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We present the stability analysis of a plane Couette flow which is stably stratified in the
vertical direction orthogonally to the horizontal shear. Interest in such a flow comes from
geophysical and astrophysical applications where background shear and vertical stable
stratification commonly coexist. We perform the linear stability analysis of the flow in a
domain which is periodic in the stream-wise and vertical directions and confined in the
cross-stream direction. The stability diagram is constructed as a function of the Reynolds
number Re and the Froude number Fr, which compares the importance of shear and
stratification. We find that the flow becomes unstable when shear and stratification are
of the same order (i.e. Fr ~ 1) and above a moderate value of the Reynolds number Re 2>
700. The instability results from a resonance mechanism already known in the context
of channel flows, for instance the unstratified plane Couette flow in the shallow water
approximation. The result is confirmed by fully non linear direct numerical simulations
and to the best of our knowledge, constitutes the first evidence of linear instability in
a vertically stratified plane Couette flow. We also report the study of a laboratory flow
generated by a transparent belt entrained by two vertical cylinders and immersed in a
tank filled with salty water linearly stratified in density. We observe the emergence of a
robust spatio-temporal pattern close to the threshold values of F'r and Re indicated by
linear analysis, and explore the accessible part of the stability diagram. With the support
of numerical simulations we conclude that the observed pattern is a signature of the same
instability predicted by the linear theory, although slightly modified due to streamwise
confinement.

Key words: Authors should not enter keywords on the manuscript, as these must
be chosen by the author during the online submission process and will then be added
during the typesetting process (see http://journals.cambridge.org/data/relatedlink/jfm-
keywords.pdf for the full list)

1. Introduction

Shear and density stratification are ubiquitous features of flows on Earth and can
strongly affect the dynamic of different fluids like air in the atmosphere or water in
the ocean. More generally the interest for the stability of parallel flows dates back to
the second half of the nineteenth century (Helmholtz 1868; Kelvin 1871) and the first
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crucial statement came with Rayleigh (1879) who gave his name to the famous inflexion
point theorem proving a necessary criterion for an inviscid homogeneous parallel flow
to be unstable. Contemporarily the first laboratory experiments performed by Reynolds
(1883) showed that also inflexion-free flows can run unstable at sufficiently high Re,
thus highlighting the need for a viscous analysis. Still more than a century ago Orr
(1907) provided a viscous equivalent of the Rayleigh principle. Nonetheless, as reviewed
by Bayly et al. (1988), providing a solution of the Orr-Sommerfeld equation at large Re
number turns out to be exceedingly difficult and has drawn since then, the attention
of many studies (Heisenberg 1924; Schlichting 1933; Lin 1966). Interestingly even for
the simplest profile of parallel flow, a conclusive answer as been lacking for almost
a century as reported by Davey (1973): 'It has been conjectured for many years that
plane Couette flow is stable to infinitesimal disturbances although this has never been
proved [...] We obtain new evidence that the conjecture is, in all probability, correct’.
Since then the stability analysis of the plane Couette (PC hereafter) flow continues to
be of deep interest in studying the transition to turbulence via non-linear mechanisms
(Barkley & Tuckerman 2005) but its linear stability is nowadays no more questioned
(Romanov 1973). In the present work we show that by adding a vertical linear (stable)
density stratification, the PC flow becomes unstable, at strikingly moderate Re numbers,
typically Re = 700. The observed instability relies on the same resonance mechanism
showed by Satomura (1981) for shallow water waves, here extended to the case of
internal gravity waves. An interesting feature of this finding is that density stratification is
generally thought to be stabilising as it inhibits vertical motion. Nonetheless our counter-
intuitive result does not come as a prime novelty. In the close context of rotating-stratified
(and sheared) flows Molemaker et al. (2001) and Yavneh et al. (2001) questioned the
other Rayleigh celebrated criterion (Rayleigh 1917) and showed that Rayleigh-stable
Taylor Couette flows may become unstable when adding linear density stratification.
The Strato-Rotational-Instability as successively named by Dubrulle et al. (2005) was
observed in the laboratory a few years later (Le Bars & Le Gal 2007) and is still
the subject of experiments (Ibanez et al. 2016). The stability analysis of parallel flows
where shear coexists with stratification has also a long tradition. The most famous shear
instability, i.e. the Kelvin-Helmoltz instability was found indeed in the context of a two
layers fluid endowed with different velocity and density (Helmholtz 1868; Kelvin 1871).
This work was extended to the three density layers configuration, with constant shear
in the middle one, by Taylor (1931) and Holmboe (1962), who identified two different
instability mechanisms, and later by Caulfield (1994) who isolated a third possibility.
Miles (1961) and Howard (1961) gave the stability criterion of the Kelvin-Helmoltz
instability, for the case of continuous linear stratification. Since then, most of the studies
have focused on the configuration where density gradient and shear are parallel. On
the contrary only a few (e.g. Deloncle et al. 2007; Candelier et al. 2011; Arratia 2011)
recently considered the case of non alignment as reviewed by Chen (2016), who also
showed (Chen et al. 2016) that a free-inflexion boundary layer profile is linearly unstable
when linear stratification is added. Restricting ourselves to the case of a vertically
stratified and horizontally sheared plane Couette flow, Bakas & Farrell (2009)
already considered the problem of the linear stability while investigating
the interaction between gravity waves and potential vorticity. Nonetheless
their study focused mainly on an unbounded flow, and modal analysis of the
equivalent bounded flow was limited to low Re number Re = 150 where the
flow is linearly stable. We perform the linear stability analysis of the same
flow using a pseudo-spectral method (i.e. with the same approach as Chen et al. (2016))
and find that exponentially growing modes appear at moderate Re number Re ~ 700
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and Fr ~ 1, for non vanishing vertical and horizontal wave number k,/k, ~ 0.2.
Results are confirmed by fully non-linear direct numerical simulations (DNS). We also
analyse the laboratory flow produced by a shearing device immersed in a rectangular
tank filled with salty water linearly stratified in density. We verify that a fairly parallel
PC flow can be generated and observe that beyond a moderate Re number Re 2 1000
and for F'r number close to 1, a robust velocity pattern appears in the vertical mid-
plane parallel to the shear, that is where no motion is expected for a stable PC flow.
In particular perturbations grow in an exponential manner and looking at how their
saturation amplitude varies in the (Re, F'r) space, we find that an abrupt transition is
present close to the marginal stability limit predicted by linear stability analysis. The
quantitative agreement of the observed spatio-temporal pattern with the linear theory
is only partial, which we claim to be a consequence of the finite streamwise size of our
device. This hypothesis is largely discussed and supported by the results of additional
DNS confirming that the finite size of the domain weakly affects the base flow, but does
modify the shape of the perturbation pattern. We conclude that the observed instability
indeed corresponds to the linear instability of the vertically stratified PC flow modified
by finite size effects and that a redesigned experiment may reproduce more faithfully the
spatio-temporal pattern predicted by the linear theory.

The paper is organized as follows. In section 2 we define the observed flow with its
governing equations and describe the linear stability approach. In section 3 we report
the results of linear analysis and in section 4 those of direct numerical simulations. The
experiments are described in section 5 and the experimental results compared with the
linear theory and direct numerical simulations in section 6. In section 7 we summarise
our study and briefly discuss possible applications and future development of the present
work.

2. Theoretical frame

We consider the plane Couette flow generated by two parallel walls moving at opposite
velocity for a fluid which is stably stratified in density as sketched in figure 1. We denote
& the stream-wise direction, § the cross-stream direction (i.e. the direction of the shear)
and 2 the vertical direction (i.e. the direction of the stratification). The vector g denotes
gravity while red arrows sketch the shape of the constant shear profile U(y) and red
shading mimic vertical stratification p(z). In the Boussinesq approximation we obtain
the following system of equations:

/

ou pop 2
— 4+ (u:-V)u=———— —g2 +vV-u, 2.1
G V= Ly (21)
V.u=0, (2.2)
oo N2
af[;—k(u-V)p'— 7p0w2=kv2 /s (2.3)

where we decompose the pressure and density fields p and p in a perturbation p’ and p’
and a stationary part p = pg + pogz — N?2%po/2 and p = po(1 — N2z/g), with py and
po two constant reference values. We indicate with N = /—0,p(g/po) the background
Brunt-Vaiséla frequency, while v and k denote viscosity and density diffusivity.

2.1. Linear stability analysis

We perform the linear stability analysis of the equations (2.1)-(2.3) in a Cartesian
box of dimensions (L, = 131,L, = 2, L, = 14) centered in z = y = z = 0. To this
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FIGURE 1. Sketch of the analysed flow in a Cartesian reference &, 4, 2. The base flow is aligned
with the stream-wise direction &, the constant shear is aligned with the cross-stream direction
¢y while density stratification and gravity are aligned with the vertical direction 2. We highlight
in grey no slip lateral boundaries. Open periodic boundaries are not coloured.

aim we introduce the buoyancy b = p’/pog and decompose the velocity perturbation u
in a perturbation u’ and a base solution U = —UyyZ. Boundary conditions are periodic
in the stream-wise and vertical directions and no-slip, i.e. v/ = 0 at the rigid walls
y = £L,/2. Buoyancy perturbations b are also set to 0 at the walls. The system is
made non dimensional using the length Ly = L, /2, the density po and the velocity
Uy = 0L where o0 = —0,U (y) is the shear rate. This choice is coherent with Chen et al.
(2016) and gives the same set of dimensionless numbers which are the Reynolds number
Re = LoUp/v, the Froude number Fr = Uy/LoN = o/N and the Schmidt number
Sc =v/k. We then look for solutions of the non dimensional perturbations @, p, b in the
form of normal modes

@,p,b = (u(y),p(y), by))e'r=rik=t, (2.4)

where we use again symbols u, p and b to simplify notations. Substituting in equations
(2.1)-(2.3) and retaining only the first order terms we obtain:

1

—lwu =1 -4 —A 2.
iwu = ikyuy +v — ikyp + oo At (2.5)
. ) dp 1

—iwv = tkvy — Iy + EAyv, (2.6)
. . b _ 1

—iww = ik wy — Tz~ ik.p + EAyw, (2.7)

0 = ikyu + ik, w + j—:, (2.8)

. . 1

—iwb = ik by +w + mAyb, (2.9)

where we denote with A, the Laplacian operator A, = d?/dy? — k2 — k2. The system
of equations above is solved using a pseudo-spectral approach similarly to Chen et al.
(2016), the only difference is that discretisation is made on the Gauss-Lobatto collocation
points of the Chebychev polynomials (i.e. instead of Laguerre) because this choice is well
adapted to a two-side bounded domain. The generalized eigenvalue problem Af = wB f
for f = [u,v,w,b,p] is solved with the QZ algorithm. In parallel we also consider the
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inviscid approach which consists in neglecting both viscous dissipation and salt diffusion,
thus reducing the system (2.5)-(2.9) to one equation for the pressure:

&*p 2k, 9p 2wl 2

where w, = w + k,y. The equation above is analogous to that provided by Kushner
et al. (1998) who previously studied the stability of a vertically stratified PC flow in the
presence of rotation f. In the limit of no rotation (f — 0) we verify that the two equations
are the same but contrarily to Kushner et al. (1998) we could not find a meaningful limit
in which our equation (2.10) becomes autonomous in y. As a consequence we cannot
provide a compact form for the dispersion relation. Nonetheless, looking at equation
(2.10) is still extremely instructive. First, one observes that the second term in equation
(2.10) possibly diverges at y = 0 when considering stationary modes which are marginally
stable (e.g. w = 0). This corresponds to the existence of a barotropic critical layer, which
happens to be regularised because, from the symmetry of the base flow, we expect dp/dy
to be null in y = 0 for a stationary mode. Similarly the third term of (2.10) becomes
critical in y* = +1/k,Fr when w = 0. These are baroclinic critical layers, i.e. the
locations where the Doppler shifted frequency w, of internal waves matches the Brunt
Viiséla frequency N. In different contexts critical layers can be excited and have been
observed in experiments (Boulanger et al. 2008) and numerical simulations (Marcus et al.
2013). However in our configuration the most unstable mode is always observed to be
stationary and at wave numbers k., < 1/Fr, which implies that the corresponding
critical layers y#,,q. are always situated outside the numerical domain, |y, .| > 1.

3. Linear Stability results

We have already mentioned that for unstratified fluids (i.e. F'r = co) the PC (unper-
turbed) profile is linearly stable for any value of the Reynolds number Re, thus we expect
the flow to be potentially unstable only at finite values of the Froude number. The values
of the Schmidt number for common salty water (i.e. in our experiments) is Sc¢ ~ 700 thus
we preliminarily consider the limit Sc¢ = co and discuss the quality of this approximation
at the end of this section.

As a first result we report that one stationary growing mode (i.e. Im(w) > 0, Re(w) =
0) appears at F'r < 1, wave numbers k, ~ 0.8, k, ~ 5 and remarkably moderate Reynolds
number Re ~ 700. In figure 2 we report the value of the imaginary part and the real
part of the most unstable eigenmode for Re = 1000 and Fr = 1 as a function of k, and
k.. Looking at the imaginary part (left) one sees that the flow is unstable over a narrow
elongated region centered in k, ~ 0.8, k, ~ 5 and stable elsewhere. Correspondingly the
real part (center) is zero whenever the flow is unstable and non zero elsewhere. In figure
2 (right) we also report the values of the temporal frequency w for all the eigenvalues and
a various number of collocation points of N, = 129, and 513 for the most unstable wave
numbers (k, = 0.815, k, = 4.937). Eigenvalues which are well resolved correspond
to the points where two different symbols are superposed, all other points
are not well resolved because of Sc = inf. The inset close to the origin of the
diagram shows that a unique eigenvalue is present for which Im(w.) > 0. The value of
w, is stable to the variation of N, the number of collocation points, which indicates that
the mode is well resolved. Finally we remark that as our flow is bounded at
y = £1, we do not have to deal with the problem of neutral or stable non
physical eigenvalues encountered by Chen et al. (2016) because this arises
when prescribing the boundary condition at infinity.
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FIGURE 2. Left: growth rate I'm(w) of the most unstable mode in the space (ks,k.) at Fr =1
and Re = 1000. Center: oscillation frequency Re(w) of the most unstable mode in the space
(kz,k-) at Fr = 1 and Re = 1000. Notes that unstable modes (Im(w) > 0) are stationary
(Re(w) = 0). Right: full spectrum at the most unstable mode k, = 0.815 and k. = 4.937,
Fr =1, and Re = 1000. Crosses refer to N, = 129 collocation points, circles to N, = 257 and
triangles to N, = 513. The inset at the bottom right coincides with the area delimited by the
red rectangle.
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FIGURE 3. Top: growth rate Im(w) (left) and the velocity C = w/k, (right) of the most unstable
modes in the space (kz,k.) at Re = 10000 and Fr = 1. Red dots and letters label modes of
different shapes. Bottom: Growth rate Im(w) of the most unstable modes at Re = 10000 and
Fr = 0.2 (left) and Fr = 5 (right). The red contours distinguish stationary branches from
oscillating ones. The black dashed lines refer to the theoretical prediction we discuss
in section 3.2, i.e. equation 3.2 for n = 1,2. Note that horizontal and vertical axes have
different scales depending on the F'r number.

When increasing Re the unstable region in the (k,, k,) space increases and unstable
modes exist over a larger range of Froude number. On the top of figure 3 we report the
value of Im(w) and C) for the most unstable mode at Re = 10000 and Fr = 1, where
we define C' as the quantity C = Re(w)/kz. In the same figure we report similar graphs
for Im(w) at Re = 10000, F'r =5 (left) and Fr = 0.2 (right). Note that at these values
of Fr number there is no unstable mode at Re = 1000.

One sees that at Fr = 1 (left panel) the diagram is now richer: besides the original
unstable branch constituted by stationary modes (a), new unstable branches appear
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at larger k, which correspond to oscillatory (b, ¢, e) and stationary (d) modes, as
visible from the value of Re(w)/k;) (right). Note that within a same branch the value of
Re(w)/k, varies very little, while the value of I'm(w) shows a maximum and smoothly
decreases to zero at the branch boundaries. The quantity Re(w)/k, then characterises
each different branch. A new oscillating branch (f) also appears at smaller k, but it is
still very weak and poorly visible at this Re number. On the bottom of figure 3 we report
the value of I'm(w) in the space (k;, k.) at F'r number smaller and larger than one. When
the Froude number is diminished to Fr = 0.2 (left) we recover almost the same scenario,
even if different branches look now more spaced one from another and appear at larger k.,
and k. similarly to other kinds of shear flows (Deloncle et al. 2007; Park & Billant 2013).
On the contrary when the Froude number is increased to F'r = 5 (right) the unstable
region is drastically reduced, as well as the growth rate, which is dropped by an order of
magnitude. Also the most unstable mode moves toward lower value of k, while k, only
slightly changes. As a general remark we observe that the unstable branches, i.e. the
continuous regions defined by I'm(w) > 0, show an elongated shape. Precisely, unstable
regions appear extended when moving along the curve k,k, = const while they are quite
narrow in the orthogonal direction. Also unstable modes always appear at k,, k, # 0, i.e.
the flow is linearly unstable only to three-dimensional perturbations, which is different
from the studies of Deloncle et al. (2007) and Lucas et al. (2017), performed on different
vertically stratified and horizontally sheared flow (the hyperbolic tangent shear profile
and Kolmogorov flow respectively).

3.1. Stability Diagram

We explore the (Re, F'r) parameter space over two decades around Fr = 1 and for Re
from 500 to 50000. For each combination (Re, F'r), we solve the system (2.5)-(2.9) in the
discretised wavenumber space k, € [0,2], k. € [0,30], and look for all the possible linear
growing (Im(w) > 0) modes. The (k, k.) domain is suitably moved toward lower (higher)
wave numbers when the F'r number is significantly higher (lower) than 1. In figure 4 we
report the stability diagram. Each point in the diagram corresponds to the most unstable
mode, whose relative k, and k, generally vary. One observes that at Re = 1000 the
unstable region is relatively constrained around Fr =1 (i.e. 0.5 < Fr < 2) but already
covers two decades in F'r at Re = 10000. This indicates that instability first (i.e. at low
Re number) appears where density stratification and horizontal shear are comparable,
i.e. N ~ o, but is likely to be observed in a sensibly wider range of the ratio o /N provided
that the Re number is large enough.

The critical Reynolds number (Re. ~ 700) appears quite moderate compared to other
unstratified parallel flows like the plane Poiseuille flow (Re. = 5772 according to Orszag
(1971)). The value we find is comparable with that found by Chen (2016) for a plane
Poiseuille flow in the presence of vertical stratification, but still sensibly lower than that
indicated by the same authors (Chen et al. 2016) for the boundary layer (vertically
stratified) profile Re. ~ 1995. The growth rate is moderate even at high Re number,
indicating that the observed instability is not only constrained in the (k,, k) but also
relatively slow to establish.

Finally we want to discuss how the most unstable mode changes as a function of Re
and Fr numbers separately. In figure 5 we analyse how the growth rate Im(w) of the
most unstable mode (left) changes with the Re number at fixed F'r = 0.4. One sees that
Im(w) rapidly saturates to a constant value. This result was confirmed by solving the
eigenvalues problem (right) at very high Re number (up to 10%) with (k., k.) fixed. In
figure 6 (left) we report the value of k, and k, for the most unstable mode as a function
of Re at fixed F'r = 0.4. One sees that both k, and k. tend to a constant value. Thus
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FIGURE 4. Growth rate Im(w) of the most unstable mode in the space (Re, Fr). Each
point is obtained taking the maximum value of Im(w) over a collection of runs at
fixed (Re, Fr) and variable wave numbers (ks,k.). White dashed contours correspond to
Im(w) = 0.01,0.02,0.03,0.04,0.05,0.06. Black dashed lines correspond to Re = 10000 and
Fr = 0.4. White circles correspond to the points of the diagram analysed in figure 2 and
3.

we conclude that the observed instability must rely on an inviscid mechanism and that
the inviscid approximation is sufficient to capture the spatial (k.,%.) and temporal w
feature of the most unstable mode.

In figure 6 (right) we report the value of k, and k. k. for the most unstable mode as a
function of the F'r number at Re = 10000. The first panel shows that k, is always slightly
lower than 1/Fr (dashed line) which means that, for the most unstable mode, baroclinic
critical layers (i.e. y = £1/kFr) fall close to the boundaries but slightly outside the
domain boundaries y = 1, and are likely not involved in the instability mechanism. In
the second panel we see that all solutions seem to collapse on the curve A/Fr where
A = kyk.|p,_, which provides a rule for the spatial pattern of the most unstable mode
and an interesting limit for further analysis of the pressure equation (2.10). Finally one
should remark that, according to this relationship, in exploring the stability diagram
(Re, F'r), the discretization of the wave number (i.e. the step size of the grid kz,kz)
becomes critical at low F'r, while the size of the domain (k,, k) becomes critical at high
Fr.

3.2. The instability mechanism

So far we have only focused on the features of the most unstable mode for a given
combination of the dimensionless numbers Re, F'r and a typical domain in the wave
number space (k;,k,). This characterizes the instability from an operational point of
view but does not say anything about the underlying mechanism. To this end we now
analyse the shape of unstable modes. We have seen that the asymptotic behaviour of
the instability at large Re number indicates that it relies on an inviscid mechanism. In
the inviscid limit the pseudo-spectral approach is far less intelligible because the solution
of the eigenvalue problem contains a large number of spurious modes with I'm(w) > 0,
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FIGURE 5. Left: Im(w) (growth rate) of the most unstable mode as a function of the Reynolds
number at Fr = 0.4. The dashed line correspond to the inviscid solution as obtained solving the
eigenvalue problem. Right: solutions of the eigenvalue problem at F'r = 0.4 with fixed k, = 1.29
and k. = 8.53. Different symbols correspond to different Re numbers. The inset corresponds to
the thin rectangular region indicated by the red dashed line in the main graph. We highlight
in red the two lowest Re numbers. One sees that starting from the third one (Re = 50000) the
value of I'm(w) saturates to an asymptotic value.
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FIGURE 6. From the left: k, as a function of Re at F'r = 0.4, k. as a function of Re at F'r = 0.4,
k. as a function of Fr at Re = 10000 and k. k. as a function of Fr at Re = 10000. In all the
panels circles correspond to the most unstable mode. The dashed line corresponds to a constant
in the first two graphs and to 1/Fr in the last two.

which makes the detection of genuine unstable modes extremely difficult. The idea is
then to consider a finite Re number to keep the eigenvalue problem manageable but also
large enough to capture all the possible features of the instability diagram. It turns out
that the choice Re = 10000 fairly responds to these criteria, thus we focus on the case
Fr =1 and Re = 10000 as a reference one. In figure 7 we report the eigenfunctions of the
most unstable mode at F'r = 1 and Re = 10000, which corresponds to the wave numbers
ky = 0.767 and k, = 4.937. One observes that the perturbations of the vertical velocity
w and buoyancy b are more important close to the boundaries y = +1 while at the center
of the domain y = 0, the velocity perturbation is mainly horizontal. We consider now a
sample mode for each different unstable branch, for example corresponding to the red
spots we labelled with a,b,c,d, e and f in figure 3. In figure 8 we compare the pressure
eigenmode for all different branches.

One observes that the shape of the eigenmodes is significantly different in each panel.
Not surprisingly modes from the two stationary branches (a) and (d) are symmetric
in the cross-stream direction y. Conversely, travelling modes (b,c,e,f) are asymmetric
but always appear in pairs, at wy = £Re(w) + iIm(w), each mode in a pair being the
y-mirrored of the other one with respect to y = 0. Also in panel a we superpose the
pressure eigenfunction of the most unstable mode at k, = 0.767 and k, = 4.937, i.e.
the same as figure 7 (last panel). One remarks that two pressure eigenmodes belonging
to the same branch (i.e. the branch (a)) have basically the same shape. The scenario
we described above is strikingly similar to that presented by Satomura (1981) (see e.g.
his figure 6) who analysed the stability of a non-stratified PC flow in the shallow water
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FIGURE 7. Eigenfunctions of the most unstable mode at F'r = 1, Re = 10000 and wave numbers
ke = 0.767, k, = 4.937. Velocity fields and buoyancy are rescaled dividing by the maximum
value of the perturbation u. Solid lines refer to the absolute value while dashed and dashed
dotted lines refer to the real and imaginary part respectively.
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FIGURE 8. From the left: module of the pressure eigenmodes for Re = 10000, F'r = 1 at
k. = 10.77 and k, = 0.432 (a), ks = 0.624 (b), k, = 0.719 (c), k. = 0.815 (d). The mode
(e) correponds to k, = 1.055 and k. = 8.078 while the mode (f) is taken at k, = 0.432 and
k. = 2.693. On (a) the red dashed line corresponds to the most unstable mode, i.e. the same as
in the first panel of figure 7. One observes that two modes belonging to the same branch slightly
differ.

approximation. In this case the pressure p is replaced by the elevation of the free surface h
in the analogous of equation (2.10). The author suggested that the instability is produced
by the resonance of two Doppler-shifted shallow water waves. In this picture the (stream-
wise) phase velocity C' = Re(w)/k; of a shallow water wave which travels close to one
boundary can be approximated to that of a shallow water wave in a fluid at rest plus a
Doppler shift, say Uy, which has the sign of the velocity of the considered boundary. Two
distinct counter propagating waves situated at opposite boundaries can then have the
same phase speed and become resonant. Moreover the resonant wave numbers constitute
a discrete spectrum because rigid walls make the dispersion relation of (non sheared)
waves discrete. More recently, the same mechanism was also detailed to be responsible
for linear instabilities in stratified, rotating plane Couette (Vanneste & Yavneh 2007) and
stratified Taylor-Couette (Park & Billant 2013) flows. We suggest and show below that
this interpretation remains valid in our case if we replace shallow water gravity waves
with internal gravity waves. The dispersion relation of the latter is also discrete and one
has:

oW —x+ 1) k: (3.1)
+ ko Fr k2 + k2 + n2x2’ '

where we use a notation slightly different from Satomura (1981) (C corre-
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sponds to C,). Subscript + (—) refers to waves propagating in the positive (negative)
direction of the x axis, while superscript n labels different channel modes. Note that here
the velocity C' does not correspond to the phase velocity of the wave nor to its horizontal
component, but it is still the relevant quantity to describe the resonance mechanism.

In the first panel of figure 9 we report the value of Cin) as a function of k, at
k, = 10.77 and Fr = 1. In the second panel we show both Doppler shifted velocities
Cq = C’(in) F Uy where we consider prograde and retrograde waves moving upstream
close to opposite boundaries and transported by the local mean flow. At this stage the
value of Uy is an adjustable parameter —1 < Uy < 1 and was fixed to Uy = 0.6. This
choice is somewhat arbitrary and can be avoided if one solves equation 2.10
and thus provide (Satomura 1981; Vanneste & Yavneh 2007; Park & Billant
2013) the exact dispersion relation in the presence of shear. In the present
study we restricted to the phenomenological approach proposed by Satomura
(1981) and U, was taken as the flow velocity U(y) at the y coordinate where
the pressure eigenfunctions of the first (a) and second (b) unstable modes
appear more wavy (see figure 8). One remarks that in the fixed frame (i.e Uy = 0),
prograde waves (solid lines) are well separated from retrograde waves (dashed lines). On
the contrary for Doppler shifted waves, there exists a discrete set of resonant k, where
two curves of different type cross each other. At F'r = 1 the first crossing (resonance)
happens at C; = 0 and close to k, = 0.4, which is consistent with the appearance of
the first stationary mode (a) in the stability map of figure 3. The next two resonances
happen at a non zero value of Cy which coherently recovers the appearance of the first
two oscillating modes (b) and (c) at larger &, in figure 3. The following crossing happens
again at Cy = 0, which confirms the appearance of a fourth (stationary) unstable branch
in figure 3 when moving along k, and at constant k, = 10.77. Looking back at figure 8
the mode (f) appears as a half of the mode (a) thus we speculate that the corresponding
resonance originates from the crossing of a Doppler shifted wave and a non transported
wave (i.e. one for which Uy = 0) situated at the center of the domain (i.e. the dashed
dotted lines in figure 9). Modes (e) do not originate from a resonance, consequently they
are not indicated in figure 9. A closer inspection of the velocity field suggests that in
this case the baroclinic critical layers are excited, and the instability relies on a different
mechanism. This hypothesis is consistent with the fact that the mode (e) (see figure 3)
belongs to a region which mainly extends at k, > 1/Fr where critical layers can fit within
the domain. Now that we have possibly explained the origin of all the distinct modes as
resulting from a degeneracy of the Doppler shifted frequency, we want to show that this
picture allows to fully capture the shape of the unstable branches in figure 3. First one
should recall that for a given channel mode (i.e. n = const), the dispersion relation of
internal gravity waves (3.1) is a function of two variables k, and k,, hence a surface. It
follows that degeneracy occurs indeed on the intersection of two surfaces (i.e. not two
curves) which is a curve (i.e. not a single point). The latter explains why the shape of the
unstable branches in figure 3 appears elongated in one direction and constrained in the
orthogonal one. In the particular case of a stationary mode, one can easily deduce the
equation of such a curve from the dispersion relation (eq. 3.1) modified by the Doppler
shift Uy. We find:

n2m?

k2 _p2p2
222
UiFr?ks

(3.2)

kz:]:(kx,n,F’I”,Ud):\/ +W
d

In figure 3 we have superimposed the value of F to the map of the growth rate I'm(w)
at different F'r numbers and for n = 1 and 2. One observes the agreement is not only
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FIGURE 9. Top: velocity Ci") as a function of k, as given by equation (3.1) at k, = 10.77 and
Fr =1 and for the first n = 1 to 20 prograde (solid lines) and retrograde (dashed lines) confined
internal gravity waves in the absence of mean flow (left), and the Doppler shifted velocities

C(i") F Uaq, where we set arbitrarily Uq = 0.6 (right). The red lines indicate the limit of the
dispersion relation for n — oo, the crossing is situated at k, = 1/FrUy. We indicate with letters
the resonances (crossing points) corresponding to different modes. Note that resonances (b) and
(¢) come in symmetric pairs. The red circle indicates the proximity of a degenerate crossing

point. The single dashed-dotted line corresponds to C’J(rl), i.e. a non transported prograde n =1
mode. Bottom: Same as top right but at F'r = 0.2, k. = 18 (left) and Fr =5, k, = 3 (right).

qualitative, for example F reproduces the trend k,k, = const observed before, but also
quantitative, because fixing a unique value of U; = 0.6, we are able to predict the position
of almost all the unstable stationary branches.

Finally we show that the mechanism we describe above allows to predict the boundaries
of the unstable region. If we look back at figure 9 one observes that instability appears
at a finite value of k,, say k""f, where

Cil)(kx =k n =1k, Fr)=Uy (3.3)

and must disappear when the envelopes of prograde and retrograde modes (red lines)
cross each other, at k3“? = 1/FrUy. Note that the latter upper boundary is independent
of k.. Conversely the lower boundary can be arbitrarily reduced, for example taking
the limit ¥/ — 0 in equation 3.2 one has k., — oo. Nonetheless any finite Re
number will likely inhibit an instability happening at large wave number k.. We conclude
that according to the proposed resonance mechanism, the instability is triggered by
perturbations which are not stream-wise invariant (i.e. k, # 0), and at stream-wise
wave number k, < 1/FrU,;. Looking at the growth rate diagrams of figure 3
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one actually sees that k]“? tends to overestimate the upper bound of the
unstable region. We suspect that a better prediction would be obtained by
computing the exact dispersion relation in the presence of shear as already
done in analogous works (Satomura 1981; Vanneste & Yavneh 2007; Park &
Billant 2013) about Doppler induced wave resonances. Lower panels in figure 9
illustrate the same resonance mechanism for £'r = 0.2 and Fr = 5. The bottom left panel
(Fr = 0.2) confirms that the instability range is extended and pushed at larger k, for
small Fr number (i.e high stratification). Conversely the bottom right panel (Fr = 5),
shows that the region where resonances take place, both shrinks and is constrained to
smaller k,. Ultimately £/ and k3“P collide in the limit Fr — oo and the instability likely
disappears or at least reduces to an infinitely narrow range in k,. Note that the results
above suggest that the upper boundary of the unstable region in figure 4 is intrinsic to
the instability mechanism, while lower boundary is controlled by the Re number: at small
Fr instability appears at larger k., thus larger k, and is then more sensitive to viscous
dissipation. To conclude this section we recall that if the growth rate varies with the Re
number and different branches appear at different Re numbers, the value of C' on a same
branch is approximately constant and almost does not vary with the Re number. This
supports the hypothesis of a resonance and confirms that the appearance of the most
unstable stationary and oscillating modes relies on an inviscid mechanism.

3.3. Effect of the Schmidt number

All the results we presented above correspond to solutions of the eigenvalue problem
where mass diffusivity was completely neglected, that is S¢ = co. We have modified
the eigenvalue problem and tested the relevance of a finite Sc¢ number for the reference
case Re = 966 and F'r = 0.82 which will serve as a comparison between linear analysis,
experiments and direct numerical simulations. All the simulations are performed at the
wave numbers k, = 0.96, k, = 5.16, where the most unstable mode appears in the S¢ = oo
case. The results are reported in figure 10. First we report that at Sc = oo (circles) and
Sc = 700 (crosses) the eigenvalues are well superimposed. This suggests that our non
diffusive approximation is qualitatively and quantitatively adequate to compare linear
theory with experiments performed with salty water, for which S¢ = 700. Second we
remark that at Sc = 7 (squares) there is still an unstable mode and close to the origin
the distribution of eigenvalues has the same form. For example looking at the close up
on the right of figure 10, one sees that all the eigenvalues at S¢ = 7 (in red) are located
close to a non diffusive eigenvalue. This result makes possible the comparison between
linear analysis, experiments, and direct numerical simulations which will be performed
at Sc = 7. Finally we observe that at Sc = 1 (diamonds and stars) the eigenvalues are
distributed on three distinct Y-shaped branches which is consistent with the previous
study of Bakas & Farrell (2009) and Chen (2016) who found analogous branches at
Sc = 1 in the case of the PC flow and the plane Poiseuille flow, respectively. We also
remark that at Sc¢ = 1, Re = 966 (diamonds) there is no unstable mode, nonetheless
instability is promptly recovered at Re = 2000 (stars). We conclude that increasing mass
diffusion, the threshold of the instability is not severely affected as long as Sc 2 7 while
it may change when Sc is of the order of unity.

4. Direct Numerical Simulations

In addition to the linear stability analysis, we have performed Direct Numerical
Simulations (DNS) of the full set of equations (2.1)- (2.3). The aim of a complementary
DNS approach is to validate the linear theory and characterize the flow when retaining all
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FIGURE 10. Left: eigenvalues in the complex space for the reference case Re = 966, F'r = 0.82,
ks = 0.96, k. = 5.16 and Sc = oo (circles), S¢ = 700 (crosses), Sc¢c = 7 (squares), Sc = 1
(diamonds and stars). Right: zoom on the region contoured by the dashed red line in the left
diagram, Sc = 7 symbols are reported in red.

the non-linearities. Equations are solved in a rectangular box of dimensions (L, L, L.).
The boundary conditions are periodic in both the stream-wise and vertical directions
and rigid no-slip insulating boundaries in the cross-stream direction, i.e. 4 = 0 and
db/dy = 0 at y = 1. In order to keep the computational time reasonable, while still
focusing on the high Sc¢ number regime of the experiment described in section 5, we
fix S¢ = 7. We have seen in section 3.3 that this particular choice does not affect
qualitatively the results, and in any case, ad-hoc solutions of the linear problem at
Sc = 7 can be considered for a quantitative comparison. In order to ensure that the
linear instability is well captured by the numerical simulation, we choose a box of size
(Ly =2-27/ky, Ly =2,L, =6-27/k.), where k; and k. are the most unstable wave
numbers as predicted by the linear stability analysis presented above.

We performed DNS using the spectral element solver Nek5000 (Fischer 1997; Fischer
et al. 2007; Paul F. Fischer & Kerkemeier 2008). The use of spectral elements instead
of more classical pseudo-spectral methods will be justified later (see section 5) where
we add the effect of the stream-wise confinement to mimic the experimental setup. The
global geometry is partitioned into hexahedral elements, with refinement close to the
moving boundaries. Velocity, buoyancy and pressure variables are represented as tensor
product Lagrange polynomials of order N and N — 2 based on Gauss or Gauss-Lobatto
quadrature points. The total number of grid points is given by £N? where £ is the number
of elements. For all the results discussed in this paper, the number of elements is £ = 6336
and we use a polynomial order from N = 7up to N = 11 for the highest Reynolds number
case. Time integration is performed with a third-order explicit scheme for the advection
and buoyancy terms while viscous and dissipative terms are integrated using an implicit
third-order scheme. The simulations are initialized with a small amplitude buoyancy
perturbation and with an established linear PC flow.

In order to validate the eigenvalue problem we choose the reference case Re = 966,
Fr = 0.82 which will serve later as a comparison to experiments. In figure 11 (top left)
we report the time evolution of the vertical kinetic energy density (thick line) which is

defined as:
o 1/2
(w?)1/? = <‘1//Vw2dV) (4.1)

where V refers to the volume of the simulation box. The quantity (W)l/ 2 is appropriate
since (w?),;/2 = 0 for the base flow. One observes that (w?)!/2 increases exponentially

and superposing the exponential growth predicted by the linear analysis one obtains
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FIGURE 11. Left: at the top, vertical kinetic energy (w?)'/? as a function of time at Re = 966,

Fr =0.82 and Sc = 7. The thick line refers to the DNS simulation while the thin line refers to
the growth of the most unstable mode as indicated by linear stability analysis. At the bottom,
horizontal velocity perturbation u at = y = 0 as a function of ¢t and z for the same DNS.
One observes that a stationary pattern appears close to t = 500. Right: instantaneous 3D map
of the buoyancy perturbation once the flow has become unstable (DNS). As predicted by the
linear analysis the selected mode is mainly modulated in the vertical direction but still not
stream-wise invariant (i.e. k; # 0). Note also that perturbations are concentrated near the
boundaries y = £1.

an excellent agreement, with a relative discrepancy on the growth rate o. of less than
1%. In the same figure (bottom left) we also report the spatio-temporal diagram of the
horizontal perturbation u at x = y = 0. One observes that a stationary pattern has
established around ¢t = 500 which has a well defined vertical wavelength. In figure 11
(right) we report a visualisation of the buoyancy perturbation b once the instability has
saturated. One observes an weakly inclined layering of the density field which is a common
feature in stratified turbulent shear flows (see Thorpe 2016, for a review). Again we have
a very good agreement with the linear theory: a distinct spatial pattern appears and both
vertical and horizontal wavelengths correspond to the predicted values. One can notice
that the spatial pattern perfectly fits in the simulation domain. This condition is indeed
necessary to observe the instability, and no relevant growth of the vertical kinetic energy
is observed when none of the unstable wave numbers fits inside the simulation domain.

5. Experiments
5.1. Experimental apparatus

Now, we want to study whether or not this linear instability of the stratified plane
Couette flow does appear in a "real” configuration, and to do so, we look for some
of its signatures in an experimental set-up, intrinsically limited in size. The flow is
produced with a shearing device which is placed inside a transparent tank (50cm x
50cm x 70cm) made of acrylic. The tank is filled with salty water linearly stratified
in density. The shearing device is sketched in figure 12 (left). The device consists of
a PVC transparent belt (0.8 mm thick) which is closed on a loop around two vertical
entraining cylinders made of dense sponge (we use standard spares entraining cylinders
for commercial swimming-pool robots). Two additional pairs of cylinders (inox, 2cm
diameter) constrain the two sides of the loop to be parallel and at a controlled distance
d. All cylinders are mounted on a system of acrylic plates which allows to vary the



16 G. Facchini, B. Favier, P. Le Gal, M. Wang, M. Le Bars

distance between the entraining cylinders (i.e. to tighten the belt) through two pairs of
coupled screws (i.e. one pair for the bottom and one for the top). The top acrylic plates
also prevent the existence of a free surface which would affect any imaging from the top.
The motion of the belt is provided by a motor which is mounted on the top of the device
and joined to the axis of one of the entraining cylinders. Finally two PVC rigid plates
are mounted vertically in front of the two entraining cylinders in order to reduce at most
any perturbations coming from the entrainment system. The distance between the edges
of the plates and the belt is a few mm. Thus we look at the flow in the area shaded in
light grey (figure 12, left). In the present work we consider two values of the gap width
d = 5.8 and 9.8 cm, while the distance between the PVC plates D was respectively 34 cm
and 24 cm, leading to a value of the aspect ratio D/d of 5.7 and 2.4 respectively.

The tank is filled with salty water of variable density. As a general rule a water column
of height H = 10 to 20 cm linearly stratified in density always occupies the volume
delimited by the belt and the confining barriers, while above and below the density
stratification was generally weaker or negligible. The density profile is obtained by the
double-bucket method (Oster 1965). To measure the density profile we collect small
samples of fluid (~ 10ml) at different heights and analyze them with a density-meter
Anton Paar DMA 35. The Brunt-Viiséila frequency N is constant for each experiment
with a value between 0.5rad/s and 3.0rad/s. We measure the stratification before and
after each experiment. The shearing motion clearly affects the stratification especially
through the small scale features of the rotating part of the device which necessarily
produces some mixing. Also, in our highest Re experiments we observe optical distortion
which may indicate the presence of high density gradient zones and thus density layering,
for example similarly to that observed in turbulent stratified experiments performed in
Taylor-Couette devices (Oglethorpe et al. 2013). Nevertheless we observe that the density
profile at the end of an experiment is weakly perturbed and the relative discrepancy in
the area of interest is around 5%. Finally we assume the viscosity to be v = 1076 m? /s,
and neglect any change associated to variable salt concentration.

The fluid is seeded with (10 ym - diameter) hollow glass spheres and two laser sheets
illuminate the particles in the vertical plane y = 0 and the horizontal plane z = 0
as shown in figure 12. The flow is then recorded from the side by a 4 Mpx camera at
a frame rate of 8fps and from the top by a 2Mpx camera at a frame rate of 30 fps.
The velocity field is obtained with a Particle Image Velocimetry (hereafter PIV) cross-
correlation algorithm (Meunier & Leweke 2003). Note that the mid vertical plane y = 0
is the appropriate place to detect the possible onset of an instability because in the ideal
PC regime, the velocity should be zero there. The current setup permits only one by one
enlighting-recording of the flow, thus movies from the top and from the side are always
taken at different times.

5.2. Base flow

First we report that a PC flow can be observed in the region confined between the
belt and the PVC barriers. On the top left of figure 13 we superpose 40 images of the
z = 0 plane exactly as captured by the camera. Only the contrast was altered to exalt
streamlines. Both the intersections of the belt with the laser sheet and the left barrier edge
can be easily recognized as brighter lines. One also sees that streamlines close up near the
PVC barriers and recirculations are present. This is confirmed by the velocity field given
by the PIV algorithm and shown just below. The velocity plot is obtained by averaging
over 40 PIV fields (~ 1.3s), also we plot only one arrow over four in the horizontal
direction, to make the diagram readable. One remarks that up to 10cm far from the
center the flow is nicely parallel and the velocity gradient is linear. Both streamlines
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FIGURE 12. Left: sketch of the experimental shearing device seen from the side (top) and from
above (bottom). The two green shaded area correspond to two laser sheets which enlight the
mid vertical plane (i.e. y = 0) and the horizontal mid plane (i.e. z = 0). Two cameras allow to
image the flow in the enlighted areas. Right: schematic of confined DNS experiments. Two rigid
lateral walls entrain the fluid at constant velocity, and two rigid walls confine the flow in the
stream-wise direction. Vertical boundary conditions are periodic.

and PIV fields refer to an experiment where the base flow was already stationary. Now,
any experiment necessarily implies a transient phase where the flow evolves from a first
stationary phase, e.g. the whole fluid is at rest, to a second stationary phase which is the
forced parallel flow. We expect the base flow to establish via viscous entrainment starting
from the fluid layers which are close to the walls, thus the viscous time T}, = d? /v seems
to be an appropriate time scale for the transient. In order to verify this we need some
more quantitative prediction and consider the transient flow generated by two infinite
walls treated by Acheson (1990). As a first step, recirculations are neglected. If the flow
is initiated at ¢ = 0 the horizontal velocity has the form U(y,t) = Uy(y) — Ur(y, t), where
Up(y) is the asymptotic base flow and the transient part Ur(y,t) reads:

s
2 (—=1)7 .
Ur(yt) = W0~ U) Y- 25 e iy (5.1)
j=1

where U; is the velocity of the belt at ¢ = 0, for example U; = 0 if the experiment is
started with the fluid at rest. In figure 13 we compare the value of U(y,t) as expected
from equation (5.1) with the average value of the horizontal velocity as observed in a
typical experiment. The value of U is plotted as a function of y at four different times.
First, the velocity profile collapses on the expected PC flow (dashed line) around t = T,
which confirms that the base flow establishes via viscous entrainment. Also at ¢t = T,,/3
(circles), the value of the average horizontal velocity is already very close to the PC
flow. Secondly one remarks an excellent agreement of the experimental observations with
the infinite walls approximation, which suggests that the recirculation does not affect
significantly the shape of the transient flow. With regard to this, one should notice that
knowing the time the base flow needs to establish becomes crucial when determining the
growth rate of the instability, which will be discussed later.

Once the PC profile is established we want to detect possible deviations from the base
flow. For this aim we mainly focus on the mid plane y = 0 where no motion is expected
for the base flow. As a standard protocol we initiate the flow at low shear rate o and
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FIGURE 13. Left: top view of the z = 0 plane. On the top we show a superposition of 40 images
(i.e. ~ 1.3s) as captured by the camera. Only light contrast was exalted to show PIV particle
trajectories. On the bottom the velocity field (u,v) as reconstructed via the PIV algorithm. The
velocity plot is obtained averaging over 40 PIV fields (i.e. ~ 1.3s). Symbols refer to experimental
observations. Each profile corresponds to the time average of the horizontal velocity fields over
0.037},. Solid lines refer to the value of the expression (5.1) expected for the two infinite walls
problem (increasing time from clear gray to black). The dashed line refers to the asymptotic
t = oo solution.

then increase o by a small fraction (typically 15%). Top views of the plane z = 0 are
also taken to verify the shape of the parallel base flow. In each experiment the flow was
observed for at least one viscous time T}, = d? /v which may be taken as an upper-bound
for establishing the base flow. First we report that starting from very moderate Reynolds
number Re 2 300 the observed fluid oscillates coherently at a well defined frequency.
These bulk oscillations show a trivial pattern (i.e. k, = k, = k, = 0), and are due to
the periodic impact of the belt junction (which has some roughness) on the entraining
cylinder. In the following we discuss how perturbations become more finely structured
at higher Re number, and we give a criterion to distinguish these initial deviations from
a truly unstable pattern.

5.3. Instability

When the Re number is sufficiently high Re 2 1000 and for Froude number F'r ~ 1, an
exponentially growing motion is observed to form in the mid plane y = 0. The horizontal
velocity perturbation u shows a well defined spatial pattern where horizontal and vertical
wavelengths A, A, can be fairly detected, with A\, /A, ~ 8. Results for this reference case
are summarised in figure 14.

On the top of figure 14 we plot the horizontal velocity perturbation v at x =y = 0
as a function of the time ¢ and vertical direction z for a reference (unstable) experiment.
At t ~ 73.50! the imposed shear has changed from a lower value of ¢ = 0.34s57!
to 1.15s7! and at t ~ 5500 one observes the appearance of a vertical wavelength.
One also observes that the t — periodic and z — invariant bulk motion described in
the previous section is present since the very beginning and is still visible at large time,
superposed to the instability pattern. In figure 14 (bottom left), we consider the time
evolution of the order parameter (u2)!/? for the same unstable case as above (black line)
and for another case where (red line) the imposed shear, o is smaller by a fraction 1/8.
The average square of the horizontal perturbation u? is computed at the center vertical
line z = 0,y = 0 in three steps starting from the spatio-temporal diagram of u. At each
time we take the average of u over a short interval ~ 4 ¢!, subtract the linear regression
in 2z, compute the square and finally average over the vertical direction. We stress that
subtracting the linear regression allows us to get rid of the bulk oscillations and of any
possible top-bottom anisotropy due to a non perfect verticality of the laser sheet. First
of all one remarks that the unstable case (black line) shows a clear growth event of the
order parameter which does not happen for the stable case (red line), thus indicating



The linear instability of the stmtiﬁed plane Couette ﬂow. 19

» |
"!h ’m } '
| 'In” ' ]

, "H
,n” “ 01' n' ‘N

0.1
0.05

i' Il |! M -0.05
W
4

-0.1

-0.15

0.04 | &

2V1/2

20.02 |

F1GURE 14. Top: Horizontal velocity perturbation u at x = y = 0 as a function of time. Colorbar
is set to +15% of the wall speed. Here ¢ = 1.15s™ !, Fr = 0.82, Re = 969. All quantities
are dimensionless. At ¢ = 73.5 the imposed shear switched from 0.34s7! to 1.15s~*. Bottom
left: Evolution of the mean horizontal perturbation (E)l/ 2 as a function of time for the same
experiment (black line) and for a stable experiment where both Fr and Re are diminished by

a fraction 1/8 (red line). The inset shows log (u2)'/? for the unstable case. At each time u? is
obtained averaging over a short interval ~ 4 | taking the square and finally averaging over the
vertical direction. Bottom right: Snapshot of the horizontal velocity perturbation w in the plane
y = 0, here t ~ 900.

the appearance of an instability. Focusing on the unstable case one clearly sees that a
first increase of (u2)'/? occurs during the interval of ~ 0.3T, after the change in the
imposed shear, where the value of the viscous time is T, = d?/v ~ 100001, At larger
time, u2 increases again, now in an exponential way (see the inset in semi-log scale),
and finally saturates to a constant value. The exponential growth rate is approximately
w ~ 0.060~" (although the noise makes difficult a precise measurement of the growth
rate). We claim that the first growing phase coincides with the progressive onset of the
base PC flow at the imposed shear while the second growing phase corresponds to the
onset of a linear instability. Note that for the stable case (red line) the first growing
phase is less visible, because the shear o is imposed starting from a slightly lower value.
Finally on the bottom right of figure 14 we present a snapshot of the u field in the plane
y = 0. One observes a regular periodic pattern characterized by a vertical wavelength
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A, ~ 0.7Ly and an horizontal wavelength A\, ~ 5.5 L, where we recall that Ly is half
the width of the channel.

Below we consider the stability of our experimental flow in the (Re, F'r) space which
is the same for the linear stability analysis performed in section 3.1. To this aim we
need to define a common protocol to assess the presence or not of the instability. One
criterion may be the appearance of a vertical length. Unfortunately the latter is a smooth
process, for example a vertical wavelength was often visible at a shear o lower than what
we assess to be the unstable case. Nonetheless the associated signal was generally weak
and no growth process was observed. The existence of the latter seems to be the most
reliable criterion, but demands longer experiments and generally imposes to start from
very small o, which imposes to slow down the flow after each experiment. As a general
rule we rather look at the saturated amplitude of the order parameter (u2)Y/? as a
function of o and detect if an abrupt change occurs, as it is clearly visible in figure 14
at large time. In particular (ﬁ)l/ 2 is computed once the instability has saturated or
alternatively after a time of the order of the viscous time T, after the actual value of
the shear is imposed, for example to get rid of the base flow transient. We choose the
control parameter o (i.e. the imposed shear) as the most suitable one, because it can be
varied continuously, simply controlling the speed of the entraining motor. As a drawback
both Re and F'r are linear in o, thus the stability diagram must be explored moving
on tilted straight lines for which the ratio Fr/Re = v/Nd? is constant. Any change
in the vertical stratification N and gap width d is considerably more laborious, which
constrains the exploration of the (Re, F'r) space to a few different Fr/Re = const lines.
In figure 15 we report a collection of 6 series of experiments performed at a different
value of Fr/Re corresponding to different values of N and d. Experimental results
are superposed to the linear stability diagram (figure 4). Experiments labelled
with L refer to large gap experiments (D/d = 2.4) while those labelled with N refer to
narrow gap experiments (D/d = 5.7). In the inset of the same figure we report the
evolution of the quantity (?)1/2 as a function of ¢ for the experiment N1. One
sees that the order parameter abruptly increases when the imposed shear o
crosses a threshold value .. This allows to assess that the experimental flow
is stable (closed symbols) for o < o. and unstable (open symbols) for ¢ > o..

6. Discussion

In this section we compare experimental results with those of linear stability
analysis. Looking at figure 15 one observes that the transition of the quantity (u2)1/ 2
(i.e. from close to open symbols) happens close to the marginal contour where linear
growing modes appear according to linear stability analysis. This strongly supports the
claim that we experimentally observe the signature of the instability predicted by the
linear analysis.

Below we compare the temporal behaviour of the observed instability with the linear
analysis. Besides the growth rate, that precisely characterizes the instability onset, we
want to discuss first what happens during the transient phase that necessarily comes with
each experiment. This constitutes a difference with the linear analysis where the base flow
is always constant, and may affect the estimation of the observed growth rate. In other
words, one may wonder at which time since the beginning of an experiment the instability
is expected to grow. The question becomes particularly relevant when considering that
the expected growth rate is comparable with and even smaller than the viscous time.
Also we want to rule out the possibility that the appearance of the unstable pattern is
due rather to the transient profile of our flow, for example a non constant shear profile
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FIGURE 15. Growth rate of the most unstable mode in the space (Re, Fr) exactly as in figure
4. Now we superpose the results of experiments (symbols). One sees that transition from
stable (closed symbols) to unstable (open symbols) cases happen close to the marginal contour
Im(w) = 0. The vertical dashed line corresponds to Re = 230 at which the non stratified flow
(i.e. pure water) becomes unstable. The inset represents the evolution of the order parameter

(u?)'/? as a function of o for the experiment N1.

like that considered by Chen et al. (2016). The temporal diagram of figure 14 shows
that the exponential growth starts at ¢ ~ T,/3, which seems to be consistent with the
description of the base flow given in section 5.2. In order to give a more quantitative
explanation we solved a modified eigenvalue problem where the base flow is now given by
the expression (5.1) for a collection of different times and with the same set of parameters
as the reference experiment presented in figure 14. The results are presented in figure
16, where we report the eigenvalues of the most unstable mode focusing close to the
transition region I'm(w) = 0. One remarks that no unstable eigenvalue is present for
t < 0.27, while one unstable mode appears for t > 0.37,, thus confirming that the
base flow must be sufficiently established for the instability to develop. This result was
confirmed by specific DNS where the initial condition is not the PC flow, but the flow is
at rest and the shear profile is progressively established through the no slip boundaries.
Also in this case the growth of perturbations is delayed to the moment when the shear
profile has become almost constant. We then conclude that what we observe is associated
with a constant shear plane Couette profile.

Besides instability threshold in the Re, F'r space we also want to compare the shape
of the mode selected in our experimental device with the unstable mode predicted by
linear theory. If we focus again on the reference case described in figure 14, we remark
that both &k, and k. are larger than what is predicted by the linear theory for the most
unstable mode, and the perturbation is oscillating in time while linear theory predicts
that instability appears as a stationary mode. One remarks that oscillations are quite
regular and relatively slow, with a typical period T = 43 + 30~ !, where the uncertainty
is taken as the width at mid height of the peak in the average temporal spectrum. We
recall that according to linear analysis oscillatory branches also exist (see figure 3) which
appear at higher Re number, typically Re 2 2000. Interestingly the period associated
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FIGURE 16. Solutions of the modified eigenvalue problem for a base flow given by expression
(5.1). Here we choose the same Re, F'r, and U; (i.e. the belt velocity at ¢t = 0) as the reference
experiment. The eigenvalues problem is solved for the combination (ks, k.) which is the most
unstable according to linear analysis and at seven different transient times. Different symbols
correspond to different times. The dashed line marks the limit for instability.

to the first oscillating branch is always long, for example with the F'r of the reference
experiment N1 and Re = 2500 one has T ~ 420~ 1. Moreover this branch happens at
larger wave numbers more compatible with the observed ones. In this scenario what we
look at may be either a single propagative mode, for example of the type (b), as it is
visible in the lower part of the spatio-temporal diagram, or a standing wave generated
by two counterpropagating modes of type (b) as it is visible in the upper part of the
same diagram. These elements suggest that experimentally, the instability is activated
close to the absolute threshold (i.e. that where first stationary modes appear) predicted
by linear analysis, but a different non stationary mode is selected in the end.

In any case one should recall that our linear and experimental problems are different,
thus unstable modes are not expected to share the same features. The major difference
between the theoretical system and our experimental setup is the finite size of the domain.
In principle, to mimic periodic boundary conditions imposed in linear calculations, one
wants to take the horizontal and vertical aspect ratio D/d > 1 and H/d > 1 while
our best realization (i.e. narrow gap) of this hypothesis was D/d = 5.7 and H/d = 2.4.
We observe that the impact of physical confinement is twofold. First from the point
of view of modal analysis only the wavelengths which fit in the domain may have a
chance to develop. This was confirmed by periodic DNS that do not show any instability
whenever the box size does not fit the spatial shape of unstable modes. We notice that
the eigenvalue problem is solved assigning an arbitrary value of k, and k., thus when
comparing to DNS and experiments one should retain that the (k,, k) grid of figure 2 is
coarsed-grain, especially at low k, and k,. Thus the ideal constraint for the aspect ratio
are D/d > A\, and H/d > )., where \; and A, are the non dimensional wavelengths
of the unstable mode we want to observe. A second problem appears in the stream-wise
direction because the streamlines must turn and close up when getting close to the walls
that close the domain in the stream-wise direction, as it is clearly visible in the snapshot
reported in figure 13. We mentioned before that this feature does not modify significantly
the shape of the base flow in the bulk, but it may locally destabilize the flow (i.e. close
to the corners) and successively affect the stability of the whole domain.
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6.1. Simulations in a finite domain

In order to closer investigate finite size effects, we performed new DNS where the
computational domain is now closed in the stream-wise direction by two solid walls with
no-slip insulating boundary conditions as sketched in figure 12 (right), while boundary
conditions remain periodic in the vertical direction. Note that compared with the periodic
case discussed in section 4 the mesh is further refined close to the two additional stream-
wise boundaries, in order to properly solve for the boundary layers. In addition, the
corners of the domain are now singular due to the incompatibility between the velocity
imposed at the side boundaries and the fixed stream-wise walls. This is naturally
smoothed by viscosity but is nevertheless an inevitable source of vorticity. In figure
17 (top) we report the results of a DNS confined simulation which reproduces both the
control parameters (Fr,Re) and the aspect ratio of the reference experiment illustrated in
figure 14. For a direct comparison we report again the results of the reference experiment
(bottom) already shown in figure 14 with the only difference that bulk oscillations are
now filtered from the spatio temporal diagram of u at x = y = 0 and the origin of
time axis is shifted forward to ¢t = T,,/3 which is when we estimate that the PC flow
is well established. One observes a striking good agreement between our DNS results
and experimental result on both the spatial and temporal shapes of the selected mode.
Computing the temporal spectrum we find that the temporal frequency as predicted
by DNS is T = 50 + 50! which is compatible with the experimental one, while the
consistency of spatial wavelengths is evident because in both cases an integer number
of velocity maxima fit in the vertical mid plane y = 0. Finally we observe that as a
whole the transition from the initial noise to the final non linear pattern takes almost
the same time in DNS and the experiment. As a summary, figure 17 indicates that we
correctly isolated the crucial factor which possibly alters the selection of the unstable
mode, that is the stream-wise confinement. Incidentally we also report that additional
DNS show that the form of the late non-linear stage is quite sensitive to initial and
boundary conditions. For example slightly varying the box dimensions or the amount
of initial noise the spatial shape of the selected mode is different and travelling waves
or standing waves patterns can be alternatively present. To better investigate the role
of stream-wise boundaries we perform additional DNS with a non stratified (Fr = oo)
PC flow in exactly the same confined geometry and same Re number as the one we
just described (figure 17). We recall that v perturbations do not grow when considering
periodic boundary conditions at F'r = oo, as expected by the fact that the unstratified
PC flow is linearly stable. One observes that vertical kinetic energy (black dashed line
in figure 18) grows in an exponential way and in a shorter time compared to both the
stratified DNS and experiment in figure 17 while the typical vertical length scale is
larger. A similar pattern is also observed in unstratified experiment as soon as Re 2 300.
A detailed investigation of the nature of this instability of a confined and unstratified
PC flow is beyond the scope of the present work. Nonetheless the shape of the flow at
the corners suggests that it may locally destabilise via centrifugal instability which will
be studied in further investigations.

We conclude that the presence of boundaries may destabilize the PC flow with or
without the presence of stratification. Now, the careful reader will agree that even if
DNS fully justify differences between the linear analysis and the observed experimental
pattern we are left with a cumbersome question regarding the origin of the perturbation
pattern observed in the confined and stratified configuration: does this pattern coincide
with a boundary-induced modification of the linear instability, or rather with the pure
hydrodynamic boundary-induced instability modified by the stratification?
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FIGURE 17. Left: Spatio-temporal diagram of the perturbation u at the center line x = 0,
y = 0 for the reference case Re = 969, Fr = 0.82 for confined DNS (top) and the reference
experiment (bottom). Spurious bulk oscillations are filtered from the experimental data. Right:
perturbation u in the plane y = 0 once the flow has become unstable for confined DNS (top) and
the experiment (bottom). The red dashed rectangle indicates the area accessible to experimental
measurements.

The key to this answer resides in the same approach we followed with experiments, that
is to detect if and when, our flow abruptly changes when varying the control parameter
o. We then consider further DNS which copy the parameters of another experiment
of our reference series N1 where Fr and Re were 30% smaller than the unstable case
described in figure 14. At the same time we repeat unstratified simulations at such a
lower value of the Re number. We observe that the new unstratified case is almost
unchanged while the subcritical stratified case shows a dramatic change. In this case
perturbations are significant only close to the boundaries, and no instability develops in
the bulk. In figure 18 we report the time evolution of the vertical kinetic energy for all the
stream-wise confined DNS we have discussed above, together with the one performed in a
periodic domain. One observes that in the unstratified case (dashed line), perturbations
rapidly grow and saturate at the same value independently of the Re number. If we
add stratification (solid lines), perturbation grows (black line) and saturates to the same
value as periodic simulation if Re number is beyond the threshold predicted by the
linear analysis. Conversely perturbations are damped (dashed line) when the Re number
is below the threshold.

We have now enough elements to conclude that what we observe both in experiments
and DNS (figure 17) is a signature of the linear instability of a PC flow, vertically stratified
in density. Besides we observe that stream-wise boundaries are source of instability for
a flow and likely affect the features, or possibly just the selection, of the unstable mode
which shapes in the end the observed pattern.

Incidentally we report that additional DNS were performed in a domain which is larger
but still confined in the stream-wise direction, in order to explore when finite size effects
become negligible and suitably design a larger experiment. Surprisingly we find that for
a doubled size domain, the growth rate decreases and almost matches that of periodic
simulations but the instability disappears (we observe a pattern similar to the subcritical
stratified case) when further increasing the stream-wise domain (i.e. 4 times larger).
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FIGURE 18. Vertical kinetic energy density (W)l/ 2 as a function of time, for five different

DNS experiments. Black lines correspond to supercritical simulations (Re = 966) performed at
Fr = 0.82 (solid line), F'r = co (dashed line), and Fr = 0.82 with periodic boundary conditions
in the stream-wide direction (dash-dotted line). Red lines refer to subcritical simulations
(Re = 629) performed at Fr = 0.53 (solid line) and F'r = co (dashed line). The thin black line
corresponds to the growth of the most unstable mode at Re = 966, F'r = 0.82 as predicted by the
linear theory. Horizontal dashed lines highlight the saturation level of supercritical unstratified
and stratified DNS respectively.

With respect to this trend the long computation time demanded to consider even larger
domains prevents us to be conclusive and further studies will be necessary.

The transition from the confined to the periodic case happens in a discontinuous way
which needs to be further investigated.

At this stage we speculate that stream-wise boundaries may both introduce some
forcing and inhibit the instability, perturbing the normal form and thus the resonance
of the waves supported by the flow. Horizontal aspect ratio possibly controls the mutual
importance of these two effects in a non trivial, non monotonous way, thus explaining
the observed scenario.

7. Conclusions

We performed the linear stability analysis of the plane Couette Flow for a stably
stratified fluid with a constant density gradient orthogonal to the shear. The domain
has rigid closed boundaries in the direction of the shear, and open periodic boundaries
in both vertical and stream-wise directions. Unstable stationary modes are found at
strikingly moderate Reynolds number Re > 700 and for a Froude number close to
1 for non vanishing horizontal and vertical wavenumbers with k,/k, ~ 0.2. We then
explore the stability of the flow in the (Re, F'r) space. In the region we consider, the
most unstable mode is always stationary and the growth rate remains relatively small,
while the range of unstable Fr numbers increases when increasing the Re number.
Moreover the flow is unstable only to three dimensional perturbations, i.e. only for
ky,k, # 0. This result constitutes a fundamental difference with homogeneous shear
flows for which the Squire theorem prescribes that the most unstable mode should be two-
dimensional. In the presence of stratification, hyperbolic tangent profile (Deloncle et al.
2007) and Kolmogorov flow (Lucas et al. 2017) are also dominated by two-dimensional



26 G. Facchini, B. Favier, P. Le Gal, M. Wang, M. Le Bars

perturbations, while both boundary layer profile (Chen et al. 2016) and strato-rotational
instability (Yavneh et al. 2001) similarly appear for three-dimensional perturbations.
Even more recently Chen et al. (2016) showed that a linear instability does occur in
parallel flows free from inflection points, when a vertical stratification is added, but only
the plane Poiseuille flow and the viscous boundary layer were considered. Remarkably
our instability also appears close to Fr = 1, confirming the necessary coexistence of
shear and stratification. The critical Reynolds number for the stratified plane Couette
flow turns to be at least two times smaller than for the boundary layer and slightly larger
than for the Poiseuille flow.

Looking at the most unstable mode of the linear problem, vertical velocity and density
perturbations develop close to the boundaries which suggests that a crucial role may be
played by lateral boundaries. Nonetheless, a comparable horizontal motion dominates in
the mid vertical plane, and shows a vertically modulated pattern which is reminiscent of
the deep equatorial currents, and staircase density layering in the Earth ocean (Dunkerton
1981; Dengler & Quadfasel 2002; d’Orgeville et al. 2004).

A mechanism was proposed to explain the onset of the instability as the one suggested
by Satomura (1981) adapted to the case of internal gravity waves, instead of shallow
water waves. In this picture internal gravity waves are trapped close to the boundaries
and Doppler shifted, thus allowing two counter propagating waves to become stationary
and mutually resonant. The shape of the unstable region in the wave number space and
the appearance of discrete additional resonances are also fully captured by the model,
thus supporting its relevance. An analogous mechanism was also invoked at the origin of
Strato-Rotational instability both in the plane Couette (Kushner et al. 1998; Vanneste
& Yavneh 2007) and the Taylor-Couette (Yavneh et al. 2001; Park & Billant 2013)
geometries. More generally this wave interaction process identifies a class of
instability which is characteristic of shear flows (e.g. Baines & Mitsudera
1994).

The linear stability analysis was confirmed by DNS which fairly reproduce the spatial
pattern and the growth rate. We report that no instability is observed when none of the
unstable modes can properly fit in the domain. This confirms that the instability sharply
selects the spatial pattern of the perturbation.

We analysed the experimental flow produced by a shearing device immersed in a tank
filled with salty water linearly stratified in density. We report that when the F'r number
is close to 1 and for Re > 1000 velocity perturbations are observed to grow in an
exponential way. Remarkably we observe that perturbations start to grow only when
the plane Couette profile is almost completely established. This was confirmed by ad-hoc
versions of the linear problem for a collection of transient profiles and by DNS which
mimic the transient flow of experiments. We conclude that the observed instability is
crucially associated to the shape of the shear, namely the plane Couette profile.

Then we explored the stability of the flow in the (Re, F'r) space varying the control
parameter o, that is equivalent to move along F'r/Re = const lines, for a few different
values of Fr/Re. For each series of experiments we observe that an abrupt increase in
the perturbation amplitude occurs, when ¢ is bigger than a threshold value o.. When
adding experimental data to the stability diagram predicted by linear theory we find that
the threshold contour indicated by experiments qualitatively matches the margin of the
linearly unstable region. Also, close to the threshold, the velocity perturbation shows a
well organized pattern and is almost horizontal, which is in agreement with the solution of
the linear problem. Nonetheless the unstable mode slowly oscillates in time and appears
at higher wave numbers than the most unstable (stationary) mode indicated by the linear
analysis. These two elements suggest that the mode selected in our experiment is not the
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most unstable of those predicted by linear analysis, or that these latter are possibly not
the same when considering the finite size experimental apparatus.

In any case we claim that the origin of the discrepancy relies on the critically low
value of the horizontal aspect ratio of our experimental domain, which is necessarily
bounded in the stream-wise direction. The relevance of this hypothesis has been tested
with complementary DNS where no slip rigid boundaries are now implemented also in
the stream-wise direction. Remarkably, when copying the aspect ratio of our experiments
we minutely reproduce the perturbation pattern observed in experiments. More generally
DNS show that stream-wise confinement affects the stability of the flow irrespectively
of the Fr number (i.e. also without stratification), which questions the link between the
instability observed in experiment and that predicted by linear analysis. We performed
then DNS of a subcritical stratified experiment (i.e. Re and Fr below the critical value)
and show that the instability disappears. We then acknowledge the unstable pattern
observed in both experiments and DNS as a true signature of the linear instability of a
plane Couette flow vertically stratified in density.

Future studies are planned to closer investigate which is the critical aspect ratio to
recover quantitatively the results of linear theory and periodic DNS. To this aim new DNS
will be performed in a larger domain, which will possibly indicate how to correspondingly
design a new set-up.

Quantitative measurements of the density field will be also performed in future ex-
periments to quantify the density layering whose evidences were already available in our
highest Reynolds experiments in the form of regularly spaced optical distortion. Such
measurements will possibly add cues to the comprehension of the diapycnal mixing in
the presence of horizontal layering as recently studied with experiments (Woods et al.
2010; Oglethorpe et al. 2013) and numerical simulations (Lucas & Caulfield 2017) in the
case of the Taylor-Couette and Kolmogorov flows respectively.
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