Development of a software based on automatic multi-temporal aerial images classification to assess retrospective environmental exposures to pesticides in epidemiological studies

Élodie Faure, Rémi Ratajczak, Carlos Crispim-Junior, Olivia Pérol, Laure Tougne, Béatrice Fervers

To cite this version:
Élodie Faure, Rémi Ratajczak, Carlos Crispim-Junior, Olivia Pérol, Laure Tougne, et al.. Development of a software based on automatic multi-temporal aerial images classification to assess retrospective environmental exposures to pesticides in epidemiological studies. CLARA 2018 Cancer Research Forum, Apr 2018, Lyon, France. hal-01784654

HAL Id: hal-01784654
https://hal.archives-ouvertes.fr/hal-01784654
Submitted on 3 May 2018
Development of a software based on automatic multi-temporal aerial images classification to assess retrospective environmental exposures to pesticides in epidemiological studies

E. Faure¹, R. Ratajczak¹,²,³, C. Crispim-Junior², O. Perol¹, L. Tougne⁴ and B. Fervers¹

¹Cancer and Environment Department, Centre Léon Bérard, Lyon, France
²Univ Lyon, Lyon 2, LIRIS, F-69676 Lyon, France
³French Environment & Energy Management Agency, Angers, France

1. Context
- Pesticides have been suggested as risk factors for different pathologies (cancers, infertility, Parkinson’s…)
- Geographical Information Systems (GIS) are increasingly used to assess environmental exposure to agricultural pesticides (EEAP) in epidemiological studies by taking into account long latency period
- There is a lack of annotated land cover data in France before 1990
- Large scale retrospective epidemiological studies like TESTIS (Béranger et al. 2014) are carried out over 45 years in the past and involve hundreds of subjects (1500 for TESTIS)
- The manual annotation of a single historical aerial image (National Geographic Institute—IGN) representing a 9 km² area takes 6 to 10 hours (1 subject/1 date/1 location in TESTIS)

Goal: Assess the lack of annotated historical land cover data in France by developing an automated image processing software for fast annotations of historical aerial images

2. Method - Creation of a new dataset: HistAerial
- 4.9 millions annotated land cover patches issued from historical aerial images acquired between 1970 and 1990 by the IGN (non-overlapping, monochromatic)
- 7 classes (Arable, Water, Forest, Grassland, Urban, Orchard, Vineyard)
- 3 scales (100 x 100 pixels, 50 x 50 pixels, 25 x 25 pixels)
- Patches represent inhomogeneous textures

3. Method - An extensive comparative study: Overview
- 12 state-of-the-art local texture filters, low dimensional representations based on the Local Binary Pattern (LBP), and one variant (LBP_riu2)
- 2 novel local texture filters, namely LCOLBP and R-CRLBP
- 4 classifiers (K-Nearest Neighbors, Support Vector Machine, Multi-Layer Perceptron, Random Forest), trained with grid search
- 3 finetuned end-to-end deep convolutional neural networks
- Evaluation on an equilibrated and randomly sampled subset of HistAerial (6 000 images/class)

4. Results - An extensive comparative study: Evaluation
- Our understandable handcrafted filter LCOLBP achieves similar results with deep learning method AlexNet
- LCOLBP generates features vector 17 times shorter than AlexNet, thus yielding to faster training and inference

![Fig. 2: Best accuracy rates obtained on the HistAerial dataset](image-url)

5. Results - Software
- Development of a scribble-based software
- Integrate best evaluated methods
- Enable annotation of 9 km² in 5 to 10 minutes instead of 6 to 10 hours on a single CPU thread (1.7GHz) ; scribble, training and test times included

![Fig. 3: (a) Software workflow, (b) Left - scribbled historical aerial image ; Center - result with the software learning solely from scribbles ; Right - ground truth, unseen by the software](image-url)

6. Conclusion and perspectives
- Novel large scale dataset for historical aerial images classification
- Extensive comparative study including two novel texture filters
- Innovative software prototype for fast annotations of historical aerial images
- Combine deep learning methods with handcrafted methods
- Integrate results in a Geographical Information System
- Creation of new land use datasets
- Use the software on large scale retrospective epidemiological studies