E. Broussalis, M. Killer, M. Mccoy, A. Harrer, E. Trinka et al., Current therapies in ischemic stroke. Part A. Recent developments in acute stroke treatment and in stroke prevention, Drug Discovery Today, vol.17, issue.7-8, pp.296-309, 2012.
DOI : 10.1016/j.drudis.2011.11.005

F. M. Ivey, R. F. Macko, A. S. Ryan, and C. E. Hafer-macko, Cardiovascular Health and Fitness After Stroke, Topics in Stroke Rehabilitation, vol.213, issue.1, pp.1-16, 2005.
DOI : 10.1152/ajpendo.00054.2004

D. L. Marsden, A. Dunn, R. Callister, C. R. Levi, and N. J. Spratt, Characteristics of Exercise Training Interventions to Improve Cardiorespiratory Fitness After Stroke, Neurorehabilitation and Neural Repair, vol.2012, issue.4, pp.775-788, 2013.
DOI : 10.1111/j.1747-4949.2012.00880.x

L. Gherardini, M. Gennaro, and T. Pizzorusso, Perilesional Treatment with Chondroitinase ABC and Motor Training Promote Functional Recovery After Stroke in Rats, Cerebral Cortex, vol.201, issue.1, pp.202-212, 2015.
DOI : 10.1016/j.jneumeth.2011.08.003

D. P. Fuchs, N. Sanghvi, J. Wieser, and S. Schindler-ivens, Pedaling alters the excitability and modulation of vastus medialis H-reflexes after stroke, Clinical Neurophysiology, vol.122, issue.10, pp.2036-2043, 2011.
DOI : 10.1016/j.clinph.2011.03.010

I. Hwang, C. Lin, L. Tung, and C. Wang, Responsiveness of the H reflex to loading and posture in patients following stroke, Journal of Electromyography and Kinesiology, vol.14, issue.6, pp.653-659, 2004.
DOI : 10.1016/j.jelekin.2004.01.002

M. A. Oskoei and H. Hu, Support Vector Machine-Based Classification Scheme for Myoelectric Control Applied to Upper Limb, IEEE Transactions on Biomedical Engineering, vol.55, issue.8, pp.1956-1965, 2008.
DOI : 10.1109/TBME.2008.919734

URL : http://cswww.essex.ac.uk/staff/hhu/Papers/IEEE-TBME-V55-N8-2008.pdf

G. L. Soderberg and L. M. Knutson, A guide for use and interpretation of kinesiologic electromyographic data, Physical Therapy, vol.80, issue.5, pp.485-498, 2000.

N. A. Riley and M. Bilodeau, Changes in upper limb joint torque patterns and EMG signals with fatigue following a stroke, Disability and Rehabilitation, vol.24, issue.18, pp.961-969, 2002.
DOI : 10.1080/0963828021000007932

U. M. Svantesson, K. S. Sunnerhagen, U. S. Carlsson, and G. Grimby, Development of fatigue during repeated eccentric-concentric muscle contractions of plantar flexors in patients with stroke, Archives of Physical Medicine and Rehabilitation, vol.80, issue.10, pp.1247-1252, 1999.
DOI : 10.1016/S0003-9993(99)90024-2

K. N. Arya, S. Pandian, R. Verma, and R. K. Garg, Movement therapy induced neural reorganization and motor recovery in stroke: A review, Journal of Bodywork and Movement Therapies, vol.15, issue.4, pp.528-537, 2011.
DOI : 10.1016/j.jbmt.2011.01.023

R. J. Nudo, Neural bases of recovery after brain injury, Journal of Communication Disorders, vol.44, issue.5, pp.515-520, 2011.
DOI : 10.1016/j.jcomdis.2011.04.004

T. Kawamata, N. E. Alexis, W. D. Dietrich, and S. P. Finklestein, Intracisternal Basic Fibroblast Growth Factor (bFGF) Enhances Behavioral Recovery following Focal Cerebral Infarction in the Rat, Journal of Cerebral Blood Flow & Metabolism, vol.14, issue.4, pp.542-547, 1996.
DOI : 10.1016/0014-2999(91)90509-O

T. Yamaguchi, M. Suzuki, and M. Yamamoto, YM796, a novel muscarinic agonist, improves the impairment of learning behavior in a rat model of chronic focal cerebral ischemia, Brain Research, vol.669, issue.1, pp.107-114, 1995.
DOI : 10.1016/0006-8993(94)01268-M

F. Matsuda, H. Sakakima, and Y. Yoshida, The effects of early exercise on brain damage and recovery after focal cerebral infarction in rats, Acta Physiologica, vol.99, issue.2, pp.275-287, 2011.
DOI : 10.1111/j.1471-4159.2006.04138.x

K. Mizutani, S. Sonoda, and N. Hayashi, Analysis of Protein Expression Profile in the Cerebellum of Cerebral Infarction Rats After Treadmill Training, American Journal of Physical Medicine & Rehabilitation, vol.89, issue.2, pp.107-114, 2010.
DOI : 10.1097/PHM.0b013e3181b3323b

P. Zhang, Y. Zhang, and J. Zhang, Early Exercise Protects against Cerebral Ischemic Injury through Inhibiting Neuron Apoptosis in Cortex in Rats, International Journal of Molecular Sciences, vol.166, issue.3, pp.6074-6089, 2013.
DOI : 10.1016/j.neuroscience.2009.12.067

L. M. Cupini, M. Diomedi, F. Placidi, M. Silvestrini, and P. Giacomini, Cerebrovascular reactivity and subcortical infarctions Improved cerebral vasomotor reactivity after exercise training in hemiparetic stroke survivors, Archives of Neurology Stroke, vol.58, issue.42 7, pp.577-581, 1994.

S. Tian, Y. Zhang, and S. Tian, Early exercise training improves ischemic outcome in rats by cerebral hemodynamics, Brain Research, vol.1533, pp.114-121, 2013.
DOI : 10.1016/j.brainres.2013.07.049

Y. Gao, Y. Zhao, and J. Pan, Treadmill exercise promotes angiogenesis in the ischemic penumbra of rat brains through caveolin-1/VEGF signaling pathways, Brain Research, vol.1585, pp.83-90, 2014.
DOI : 10.1016/j.brainres.2014.08.032

G. Kim and E. Kim, Effects of Treadmill Training on Limb Motor Function and Acetylcholinesterase Activity in Rats with Stroke, Journal of Physical Therapy Science, vol.25, issue.10, pp.1227-1230, 2013.
DOI : 10.1589/jpts.25.1227

Q. Zheng, D. Zhu, Y. Bai, Y. Wu, J. Jia et al., Exercise Improves Recovery after Ischemic Brain Injury by Inducing the Expression of Angiopoietin-1 and Tie-2 in Rats, The Tohoku Journal of Experimental Medicine, vol.224, issue.3, pp.221-228, 2011.
DOI : 10.1620/tjem.224.221

T. M. Hansen, A. J. Moss, and N. P. Brindle, Vascular Endothelial Growth Factor and Angiopoietins in Neurovascular Regeneration and Protection Following Stroke, Current Neurovascular Research, vol.5, issue.4, pp.236-245, 2008.
DOI : 10.2174/156720208786413433

D. M. Hermann and A. Zechariah, Implications of Vascular Endothelial Growth Factor for Postischemic Neurovascular Remodeling, Journal of Cerebral Blood Flow & Metabolism, vol.271, issue.6, pp.1620-1643, 2009.
DOI : 10.1161/01.STR.0000170712.46106.2e

C. S. Mang, K. L. Campbell, C. J. Ross, and L. A. Boyd, Promoting Neuroplasticity for Motor Rehabilitation After Stroke: Considering the Effects of Aerobic Exercise and Genetic Variation on Brain-Derived Neurotrophic Factor, Physical Therapy, vol.93, issue.12, pp.1707-1716, 2013.
DOI : 10.2522/ptj.20130053

M. Ploughman, V. Windle, C. L. Maclellan, N. White, J. J. Doré et al., Brain-Derived Neurotrophic Factor Contributes to Recovery of Skilled Reaching After Focal Ischemia in Rats, Stroke, vol.40, issue.4, pp.1490-1495, 2009.
DOI : 10.1161/STROKEAHA.108.531806

I. Kiprianova, T. M. Freiman, and S. Desiderato, Brain-derived neurotrophic factor prevents neuronal death and glial activation after global ischemia in the rat, Journal of Neuroscience Research, vol.16, issue.1, pp.21-27, 1999.
DOI : 10.1097/00004647-199601000-00001

R. J. Nudo, E. J. Plautz, and S. B. Frost, Role of adaptive plasticity in recovery of function after damage to motor cortex, Muscle & Nerve, vol.97, issue.8, pp.1000-1019, 2001.
DOI : 10.1111/j.1600-0404.1998.tb00622.x

W. Schäbitz, S. Schwab, M. Spranger, and W. Hacke, Intraventricular Brain-Derived Neurotrophic Factor Reduces Infarct Size after Focal Cerebral Ischemia in Rats, Journal of Cerebral Blood Flow & Metabolism, vol.9, issue.5, pp.500-506, 1997.
DOI : 10.1161/01.STR.20.1.84

W. Schabitz, C. Sommer, and W. Zoder, Intravenous Brain-Derived Neurotrophic Factor Reduces Infarct Size and Counterregulates Bax and Bcl-2 Expression After Temporary Focal Cerebral Ischemia Editorial Comment, Stroke, vol.31, issue.9, pp.2212-2217, 2000.
DOI : 10.1161/01.STR.31.9.2212

URL : http://stroke.ahajournals.org/content/strokeaha/31/9/2212.full.pdf

M. Kim, M. Bang, and T. Han, Exercise increased BDNF and trkB in the contralateral hemisphere of the ischemic rat brain, Brain Research, vol.1052, issue.1, pp.16-21, 2005.
DOI : 10.1016/j.brainres.2005.05.070

Z. Kokaia, Q. Zhao, and M. Kokaia, Regulation of Brain-Derived Neurotrophic Factor Gene Expression after Transient Middle Cerebral Artery Occlusion with and without Brain Damage, Experimental Neurology, vol.136, issue.1, pp.73-88, 1995.
DOI : 10.1006/exnr.1995.1085

L. R. Zhao, B. Mattsson, and B. B. Johansson, Environmental influence on brain-derived neurotrophic factor messenger RNA expression after middle cerebral artery occlusion in spontaneously hypertensive rats, Neuroscience, vol.97, issue.1, pp.177-184, 2000.
DOI : 10.1016/S0306-4522(00)00023-3

H. D. Müller, K. M. Hanumanthiah, K. Diederich, S. Schwab, W. Schäbitz et al., Brain-Derived Neurotrophic Factor But Not Forced Arm Use Improves Long-Term Outcome After Photothrombotic Stroke and Transiently Upregulates Binding Densities of Excitatory Glutamate Receptors in the Rat Brain, Stroke, vol.39, issue.3, pp.1012-1021, 2008.
DOI : 10.1161/STROKEAHA.107.495069

W. Schäbitz, C. Berger, and R. Kollmar, Effect of Brain-Derived Neurotrophic Factor Treatment and Forced Arm Use on Functional Motor Recovery After Small Cortical Ischemia, Stroke, vol.35, issue.4, pp.992-997, 2004.
DOI : 10.1161/01.STR.0000119754.85848.0D

J. Chen, J. Qin, Q. Su, Z. Liu, and J. Yang, Treadmill rehabilitation treatment enhanced BDNF-TrkB but not NGF-TrkA signaling in a mouse intracerebral hemorrhage model, Neuroscience Letters, vol.529, issue.1, pp.28-32, 2012.
DOI : 10.1016/j.neulet.2012.09.021

J. Chung, M. Kim, M. Bang, and M. Kim, Increased Expression of Neurotrophin 4 Following Focal Cerebral Ischemia in Adult Rat Brain with Treadmill Exercise, PLoS ONE, vol.164, issue.3, 2013.
DOI : 10.1371/journal.pone.0052461.g003

Z. Ke, S. P. Yip, L. Li, X. X. Zheng, W. K. Tam et al., The effects of voluntary, involuntary, and forced exercises on motor recovery in a stroke rat model, Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC '11), pp.8223-8226, 2011.

P. Shih, Y. Yang, and R. Wang, Effects of Exercise Intensity on Spatial Memory Performance and Hippocampal Synaptic Plasticity in Transient Brain Ischemic Rats, PLoS ONE, vol.44, issue.10, 2013.
DOI : 10.1371/journal.pone.0078163.g006

J. Sun, Z. Ke, S. P. Yip, X. Hu, X. Zheng et al., Gradually Increased Training Intensity Benefits Rehabilitation Outcome after Stroke by BDNF Upregulation and Stress Suppression, BioMed Research International, vol.20, issue.10, 2014.
DOI : 10.3390/ijms14036074

URL : http://doi.org/10.1155/2014/925762

R. Marin, A. Williams, and S. Hale, The effect of voluntary exercise exposure on histological and neurobehavioral outcomes after ischemic brain injury in the rat, Physiology & Behavior, vol.80, issue.2-3, pp.167-175, 2003.
DOI : 10.1016/j.physbeh.2003.06.001

S. Vaynman, Z. Ying, and F. Gómez-pinilla, Exercise induces BDNF and synapsin I to specific hippocampal subfields, Journal of Neuroscience Research, vol.108, issue.3, pp.356-362, 2004.
DOI : 10.1007/BF00227267

L. Zhang, X. Hu, and J. Luo, Physical exercise improves functional recovery through mitigation of autophagy, attenuation of apoptosis and enhancement of neurogenesis after MCAO in rats, BMC Neuroscience, vol.14, issue.1, p.46, 2013.
DOI : 10.1186/1471-2202-14-46

J. Puyal and P. G. Clarke, Targeting autophagy to prevent neonatal stroke damage, Autophagy, vol.5, issue.7, pp.1060-1061, 2009.
DOI : 10.4161/auto.5.7.9728

URL : http://www.tandfonline.com/doi/pdf/10.4161/auto.5.7.9728?needAccess=true

Q. Zhang, X. Deng, X. Sun, J. Xu, and F. Sun, Exercise Promotes Axon Regeneration of Newborn Striatonigral and Corticonigral Projection Neurons in Rats after Ischemic Stroke, PLoS ONE, vol.24, issue.11, 2013.
DOI : 10.1371/journal.pone.0080139.g006

M. Asahi, K. Asahi, J. Jung, G. J. Del-zoppo, M. E. Fini et al., Role for Matrix Metalloproteinase 9 after Focal Cerebral Ischemia: Effects of Gene Knockout and Enzyme Inhibition with BB-94, Journal of Cerebral Blood Flow & Metabolism, vol.18, issue.12, pp.1681-1689, 2000.
DOI : 10.1101/gad.13.1.35

M. Asahi, X. Wang, and T. Mori, Effects of Matrix Metalloproteinase-9 Gene Knock-Out on the Proteolysis of Blood???Brain Barrier and White Matter Components after Cerebral Ischemia, The Journal of Neuroscience, vol.21, issue.19, pp.7724-7732, 2001.
DOI : 10.1523/JNEUROSCI.21-19-07724.2001

Y. Zhang, P. Zhang, and X. Shen, Early Exercise Protects the Blood-Brain Barrier from Ischemic Brain Injury via the Regulation of MMP-9 and Occludin in Rats, International Journal of Molecular Sciences, vol.3, issue.6, pp.11096-11112, 2013.
DOI : 10.1161/01.STR.28.10.2060

I. G. Onyango, J. Lu, M. Rodova, E. Lezi, A. B. Crafter et al., Regulation of neuron mitochondrial biogenesis and relevance to brain health, Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, vol.1802, issue.1, pp.228-234, 2010.
DOI : 10.1016/j.bbadis.2009.07.014

URL : https://hal.archives-ouvertes.fr/hal-00562923

Q. Zhang, Y. Wu, and P. Zhang, Exercise induces mitochondrial biogenesis after brain ischemia in rats, Neuroscience, vol.205, pp.10-17, 2012.
DOI : 10.1016/j.neuroscience.2011.12.053

L. Li, W. Rong, Z. Ke, X. Hu, and K. Tong, The effects of training intensities on motor recovery and gait symmetry in a rat model of ischemia, Brain Injury, vol.6, issue.4, pp.408-416, 2013.
DOI : 10.1371/journal.pone.0016643

C. Enzinger, H. Dawes, and H. Johansen-berg, Brain Activity Changes Associated With Treadmill Training After Stroke, Stroke, vol.40, issue.7, pp.2460-2467, 2009.
DOI : 10.1161/STROKEAHA.109.550053

A. R. Luft, R. F. Macko, and L. W. Forrester, Treadmill Exercise Activates Subcortical Neural Networks and Improves Walking After Stroke: A Randomized Controlled Trial, Stroke, vol.39, issue.12, pp.3341-3350, 2008.
DOI : 10.1161/STROKEAHA.108.527531

URL : http://stroke.ahajournals.org/content/strokeaha/39/12/3341.full.pdf

K. Potempa, M. Lopez, L. T. Braun, J. P. Szidon, L. Fogg et al., Physiological Outcomes of Aerobic Exercise Training in Hemiparetic Stroke Patients, Stroke, vol.26, issue.1, pp.101-105, 1995.
DOI : 10.1161/01.STR.26.1.101

F. Buma, G. Kwakkel, and N. Ramsey, Understanding upper limb recovery after stroke, Restorative Neurology and Neuroscience, vol.31, issue.6, pp.707-722, 2013.

A. E. Baird, A. Benfield, and G. Schlaug, Enlargement of human cerebral ischemic lesion volumes measured by diffusion-weighted magnetic resonance imaging, Annals of Neurology, vol.26, issue.1, pp.581-589, 1997.
DOI : 10.1016/0006-8993(95)01180-3

A. Schmidt, J. Wellmann, and M. Schilling, Meta-analysis of the Efficacy of Different Training Strategies in Animal Models of Ischemic Stroke, Stroke, vol.45, issue.1, pp.239-247, 2014.
DOI : 10.1161/STROKEAHA.113.002048

R. Wang, S. Yu, and Y. Yang, Treadmill Training Effects in Different Age Groups following Middle Cerebral Artery Occlusion in Rats, Gerontology, vol.55, issue.3, pp.161-165, 2005.
DOI : 10.1093/gerona/55.3.B135

P. Zhang, H. Yu, and N. Zhou, Early exercise improves cerebral blood flow through increased angiogenesis in experimental stroke rat model, Journal of NeuroEngineering and Rehabilitation, vol.10, issue.1, 2013.
DOI : 10.1073/pnas.0611721104

J. Laurin and C. Pin-barre, Physiological adaptations following endurance exercises after stroke: focus on the plausible role of high-intensity interval training, International Journal of Physical Medicine & Rehabilitation, vol.2, issue.3, pp.1-6, 2014.

T. H. Murphy and D. Corbett, Plasticity during stroke recovery: from synapse to behaviour, Nature Reviews Neuroscience, vol.23, issue.12, pp.861-872, 2009.
DOI : 10.1161/01.STR.24.6.889

M. Svensson, J. Lexell, and T. Deierborg, Effects of Physical Exercise on Neuroinflammation, Neuroplasticity, Neurodegeneration, and Behavior, Neurorehabilitation and Neural Repair, vol.18, issue.11, pp.577-589, 2015.
DOI : 10.1007/s00395-013-0332-6

A. Risedal, J. Zeng, and B. B. Johansson, Early Training May Exacerbate Brain Damage after Focal Brain Ischemia in the Rat, Journal of Cerebral Blood Flow & Metabolism, vol.74, issue.9, pp.997-1003, 1999.
DOI : 10.1097/00004647-199609000-00022

C. Piao, B. A. Stoica, and J. Wu, Late exercise reduces neuroinflammation and cognitive dysfunction after traumatic brain injury, Neurobiology of Disease, vol.54, pp.252-263, 2013.
DOI : 10.1016/j.nbd.2012.12.017

URL : http://europepmc.org/articles/pmc3628975?pdf=render

J. L. Humm, D. A. Kozlowski, S. T. Bland, D. C. James, and T. Schallert, Use-Dependent Exaggeration of Brain Injury: Is Glutamate Involved?, Experimental Neurology, vol.157, issue.2, pp.349-358, 1999.
DOI : 10.1006/exnr.1999.7061

G. S. Griesbach, F. Gomez-pinilla, and D. A. Hovda, The upregulation of plasticity-related proteins following TBI is disrupted with acute voluntary exercise, Brain Research, vol.1016, issue.2, pp.154-162, 2004.
DOI : 10.1016/j.brainres.2004.04.079

J. W. Mcalees, L. T. Smith, R. S. Erbe, D. Jarjoura, N. M. Ponzio et al., Epigenetic regulation of beta2-adrenergic receptor expression in TH1 and TH2 cells, Brain, Behavior, and Immunity, vol.25, issue.3, pp.408-415, 2011.
DOI : 10.1016/j.bbi.2010.10.019

G. Zhao, S. Zhou, A. Davie, and Q. Su, Effects of moderate and high intensity exercise on T1/T2 balance, Exercise Immunology Review, vol.18, pp.98-114, 2012.

Y. Yagita, K. Kitagawa, and T. Sasaki, Postischemic exercise decreases neurogenesis in the adult rat dentate gyrus, Neuroscience Letters, vol.409, issue.1, pp.24-29, 2006.
DOI : 10.1016/j.neulet.2006.09.040

S. T. Bland, T. Schallert, R. Strong, J. Aronowski, and J. C. Grotta, Early Exclusive Use of the Affected Forelimb After Moderate Transient Focal Ischemia in Rats : Functional and Anatomic Outcome Editorial Comment: Functional and Anatomic Outcome, Stroke, vol.31, issue.5, pp.1144-1152, 2000.
DOI : 10.1161/01.STR.31.5.1144

S. B. Debow, J. E. Mckenna, B. Kolb, and F. Colbourne, Immediate constraint-induced movement therapy causes local hyperthermia that exacerbates cerebral cortical injury in rats, Canadian Journal of Physiology and Pharmacology, vol.104, issue.4, pp.231-237, 2004.
DOI : 10.1016/S0014-4886(89)80005-6

D. A. Kozlowski, D. C. James, and T. Schallert, Use-Dependent Exaggeration of Neuronal Injury after Unilateral Sensorimotor Cortex Lesions, The Journal of Neuroscience, vol.16, issue.15, pp.4776-4786, 1996.
DOI : 10.1523/JNEUROSCI.16-15-04776.1996

B. Balaban, F. Tok, F. Yavuz, E. Yas¸aryas¸ar, and R. Alaca, Early rehabilitation outcome in patients with middle cerebral artery stroke, Neuroscience Letters, vol.498, issue.3, pp.204-207, 2011.
DOI : 10.1016/j.neulet.2011.05.009

G. Kwakkel, R. Van-peppen, and R. C. Wagenaar, Effects of Augmented Exercise Therapy Time After Stroke: A Meta-Analysis, Stroke, vol.35, issue.11, pp.2529-2539, 2004.
DOI : 10.1161/01.STR.0000143153.76460.7d

D. L. Costill, M. G. Flynn, and J. P. Kirwan, Effects of repeated days of intensified training on muscle glycogen and swimming performance, Medicine & Science in Sports & Exercise, vol.20, issue.3, pp.249-254, 1988.
DOI : 10.1249/00005768-198806000-00006

M. A. Hirsch and B. G. Farley, Exercise and neuroplasticity in persons living with Parkinson's disease, European Journal of Physical and Rehabilitation Medicine, vol.45, issue.2, pp.215-229, 2009.

M. Katz-leurer, M. Shochina, E. Carmeli, and Y. Friedlander, The influence of early aerobic training on the functional capacity in patients with cerebrovascular accident at the subacute stage11No commercial party having a direct financial interest in the results of the research supporting this article has or will confer a benefit upon the author(s) or upon any organization with which the author(s) is/are associated., Archives of Physical Medicine and Rehabilitation, vol.84, issue.11, pp.1609-1614, 2003.
DOI : 10.1053/S0003-9993(03)00344-7

J. D. Schaechter, Motor rehabilitation and brain plasticity after hemiparetic stroke, Progress in Neurobiology, vol.73, issue.1, pp.61-72, 2004.
DOI : 10.1016/j.pneurobio.2004.04.001

P. R. Bosch, S. Holzapfel, T. Traustadottir, D. P. Stirling, K. Khodarahmi et al., Feasibility of measuring ventilatory threshold in adults with stroke-induced hemiparesis: implications for exercise prescription Archives of Physical Medicine and Rehabilitation Minocycline treatment reduces delayed oligodendrocyte death, attenuates axonal dieback, and improves functional outcome after spinal cord injury, The Journal of Neuroscience, vol.112, issue.24 9, pp.2182-2190, 2004.

S. Barbay and R. J. Nudo, The effects of amphetamine on recovery of function in animal models of cerebral injury: a critical appraisal, NeuroRehabilitation, vol.25, issue.1, pp.5-17, 2009.

R. S. Rasmussen, K. Overgaard, E. S. Hildebrandt-eriksen, and G. Boysen, d-Amphetamine improves cognitive deficits and physical therapy promotes fine motor rehabilitation in a rat embolic stroke model, Acta Neurologica Scandinavica, vol.26, issue.3, pp.189-198, 2006.
DOI : 10.1161/01.STR.0000098003.50143.17

C. L. Gibson, B. Coomber, and S. P. Murphy, Progesterone is neuroprotective following cerebral ischaemia in reproductively ageing female mice, Brain, vol.171, issue.2, pp.2125-2133, 2011.
DOI : 10.1006/cimm.1996.0203

URL : https://academic.oup.com/brain/article-pdf/134/7/2125/830962/awr132.pdf

T. Ishrat, I. Sayeed, F. Atif, and D. G. Stein, Effects of progesterone administration on infarct volume and functional deficits following permanent focal cerebral ischemia in rats, Brain Research, vol.1257, pp.94-101, 2009.
DOI : 10.1016/j.brainres.2008.12.048

M. Prencipe, C. Ferretti, A. R. Casini, M. Santini, F. Giubilei et al., Stroke, Disability, and Dementia : Results of a Population Survey, Stroke, vol.28, issue.3, pp.531-536, 1997.
DOI : 10.1161/01.STR.28.3.531

I. Sayeed, B. Wali, and D. G. Stein, Progesterone inhibits ischemic brain injury in a rat model of permanent middle cerebral artery occlusion, Restorative Neurology and Neuroscience, vol.25, issue.2, pp.151-159, 2007.

H. Lee, R. J. Mckeon, and R. V. Bellamkonda, Sustained delivery of thermostabilized chABC enhances axonal sprouting and functional recovery after spinal cord injury, Proceedings of the National Academy of Sciences, vol.32, issue.1, pp.3340-3345, 2010.
DOI : 10.1016/0304-3959(88)90026-7

V. J. Tom, R. Kadakia, L. Santi, and J. D. Houlé, Administration of Chondroitinase ABC Rostral or Caudal to a Spinal Cord Injury Site Promotes Anatomical but Not Functional Plasticity, Journal of Neurotrauma, vol.26, issue.12, pp.2323-2333, 2009.
DOI : 10.1089/neu.2009.1047

J. J. Hill, K. Jin, X. O. Mao, L. Xie, and D. A. Greenberg, Intracerebral chondroitinase ABC and heparan sulfate proteoglycan glypican improve outcome from chronic stroke in rats, Proceedings of the National Academy of Sciences, vol.97, issue.18, pp.9155-9160, 2012.
DOI : 10.1073/pnas.97.18.10242

S. Soleman, P. K. Yip, D. A. Duricki, and L. D. Moon, Delayed treatment with chondroitinase ABC promotes sensorimotor recovery and plasticity after stroke in aged rats, Brain, vol.41, issue.4, pp.1210-1223, 2012.
DOI : 10.1161/STROKEAHA.109.577023

B. E. Skolnick, A. I. Maas, and R. K. Narayan, A Clinical Trial of Progesterone for Severe Traumatic Brain Injury, New England Journal of Medicine, vol.371, issue.26, pp.2467-2476, 2014.
DOI : 10.1056/NEJMoa1411090

D. W. Wright, S. D. Yeatts, and R. Silbergleit, Very Early Administration of Progesterone for Acute Traumatic Brain Injury, New England Journal of Medicine, vol.371, issue.26, pp.2457-2466, 2014.
DOI : 10.1056/NEJMoa1404304

L. Krarup, T. Truelsen, and C. Gluud, Prestroke physical activity is associated with severity and long-term outcome from first-ever stroke, Neurology, vol.71, issue.17, pp.1313-1318, 2008.
DOI : 10.1212/01.wnl.0000327667.48013.9f

P. M. Rist, I. Lee, C. S. Kase, J. M. Gaziano, and T. Kurth, Physical Activity and Functional Outcomes From Cerebral Vascular Events in Men, Stroke, vol.42, issue.12, pp.3352-3356, 2011.
DOI : 10.1161/STROKEAHA.111.619544

Q. Zhang, L. Zhang, X. Yang, Y. Wan, and J. Jia, The Effects of Exercise Preconditioning on Cerebral Blood Flow Change and Endothelin-1 Expression after Cerebral Ischemia in Rats, Journal of Stroke and Cerebrovascular Diseases, vol.23, issue.6, pp.1696-1702, 2014.
DOI : 10.1016/j.jstrokecerebrovasdis.2014.01.016

M. Bernaudin, A. Nedelec, D. Divoux, E. T. Mackenzie, E. Petit et al., Normobaric Hypoxia Induces Tolerance to Focal Permanent Cerebral Ischemia in Association with an Increased Expression of Hypoxia-Inducible Factor-1 and its Target Genes, Erythropoietin and VEGF, in the Adult Mouse Brain, Journal of Cerebral Blood Flow & Metabolism, vol.15, issue.1, pp.393-403, 2002.
DOI : 10.1016/S0006-8993(00)02718-9

D. Dornbos, I. , N. Zwagerman, and M. Guo, Preischemic exercise reduces brain damage by ameliorating metabolic disorder in ischemia/reperfusion injury, Journal of Neuroscience Research, vol.183, issue.6, pp.818-827, 2013.
DOI : 10.1111/j.1365-201X.2004.01380.x

Y. Ding, Y. Ding, J. Li, D. A. Bessert, and J. A. Rafols, Exercise pre-conditioning strengthens brain microvascular integrity in a rat stroke model, Neurological Research, vol.35, issue.2, pp.184-189, 2006.
DOI : 10.1016/j.neulet.2005.06.009

M. Guo, B. Cox, and S. Mahale, Pre-ischemic exercise reduces matrix metalloproteinase-9 expression and ameliorates blood???brain barrier dysfunction in stroke, Neuroscience, vol.151, issue.2, pp.340-351, 2008.
DOI : 10.1016/j.neuroscience.2007.10.006

M. Ploughman, Z. Attwood, N. White, J. J. Doré, and D. Corbett, Endurance exercise facilitates relearning of forelimb motor skill after focal ischemia, European Journal of Neuroscience, vol.34, issue.11, pp.3453-3460, 2007.
DOI : 10.1161/01.STR.30.3.573

L. L. Guyot, F. G. Diaz, M. H. O-'regan, S. Mcleod, H. Park et al., Real-time measurement of glutamate release from the ischemic penumbra of the rat cerebral cortex using a focal middle cerebral artery occlusion model, Neuroscience Letters, vol.299, issue.1-2, pp.37-40, 2001.
DOI : 10.1016/S0304-3940(01)01510-5

K. Matsumoto, R. Graf, G. Rosner, J. Taguchi, and W. Heiss, Elevation of Neuroactive Substances in the Cortex of Cats during Prolonged Focal Ischemia, Journal of Cerebral Blood Flow & Metabolism, vol.3, issue.4, pp.586-594, 1993.
DOI : 10.1161/01.STR.17.2.318

J. Jia, Y. Hu, and Y. Wu, Pre-ischemic treadmill training affects glutamate and gamma aminobutyric acid levels in the striatal dialysate of a rat model of cerebral ischemia, Life Sciences, vol.84, issue.15-16, pp.15-16, 2009.
DOI : 10.1016/j.lfs.2009.01.015

F. Zhang, J. Jia, Y. Wu, Y. Hu, and Y. Wang, The Effect of Treadmill Training Pre-Exercise on Glutamate Receptor Expression in Rats after Cerebral Ischemia, International Journal of Molecular Sciences, vol.25, issue.7, pp.2658-2669, 2010.
DOI : 10.1006/meth.2001.1262

J. Jia, Y. Hu, and Y. Wu, Treadmill pre-training suppresses the release of glutamate resulting from cerebral ischemia in rats, Experimental Brain Research, vol.13, issue.Suppl 1, pp.173-179, 2010.
DOI : 10.1161/01.STR.20.1.84

E. T. Ang, P. T. Wong, S. Moochhala, and Y. K. Ng, Neuroprotection associated with running: is it a result of increased endogenous neurotrophic factors?, Neuroscience, vol.118, issue.2, pp.335-345, 2003.
DOI : 10.1016/S0306-4522(02)00989-2

A. C. Ricciardi, E. López-cancio, N. Pérez-de, and L. Ossa, Prestroke Physical Activity Is Associated with Good Functional Outcome and Arterial Recanalization after Stroke due to a Large Vessel Occlusion, Cerebrovascular Diseases, vol.37, issue.4, pp.304-311, 2014.
DOI : 10.1159/000360809