dielectric interface on top of a smooth conducting

one. �e method of Weidlich and Wilkie [2007] fails to propagate
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Ours Reference Reference

R +TR+T R +TRT

Fig. 11. Thanks to the adding algorithm, we estimate the color saturation

due to multiple sca�ering between interfaces. Here we show our method

(le�) compared to two references: one computing all bounces between

interfaces (middle) and one computing only one reflection per layer (right).

Ours Reference Weidlich 2007

Fig. 12. Our model is energy conserving (as long as the FGD texture is). In

this scene, we show that for a complex layered structure with five dielectric

layers (alternating η = 1.3 and η = 1) on top of a pure mirror, our model

does not lose energy as opposed to the one of Weidlich and Wilkie [2007].

roughness between layers: the base layer still behaving as a mir-

ror on the global re�ectance. Note that Elek [2010] mitigates this

issue by using the maximum of roughness of the top and bo�om

layers. Please refer to our supplemental document for more compar-

isons with ground truth and the model of Weidlich and Wilkie [2007]

In the Dragon scene (Fig. 14), we replicated a �gure from Jakob

et al. [2014] to show how our method handles participating media.

�e dragon �gure consists of a golden base on top of which we

apply a di�using medium with increasing optical depth. We used

a forward phase function д = 0.7, and used σa = 0 and σs = 1.

�anks to our statistical analysis, we easily predict the di�usion and

a�enuation of light rays inside this structure. However, to simplify

our implementation, we only account for single sca�ering within

media layers (see Section 7.3).

In the Plates (Fig. 15) and Robot (Fig. 16) scenes, we display

textured assets. In Plates, we use a single texture for the roughness

of some of the layers and in Robot we combined three textures

together. Compared to Jakob et al. [2014], our method is not limited

by precomputation of discrete values of the parameters and resolves

a BSDF on the �y. Consequently, our method handles e�ciently any

textured combination of inputs for both surface and media layers.

For example, in the Robot scene, three parameters are textured.

To illustrate, the method of Jakob et al. [2014] requires 1.7GB of

storage for the Metallic Paint example alone and its computation

takes 21min and requires up to 15.5GB of RAM. Texturing this asset

would require an enormous amount of disk storage for the di�erent

BSDF �les and they might not even �t in memory for rendering.

0.0

0.2

0.4

0.6

0.8

Ours Reference Weidlich 2007

Fig. 13. We reproduce the FrostedMetal example fromWeidlich andWilkie

[2007]. While Weidlich and Wilkie [2007] misses the correlation between

layers, we stay close to the reference image computed using a stochastic

evaluation of the layered structure.

No media d = 0.1 d = 0.2

Fig. 14. The Dragon scene illustrates the ability of our method to add

absorption and single sca�ering. Here, we start from a specular gold dragon

and add a layer of sca�ering particles on top (with д = 0.7). As we increase

the optical depth of this layer, the dragon appears rougher and darker due

to sca�ering and absorption.

Symmetric model Forward model Symmetric model

Two layers with conducting base �ree layers with absorption

Fig. 15. The Plates scene illustrates our ability to work with textured assets.

In the first example, the plate is composed of a two layers material with

η0 = 2, α0 = 0 for the first layer and η1 = 1 + 0.5i, α1 ∈ [0, 1] for the
second layer. We display side-by-side our symmetric and forward model.

In the second example, the plate is composed of three layers with η0 =

1.8, α0 ∈ [0, 1], d1 = 1, σa = [1, 0.7, 0.2] , and η2 = 1, α0 =∈ [0, 1]. We

used a specialized plugin for dielectrics since Mitsuba separates the two

cases.

Peformance. We evaluated the performance of our code base. We

report the timings of our o�ine method compared to the method

of Weidlich and Wilkie [2007] in Table 2. Our method’s costs are

primarily due to the adding-doubling calculation and to the linear

interpolation of tables. �e la�er cost is alleviated on graphics

hardware.

7.2 Real-Time Rendering

We implemented our real-time BRDF model inside a commercial

3D engine using forward rendering to validate the practicability

of our implementation. Note that our model applies to deferred

rendering as well. In our implementation, we restricted the number
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η0η0

κ1κ1

α0α0

η = η0, α0η = η0, α0

η = 1 + iκ1, α1η = 1 + iκ1, α1

Fig. 16. The Robot scene illustrates the ability of our method to e�iciently

work with textured assets. In this scene, we used a 2-layer structure where

η0, α0, and κ1 are texture mapped. We set η1 = 1 and α1 = 0.

of layers to three, and outgoing lobes to two. We also �xed the

second interface to be a participating medium. We used the same

adding code for the Mitsuba implementation and for the real-time

rendering one. We show a comparison between our real-time im-

plementation, our Forward model, and the reference in Fig. 17. Our

real-time implementation matches the reference appearance albeit

with the technical limitations of using a simple Fresnel form, and

environment map pre-integration. We measure the running time of

our shader using a full-screen quad at a resolution of 1920 × 1080

pixels. Here, the full frame takes between 1.9ms to 2.1ms to render.

We compare this running time to the standard shader of the engine.

In this case, the full frame takes between 1.7ms to 2.0ms to render.

�e Beetle scene (Fig.18) demonstrates our real-time implemen-

tation. It depicts a car fully covered with our layered BRDF model.

We rendered it at a resolution of 1920×1080 during a material design

session that we show in our supplemental video.

7.3 Limitations & Failure Cases

Accuracy with respect to roughness. Our model approximates mul-

tiple sca�ering lobes using equivalent GGX models. While this

faithfully predicts the behavior of layered materials for relatively

smooth surfaces, it becomes increasingly inaccurate when most

of the layers are very rough. We illustrate the lost of accuracy of

our model in Fig. 19. Here we can see that for multiple layers with

Table 2. We report the cost of our method compared to the one of Weidlich

and Wilkie [2007] for three scene: Frosted Metal (Fig. 13, at 1024 spp),

White Furnace (Fig. 12, at 1024 spp), and Dragon (Fig. 14, at 512 spp).

Frosted Metal andWhite Furnace use the direct integrator while Dragon

uses the path integrator. We report the timings of our method without

linear interpolation of the FGD and TIR texture in parenthesis.

Fig. 13 Fig. 12 Fig. 14
Ours 46s (24s) 1.8m (35s) 1.84m (1.64m)

Weidlich [2007] 17s 20s 1.60m

Forward Model Reference Real-Time

Fig. 17. Our real-time implementation matches the o�line appearance for

this coated metallic sphere with η0 = 1.4, α = 0.01, and η1 = 1 + i, α =
0.1. For example, we can observe brighter grazing angles for the real-time

implementation due to the split-sum FGD texture. Also, we used a thin-lens

for the Mitsuba renderer that we could not exactly match with the real-time

camera.

Fig. 18. The Beetle showcase our real-time implementation of the Forward

model inside a commercial 3D engine.

roughnesses close to one, our model signi�cantly diverges from the

ground truth.

Color shi�. Because of total internal re�ection, the color of the

multiple sca�ering between layers might not be the same as the

transmi�ed color. �is happens for metals with a strong color shi�

at grazing angles. In such a case, our method will not be able to

reproduce the exact tint of the material. �is is noticeable in the

Frosted Metal example (Fig. 22) where at grazing angles the base

layer takes on a green tint that our model misses.

Multiple sca�ering in media. Our prototypes are currently limited

to single sca�ering from participating media. �is is a design choice

to keep the implementation simple to read. Accounting for multiple

sca�ering would require to add another direction in the adding-

doubling algorithm, i.e. the retro-re�ective direction. �is would

allow us to track sca�ering between media interfaces and to add

the missing retro-re�ective look of dust.

Interfaces. Due to the derivation of the linear space for GGX,

our model only accounts for a single type of NDF for interfaces.

We cannot accurately predict the case of multiple interfaces with

mixed NDF geometries (such as Beckmann [Walter et al. 2007],

GTR [Burley 2012], Student-t [Ribardière et al. 2017], etc.). Note,

however, that a linear space can be derived for any NDF as long as

all interfaces are described with such an NDF. Similarly, we cannot

accurately reproduce the e�ect of a Lambertian layer. �is is due to
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OursRef.

α = 0.3

OursRef.

α = 0.6

OursRef.

α = 0.9

Fig. 19. For higher roughnesses, our model lose its accuracy compared

to a stochastic ground truth. In this example, we use a rough dielectric

layer, η = 2, on top of a rough conducting base, η = 0.01 + i, with equal

roughnesses α1 = α2 = α . Here, we did not account for multiple sca�ering

in the microfacet geometry and isolate the error due to approximating

multiple sca�ering between layers.

the fact that the resulting distribution will always be a GGX lobe.

Another strong limitation that is shared by all the works on layered

materials is that we cannot work with non-parallel interfaces. While

using a di�erent normal to evaluate Fresnel for the base and coat

layers is typically done in production and works with our method,

it is incorrect with respect to the resolution of multiple sca�ering.

Skewness at grazing angles. Due to the extinction cuto� of the Fres-

nel transmission, transmi�ed lobes at grazing angles are anisotropic

and skewed. Since we used radially symmetric NDFs for our analysis,

we cannot model this behavior correctly.

8 DISCUSSION & FUTURE WORK

Complex Appearance. While we restricted ourselves to geometri-

cal optics for our study by enforcing the thickness of layers to be

greater than the visible light wavelengths, it is possible to incorpo-

rate iridescence e�ects into our model. Since we rely on the evalua-

tion of the integrated Fresnel term during the adding-doubling, we

can use any model that replaces the Fresnel term. For example, it is

possible to replace one of the evaluations of the FGD term by the

model of Belcour and Barla [2017]. Similarly, we could incorporate

gli�ery appearance into our framework by using one of the avail-

able glint models [Jakob et al. 2014]. Note that in such a case, the

correlation between the discrete evaluation of glints and the upper

layers’ Fresnel will be missed.

Anisotropy & Spatial Di�usion. While we restricted our analysis

to isotropic GGX BSDFs, our analysis could be applied to track

anisotropic lobes. Here, the tracking of variance in the adding-

doubling algorithm would require tracking eight scalars instead of

four. It would be interesting to see if the statistical analysis can be

performed on the spatial components as well, in order to track a

subsurface sca�ering pro�le.

Other Applications. Since our model is fast to evaluate and doesn’t

require a per-material pre-computation, it could be used to perform

nonlinear ��ing of data. Also, it would be interesting to see if

our layered materials model can be used for inverse design. �ere,

artists could design the desired look using many lobes and extract

a set of layers with speci�ed index of refraction and roughnesses.

�is could be interesting for the design and manufacture of real life

objects.

9 CONCLUSION

We introduced a novel statistical analysis of layered materials that

builds on an atomic decomposition of light transport to track the

energy, mean and variance of the layered BSDF. Our analysis is ver-

satile and can account for both surface and volumetric light-ma�er

interaction. Furthermore, we leveraged the power of the adding-

doubling method on this statistical representation to compute the

layered BSDF accounting for multiple sca�ering in the layered struc-

ture. We demonstrated the applicability and accuracy of our repre-

sentation with o�ine and real-time implementations showing an

e�cient, energy conserving and symmetric BSDF model for layered

materials. Our model still requires precomputing a 4D and a 3D

table. But, given the regularity of this data, it seems possible to �nd

good and e�cient approximations that would make our model much

faster. Although expanding our model to account for anisotropy or

spatial di�usion is still open, we believe that our method is a �rst

step towards e�cient and lightweight BSDF/BSSRDF models for

layered materials.
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A FINDING GGX’S LINEAR SPACE

To �nd the function f (α) that transform the roughness of the GGX

lobe into a space where multiple bounces behave linearly, we start

from the 2-bounces case where both surface have the same rough-

ness α :

α12 =f
−1 [f (α) + f (α)] (41)

=f −1 [2f (α)] , (42)

It follows that for this con�guration:

f (α12) = 2f (α). (43)

Using our numerical evaluation of the variance w/r roughness for

the 1-bounce and 2-bounces case, we can extract α12 as a function

of α . For that, we invert numerically the function variance w/r

roughness for the 1-bounce case and evaluate the roughness corre-

sponding to the 2-bounces variance. Fig. 20, illustrate this step.

Using this knowledge, we can extract the linear space transforma-

tion (see Fig. 4 le� inset) up to a scaling factor. We iterate Equation 43

from a small value for both α and f (α) (we used 10
−3

) and iteratively

evaluate α12 from the graph and f (α12) using the current function

value.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 0.2 0.4 0.6 0.8 1

v
a
ri

a
n
ce

roughness

variance one bounce
variance two bounces

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

e
q
u
iv

a
le

n
t 

ro
u
g
h
n
e
ss

roughness

eq. roughness two bounces

a) Variance w/r roughness b) 2-bounces roughness w/r roughness

Fig. 20. Using the mapping between roughness and variance for the 1-

bounce and 2-bounces cases (where both roughnesses are equal (a)), we can

extract the apparent roughness of the 2-bounces configuration (b).

B ROUGHNESS SCALING FOR TRANSMISSION

Here we derive the following Jacobians:

Jt =
d tan(ht )

dθt
=

η12〈ωt · n〉
η12〈ωi · n〉 + 〈ωt · n〉

(44)

Jr =
d tan(hr )

dθo
=

1

2

(45)

Remember that:

tan(ht ) =
η1 sin(θi ) + η2 sin(θt )
η1 cos(θi ) + η2 cos(θt )

.

It follows that:

Jt =
d tan(ht )

dθt

=
η2 cos(θt )

η1 cos(θi ) + η2 cos(θt )
+
η2 sin(θt ) [η1 sin(θi ) + η2 sin(θt )]
[η1 cos(θi ) + η2 cos(θt )]2

=
η12 [cos(θi ) cos(θt ) + sin(θi ) sin(θt )] + 1

[η12 cos(θi ) + cos(θt )]2

and using the equality sin(θi ) sin(θt ) = − 1

η12

sin
2(θt ), we obtain:

Jt =
η12 [cos(θi ) cos(θt )] +

[
1 − sin

2(θt )
]

[η12 cos(θi ) + cos(θt )]2

=
cos(θt )

η12 cos(θi ) + cos(θt )
which is Equation 44. For the second Jacobian, we use the de�nition

of the re�ected tangent:

tan(hr ) =
− sin(θt ) + sin(θo )
cos(θt ) + cos(θo )

,

we derive:

Jr =
d tan(hr )

dθo

=
cos(θo ) [cos(θt ) + cos(θo )] + sin(θo ) [− sin(θt ) + sin(θo )]

[cos(θt ) + cos(θo )]2
.

Assuming that we are in the fake re�ection con�guration, we equate

θo = θt and obtain:

Jr =
2 cos(θt )2

[2 cos(θt )]2

=
1

2

.
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a) two layers b) four layers
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Fig. 21. We validated our adding method (in blue) with respect to a Monte-

Carlo simulation of the layered structure (in red). We can predict quite

closely the mean variance curve of a 2-layers structure when varying one

of the roughness. Due the limitation of our fi�ing of the linear space

transformation, our method is unable to accurately predict the correct

mean roughness for higher input roughnesses. In this figure, we used

η0 = 1.4, α0 ∈ [0, 1], η1 = 1 + i, α1 = 0.3 for the two layers configuration

and η0 = 1.4, α0 ∈ [0, 1], η1 = 1.2, α1 = 0.1, η2 = 1.4, α2 = 0.1, eta3 =

1 + i, α3 = 0.01 for the four layers configuration. Both configurations use

ωi = [0, 0, 1].

C ADDING-DOUBLING

We express here the transmi�ed average variance in its unnormal-

ized form σ̃T
13

:

σ̃T
13
= t12t23

[
J23σ

T
12
+ sT

23

]
+ t12r23r21t23

[
J23

(
σT

12
+ sR

23
+ sR

21

)
+ sT

23

]
+ · · · (46)

which simpli�es to:

σ̃T
13
=

t12t23

1 − r23r21

[
J23σ

T
12
+ sT

23

+ J23

(
sR
23
+ σR

21

) r23r21

1 − r23r21

]
. (47)

�e normalized average variance, that will later be used in the

remaining adding-doubling algorithm, is the unnormalized variance

divided by the energy of light transmi�ed through both interfaces.

It can be expressed as:

σT
13
= σ̃T

13

[
1 − r23r21

t12t23

]
. (48)

We can further simplify this later equation to get:

σT
13
= J23σ

T
12
+ sT

23
+ J23

(
sR
23
+ σR

21

) r23r21

1 − r23r21

. (49)

�is later equation contains two elements. First the variance of the

purely transmi�ed lobe J23σ
T
12
+sT

23
(e.g. theTT paths) to which adds

an additional variance due to multiple sca�ering J23

(
sR
23
+ σR

21

)
(e.g.

the T (RR)+T paths). Similarly, we �nd the following expression for

σ̃R
31

and σT
31

:

σT
31
= J21s

T
32
+ σT

21
+ J21

(
sR
23
+ σR

21

) r23r21

1 − r23r21

(50)

σ̃R
31
= r32s

R
32
+

[
t32t23r21

1 − r21r23

]
×

[
sT
23
+ J23

(
sT
32
+ σR

21
+

(
sR
23
+ σR

21

) (
r21r23

1 − r21r23

))]
. (51)

Note that when computing those intermediate variances, we will

have to keep track of the global scaling factor J1i and Ji1 due to all

interfaces from the top layer to the current bo�om layer.

We validated our computation of the mean variance for various

layer con�guration (see Fig. 21. We found that our approximation

of the mean variance is quite close to the ground truth for interfaces

with low and moderate roughnesses (from 0 to 0.5). For higher

roughnesses, we experience higher deviation from the ground truth.

�is is primarily due to our approximation of GGX’s linear space

transformation, we only ��ed well the low to moderate part of the

curve.

D COMPARING OFFLINE RESULTS

In Fig. 22, we provide the comparison of our method to a ground

truth. To generate this later model, we stochastically evaluated the

layer material by explicitly tracing the rays in the structure.

E HALF VECTOR OF TRANSMITTED RAYS

We derive the half vector of two rayswi andωo refracted by a planar

interface of normal the half vector h = ωi+ωo
|ωi+ωo | . �e expression of

both refracted rays is [Walter et al. 2007]:

it =
[
η cos(θd ) −

√
1 + η (cos(θd ) − 1)

]
h − ηωi (52)

ot =
[
η cos(θd ) −

√
1 + η (cos(θd ) − 1)

]
h − ηωo , (53)

where η is the ratio of index of refraction, and θd is the di�erence

angle in the half-vector parametrization. If we express the unnor-

malized half vector of it , and ot , we obtain:

it + ot = 2

[
η cos(θd ) −

√
1 + η (cos(θd ) − 1)

]
h − η [ωi +ωo ]

(54)

=
[
2

[
η cos(θd ) −

√
1 + η (cos(θd ) − 1)

]
− η

]
h. (55)

�e normalized half vector is thus h.
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Frosted MetalMetallic Paint Rough on Rough Gold CoatedMetal Foil

OursOurs Ours OursOurs

∆ = 0.016∆ = 0.015 ∆ = 0.015 ∆ = 0.025∆ = 0.010

ReferenceReference Reference ReferenceReference

η = 1.49, α = 0.01

η = 1 + i[1 0.1 0.1], α = 0.01

η = 1.49, α = 0.1

η = 1 + i[1 0.1 0.1], α = 0.01

η = 1.49, α = 0.01

η = 1 + i[1 0.1 0.1], α = 0.1

η = 1.49, α = 0.1

η = 1 + i[1 0.1 0.1], α = 0.1

η = 1.49, α = 0.1

η = [0.143 0.373 1.444]
+i[3.983 2.387 1.602]

α = 0.1

Fig. 22. We produce various appearance using two layers (one dielectric and one metallic). We show that our method faithfully reproduces the apparent

roughness of those materials and, to a certain degree, the color saturation due to multiple sca�ering. For each example, we report the RMSE ∆ between our

symmetric model and the reference.
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