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Abstract 10 

 11 

Simple, naïve, smart or clearness persistences are tools largely used as naïve predictors for the global 12 

solar irradiation forecasting. It is essential to compare the performances of sophisticated prediction 13 

approaches with that of a reference approach generally a naïve methods. In this paper, a new kind of 14 

naïve “nowcaster” is developed, a persistence model based on the stochastic aspect of measured solar 15 

energy signal denoted stochastic persistence and constructed without needing a large collection of 16 

historical data. Two versions are proposed: one based on an additive and one on a multiplicative 17 

scheme; a theoretical description and an experimental validation based on measurements realized in 18 

Ajaccio (France) and Tilos (Greece) are exposed. The results show that this approach is efficient, easy 19 

to implement and does not need historical data as the machine learning methods usually employed. 20 

This new solar irradiation predictor could become an interesting tool and become a new member of the 21 

solar forecasting family.  22 

 23 
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1. Introduction 25 

 26 

1.1. Interest of solar irradiation forecasting 27 

 28 

Over the last ten years, energy market was boosted with the advent of renewable energies and in 29 

particular thanks to solar energy. The main interest of this kind of primary energy is to be easily and 30 

cleanly transformed into electricity particularly via photovoltaic conversion [1], which is the most 31 

flexible form of energy [2]. The main problem concerning the use of solar energy is its continuous 32 

variability relating both to time and space [3,4]. The variability can be divided into two components, 33 

the first one denoted deterministic part and the second one stochastic or random part. If the 34 

deterministic component is generated by the movements of rotation and revolution of the Earth [5], the 35 

stochastic component is generated by weather and cloud occurrences [6]. Solar energy intermittency 36 

has a great influence on the output power of photovoltaic (PV) plants, which can fluctuate significantly 37 

in short intervals (related to the random part) and in long intervals (related to daily and yearly seasonal 38 

effects) [7]. This no-controllable intermittence has negative consequences on the management of the 39 

electrical distribution and stability (forcing to limit the penetration rate of such intermittent energy 40 

systems) and on the kWh production costs [8]. One way to solve or to reduce  this problem is to 41 

forecast this PV output power [9]. A good forecast helps the grid manager to plan the other energy 42 

capabilities to compensate for the PV plants power variations [10]. The forecasting quality of the 43 

ouput PV plant is strongly linked to the global horizontal irradiation (GHI) forecasting accuracy [11]. 44 

Some authors go even further and consider the problem of PV output power forecasting and the solar 45 

irradiance forecasting problem as equal [12]. In this paper, a new forecasting tool is developed and 46 

tested in view to assist the electrical grid manager by predicting easily GHI. 47 

1.2. Prediction and Parsimony 48 

 49 

Time series forecasting [13] consists to estimate possible events or their evolutions by using as tools 50 

the past and the present. Before exposing the deferent tools available in order to nowcast GHI, it is 51 

important to define the “time series” term and the word “prediction” related to this kind of 52 

mathematical tools [14,15].  53 

Definition 1.1. Time series: A univariate time series is a sequence of measurements of the same 54 

variable collected over time.  Most often, the measurements are made at regular time intervals. The 55 

common notation concerning a time series of GHI measurement is                  where T is 56 

the index set. 57 
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Remark 1.1. GHI (nondeterministic) time series may be analyzed by assuming they are partly the 58 

manifestations of stochastic (random) processes [16–18] which is a statistical phenomenon consisting 59 

of a collection of random variables ordered in time and evolving according to a priori unknown 60 

probabilistic laws. 61 

To succeed a time series prediction, only four conditions must be fulfilled: 62 

- a certain regularity in the functioning of the studied process, 63 

- this regularity must provide information on the future, 64 

- the method chosen to establish the prediction captures a part of this regularity, 65 

- the prediction will be efficient if and only if the "noise" or past irregularities are excluded as 66 

far as possible.  67 

Forecasting the solar irradiation from 1 hour to 6 hours (defining the nowcasting [12]) is currently 68 

done using statistical or machine learning methods coupled to time series analysis. Many papers show 69 

that these methods yield similar results [19–21], none appears to outperform other and sometimes 70 

simple methods propose very similar results. According to a review analysis [22], it seems that it is not 71 

interesting to predict with very complex methods because a gain of tenths of a percent on the 72 

forecasting performances has only a small (but not negligible) impact on the grid management. 73 

Moreover, in [8], authors model a fictive solar plant with a nominal capacity of 1000 kW and show 74 

that a large nRMSE reduction from 32% to 28% (-4 percentage points) allows a financial saving close 75 

to 9%, so 70€ per day for the considered installation. In fact, the electricity grid operator needs a 76 

reliable tool which is adaptable for all horizons (between 5 minutes and 6 hours). The ideal case is to 77 

elaborate a tool which does not require a large learning history [15] in order to be quickly deployed on 78 

any site. In this paper we propose a new very simple and parsimonious tool based on the persistence of 79 

stochastic signal. Note that if in the operational case, the prediction with persistence does not need a 80 

large historical data (only a few hours), the present study is a retrospective comparison and is operated 81 

with historical data. The idea behind parsimonious models stems from the 14th century and the 82 

formulation of the Occam’s razor [23] stating that “we should use no more parameters than necessary 83 

to explain the model well. There is generally a tradeoff between goodness of fit and parsimony. 84 

Models with many parameters (as machine learning tools [24,25]) tend to have a better fit than high 85 

parsimony models (as persistence), however this is not usually a good thing. Indeed, adding more 86 

parameters usually results in a good model fit for the data at hand, but that same model will likely be 87 

useless for predicting other data sets. In [26] (pp. 103-104), sentences summarize the interpretation 88 

related to simple models results: «Sometimes a simple model will outperform a more complex model . 89 

. . Nevertheless, I believe that deliberately limiting the complexity of the model is not fruitful when the 90 

problem is evidently complex. Instead, if a simple model is found that outperforms some particular 91 

complex model, the appropriate response is to define a different complex model that captures whatever 92 
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aspect of the problem led to the simple model performing well». It is essential to correctly study the 93 

simple models before to elaborate more sophistical approaches. Reference models should be well 94 

chosen to truly and objectively decide on the quality of the forecast. 95 

 96 

2. Machine learning or simple models of persistence 97 

 98 

Machine learning [27] is a branch of artificial intelligence [28]. It concerns the construction and the 99 

study of systems that can learn from data sets, giving to computers the ability to learn without being 100 

explicitly programmed. 101 

 102 

2.1. Models definitions 103 

With the machine learning tools based predictions, the system is built from a random output (denoted 104 

variable y) and a set of random input (denoted variables x =         ). Using a learning sample 105 

        
  of known values of pairs (y,x), the aim is to obtain and estimate a model function      , 106 

among all the functions      available and which allows to map (as well as possible!) x to y. The 107 

objective is reached after an optimization of the expected value (   of some specified loss functions 108 

          over the joint distribution of all (y,x) pairs:  109 

                                                   Equation 1 110 

In a regression problem, the loss function           includes usually 2-norm or 1-norm distances 111 

respectively computed from the squared-error           (Euclidean norm giving more importance 112 

to large deviations or outliers) and the absolute error            (absolute-value norm giving 113 

importance to the trend gap). Typically in the supervised cases, the machine learning methods are 114 

confronted to bias-variance tradeoff and are very user dependent and difficult to make a good use [29]. 115 

Is machine learning is overhyped? This question was recently asked in [30], it may be time to consider 116 

other methods of modeling. The simplest method of forecasting the weather, persistence, relies upon 117 

today's conditions to forecast the conditions tomorrow. This can be a valid way of forecasting the 118 

weather when it is in a steady state, such as during the summer season when clouds are rare. This 119 

method of forecasting strongly depends upon the presence of a stagnant weather pattern. Therefore, 120 

with a fluctuating weather pattern, this method of forecasting becomes inaccurate. It can be useful in 121 

both short range forecasts and long range forecasts. The time series of global horizontal irradiation 122 

(GHI) is composed by a stochastic part (Cf previous section); often when a machine learning method 123 

is used, a strong condition is necessary: the stationarity of the input data [31]. That means that the joint 124 
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distribution of GHI(t) and GHI(t+h) does not depend on t but only on h         . To our 125 

knowledge, it is not proved that the tools used to make the GHI time series stationary allows to 126 

correctly respect this condition [32]. It is legitimate to ask: can we really use these methods even if the 127 

results are consistent ? we have of course not the answer and we would be very embarrassed to answer 128 

"no" to this question given that we ourselves abundantly study the forecast of GHI via the data driven, 129 

machine learning, artificial intelligence and others statistical methods. What is sure is that with the 130 

persistence there are both advantages: directly usable (without learning and without need of historical 131 

data) and any hypotheses or conditions concerning the model building. The “classical” persistence is 132 

not really adapted to the forecast [29] while the smart persistence (integrating a knowledge-based 133 

model using a clear sky model taking into account the sun position and the average conditions of sky 134 

state) allows to greatly improve the prediction [19].  135 

Definition 2.1. Simple persistence: the term persistence (or simple persistence) in time series context 136 

is related to the notion of memory properties of time series, the model is built for the horizon (look-137 

ahead time) h as                     , where t is a time index and   denotes the residual. The 138 

forecast      obtained with this model is                 , which states that the expected value 139 

at horizon  h is equal to the most recent measured value.  140 

Definition 2.2. Smart persistence: This model is based on the same assumption than persistence model 141 

but is corrected for the deterministic diurnal variation in solar irradiance, using a knowledge-based 142 

model       :                          143 

2.2. A short literature review on persistence 144 

Numerous studies show the efficiency of these naïve predictions: the persistence. In [33] the 145 

persistence is extremely detailed and authors wrote «It has been found that for short time horizons, 146 

beating persistence models is a difficult task » and demonstrated that, often, the persistence is the best 147 

method to use for the short-casting (<1h) and the now-casting (1h-6h). In several studies, the simple 148 

persistence allows obtaining very good results [34- for which the difference in term of prediction error, 149 

compared with  machine learning method is lower than 2.5% [35] and in [36] lower than 5%. 150 

Concerning the comparison between machine learning and smart (or clearness) persistence, this 151 

difference is even lower, [19] and reach 2% and the authors wrote  “for hour ahead solar forecasting, 152 

the picture is less clear and seems to depend on the sky conditions“. For stable clear sky conditions 153 

(clear skies for instance), the nonlinear methods slightly improve the scaled-persistence. For unstable 154 

sky conditions, the discrepancy between the machine learning methods and the simple models is more 155 

pronounced with a 2% nRMSE difference in average.  In [37] and [38] authors showed that the smart 156 

persistence is a good predictor compared to more complicated methods with an increasing of nRMSE 157 

of 1%. In [39] and [40] the persistence is sometime as efficient as sophisticated models while in [35] it 158 
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is better than support vector machine. Note than the smart persistence use depends on the clear sky 159 

model use as described in [41]. In conclusion, it appears that the persistence should be an interesting 160 

forecasting. However, keep in mind that the atmospheric dynamics has major importance, and cannot 161 

be dismissed from the predictors without affecting their performance, especially when the prediction 162 

time horizon is larger than 1 hour. So, in theory, this kind of prediction based on the persistence of the 163 

phenomenon is dedicated to the very short horizons and will never be as powerful as models based on 164 

atmospheric dynamics. 165 

 166 

3. Stochastic persistence formalisms  167 

 168 

As all techniques for estimating derivatives of a noisy signal, persistence suffers from a high 169 

sensitivity to noise (or quick fluctuations). To quantify the noise related to a time series, it is common 170 

to estimate the Signal Noise Ratio (SNR) defined by the ratio between the average of the signal and the 171 

noise (standard deviation of the time series). It is a multiplicative inverse of the variation coefficient 172 

[42]. On one year and for an hourly time granularity in Tilos (Greece, 1 hour horizon), SNR varies 173 

between 0.8 and 0.6 respectively in summer and winter. When this parameter is high the persistence or 174 

smart persistence gives very good results (in summer nRMSE=8.7% for smart persistence) but 175 

becomes less interesting and efficient when SNR decreases (in winter nRMSE =17.4% for smart 176 

persistence). In this paper, we propose to modify the persistence estimation considering the fact that 177 

the studied series are noisy time series and thus the stochastic aspect of the measured signal will be 178 

taken into account. Note that, as SNR varies, the variability varies also, so it is very complicated for a 179 

machine learning method to take into account all these characteristics without considered additional 180 

informations such as exogenous data or dummy temporal variables. The simple persistence is 181 

described in the definition 2.1, for the definition of the smart persistence, the function         (in the 182 

definition 2.2) is usually defined as the ratio       of the solar radiation at the ground level on the 183 

estimated clear sky solar radiation (      is computed using the well-known Solis model [43,44]) as 184 

described by : 185 

                 
       

     
        Equation 2 186 

 In fact, this reference predictor is built from the persistence of the clear sky index (       187 

            ) and thus: 188 

                         Equation 3 189 
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We notice that one naturally transform the ratio to trend to an additive model by passing to the log (Cf 190 

Box-Cox transformation, logarithmic transformation is often necessary to stabilize the variance) with 191 

                            , hence although it is never used in solar irradiation forecasting, 192 

another definition of the smart persistence could be: 193 

                                                      Equation 4 194 

As we will see later, the inclusion of atmospheric variables (CS) into the prediction process for solar 195 

radiation will improve its performance. Two definitions (arithmetic and geometric means) are 196 

necessary to understand the next sections, either a GHI time series defined by              with 197 

         and     : 198 

Definition 3.1. Arithmetic mean at time t for the series x denoted           
 

 
          

     199 

Definition 3.2. Geometric mean at time t for the series x denoted       
                

    
   

  200 

3.1. Additive scheme of the stochastic persistence 201 

It is possible to define a time series as a sum of 2 other series referring to Wold’s theorem (or also to 202 

Cartier Perrin theorem) [45,46]. These theorems say that every covariance-stationary time series can 203 

be written as the sum of two time series, one deterministic and one stochastic; in our case, we can 204 

write :                
 
          with      is an uncorrelated sequence which is the 205 

innovation process (or white noise) that is the input to the linear filter {  }. b is the possibly infinite 206 

vector of moving average weights and      is a deterministic time series. Note that the stochastic part 207 

defines a new time series         
 
          thus in the following, we consider the decomposition 208 

form                 . Theoretically, the      part is not a predictable quantity, all the available 209 

prediction tools focus on the      estimation; so concerning the persistence, it seems illogical to apply 210 

and propagate a random term to the future. In this paper, we propose new definitions of the 211 

persistence; the first one (Fig 1) is based on a model of knowledge (clear sky model; CS) and on the 212 

arithmetic mean of the difference between CS and the past GHI measurements      (=      213 

           214 

                    
        with    

        
 

 
                      

    Equation 5 215 

This averaging allows minimizing the stochastic part of the measurement, it is a low pass filter 216 

operated by moving average. From Eq (6) it comes (        
     and       

     arithmetic means of the 217 

GHI, and CS): 218 

                  
                   

          Equation 6 219 
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This form of the persistence is equivalent to the reduced definition: 220 

                       Equation 7 221 

 222 

 223 

 224 

 225 

 226 

 227 

 228 

 229 

 230 

 231 

 232 

 233 

 234 

Figure 1. Principle of the stochastic persistence based on an additive scheme 235 

 236 

3.2.  Multiplicative scheme of the stochastic persistence 237 

Based on the previous subsection, we define now the persistence as a multiplicative scheme (Fig 2) 238 

where:  239 

                             
          Equation 8 240 

           
    is the geometric mean of the ratio to trend denoted clear sky index         

      

     
  and 241 

computed with: 242 

           
      

        

       
   
    

   
       Equation 9 243 

 244 

Thus, it comes: 245 

x 

x 
x 

x 

x 

  
        

x 
  
        

t-N       --      t   --    t+h Time 

GH

I-

CS 

(W

h/

m²

) 

x  GHI measurement 

x  GHI prediction  

      CS 
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       Equation 10 246 

 247 

 248 

 249 

 250 

 251 

 252 

 253 

 254 

Figure 2. Principle of the stochastic persistence based on a multiplicative scheme 255 

 256 

A similar equation (equation 11) to the smart persistence case is obtained. It is a generalized formula 257 

of the CSI persistence minimizing the random part of the measurement. If N=1 the equation is 258 

equivalent to the classical smart persistence equation. The reduced form is: 259 

                     
           Equation 11 260 

 261 

3.3. Stochastic persistence optimization 262 

In Table 1 are summarized all the models defined in the previous sections. 263 

 Definitions 

Simple persistence (P)                  

Smart persistence (SP) 

                 

or                  
       

     
 

Stochastic persistence : 

additive mode (    ) 

               

or                    
                   

     

Stochastic persistence : 

multiplicative mode (    ) 

                     
    

or                       
    

       

             
 

Table 1. Short summary concerning the persistence models. 264 

x 

x 
x 

x 

x 

           
    

x 
           

    

t-N       --      t   --    t+h Time 

CSI 

(W

h/

m²

) 

x  CSI measurement 

x  CSI prediction 

      CS (corresponding to CSI=1) 
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In the additive and multiplicative cases, the optimal solution consists in quantifying N which 265 

minimizes the prediction error (mean square error; MSE), then: 266 

                                         Equation 12 267 

This is a simple optimization problem that does not require the use of optimization algorithm; the 268 

exhaustive (or brute-force) search is easily and quickly achievable (in practice           269 

3.4. Theoretical validation of the stochastic persistence 270 

In order to understand the stochastic persistence interest, it is necessary to remind the MSE 271 

decomposition (variance and bias [47]) as described below: 272 

                                             
 

   Equation 13 273 

With                                          
 
    Equation 14 274 

And                           
 

                          
 
  Equation 15 275 

 276 

Whether one uses the smart persistence or one of the two stochastic persistences described previously, 277 

the biases are similar; indeed,              is identical in the three cases, only the variance changes 278 

and is directly impacted by the mean of CSI or  . In conclusion, the variance part and so MSE  279 

decreases with the stochastic persistence use. A validation can be operated considering two 280 

components of the measured GHI signal (mean and noise). Note that here the determinist part (   is 281 

not the CS described previously but only an average value (or trend) and the noise a random variable 282 

(  . So with the condition                , we obtain: 283 

                                             Equation 16 284 

In the additive case,              according to the white noise definition around a signal. Moreover 285 

with the stochastic persistence, there will be a persistence of the trend but not of the noise, so: 286 

                    . For the smart persistence (SP) and the stochastic persistences (     and 287 

    ), we obtain three important results: 288 

Result 1:                                        Equation 17 289 

Result 2 :                                                        Equation 18 290 

Result 3 :                                          Equation 20 291 
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The proofs of these three results are available in the annex of this paper. The most important result 292 

(the third) induces that the stochastic persistence improves (at least in theory) the prediction done with 293 

the smart persistence or the simple persistence.  294 

 295 

4. Results 296 

 297 

The forecasting of GHI needs usually a cleaning and a preparation of the dataset. Mistakes often 298 

appear in the temporal series of solar data due to problems with the acquisition system; an automatic 299 

quality check used in the frame of GEOSS project (Group on Earth Observation System of System) 300 

[48] has been applied to the data. The process to estimate the quality of the data [49] and the procedure 301 

applied to flag suspicious or erroneous measurements is described in detail in [50]. Then, we applied a 302 

filter on the datasets which remove all the data that correspond to a solar elevation angle lower than 303 

10°, in order to removing the night hours [19]. In this section, we will compare the prediction results 304 

of stochastic persistence with those related to two well know machine learning tools: ARMA (more 305 

precisely AR with MA part) and MLP. The training and optimization phases of these models are classic 306 

and interesting reader could find all the methodologies of prediction in [14,19]. In order to objectively 307 

compare the results, we propose the k-fold sampling use [51], the dataset is divided in ten samples 308 

(each with 80% of the total available data) and every sample is used at least one time for the training 309 

(only for the machine learning tools and not for the different persistences) and one time for the test 310 

(20% of the data and use for all models). This method induces to avoid the problems which can results 311 

of measurements of the dataset. The datasets used in this study are time series of measurements of 312 

global horizontal solar irradiation (GHI) in two different sites with different meteorological situations. 313 

The first dataset is provided by the station of Ajaccio from 1998 to 2009 (Corsica, France, 41°55 N, 314 

8°44 E, 4m asl), it is located near the Mediterranean Sea (100 m) and nearby mountains (1000 m 315 

altitude at 40 km from the site). This specific geographical configuration and the island context make 316 

the nebulosity difficult to forecast. The Mediterranean climate is characterized by hot summers with 317 

abundant sunshine and mild, dry and clear wintersand. The second one is constituted by measurements 318 

in Tilos from 2015 to 2016 (Tilos Island, Greece, 36°24 N, 27°22 E, 96m asl), which is a small island 319 

in the Dodecanese archipelago, the tallest mountain is about 650 m high and the cloud occurrences are 320 

much less frequent than in Ajaccio. These stations are equipped with pyranometers (CM 11 Kipp & 321 

Zonen) and standard meteorological sensors (pressure, temperature, etc.), the solar data are measured 322 

and stored with a time step equal to 1 min. 323 

4.1.  Hourly time granularity in Ajaccio 324 

 325 
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In this subsection, the data of Ajaccio are used. The tested horizons are from 1 hour to 6 hours. Before 326 

to expose the results of prediction, we propose to develop the optimization step of the StP
+
 and StP

x
 327 

formalisms. In Figs 3 and 4 are represented the prediction errors in term of size of sliding windows. 328 

The optimization concerns the N parameter described in Eq 12. The optimized models are related to N 329 

giving the lowest value of nRMSE. For example, in the first figure and concerning the horizon 1 hour, 330 

the StP
x 

constructed with  N=1, gives the best performance. In this case, the StP
x 

 is equivalent to 331 

classical SP estimator (see Eq 11). We remark that the higher the horizon is, the higher the optimized 332 

N value is in the two cases StP
x 

and StP
+
, but also that a known conclusion is verified: the prediction 333 

error increases with the horizon. The additive mode is less reliable than the multiplicative mode with 334 

the hourly time granularity. This kind of stochastic time series seems follow a multiplicative scheme. 335 

 336 

 337 

Figure 3. Prediction error (from horizon 1 hours to 6 hours in Ajaccio) in term of size of the sliding 338 

window concerning the StP
x
 (Eq. 12) 339 

 340 

Figure 4. Prediction error (from horizon 1 hour to 6 hour in Ajaccio) in term of size of the sliding 341 

window concerning the StP
+
 (Eq. 12) 342 
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The best configurations for each horizon are given in the Table 2. 343 

 

1 hour 2 hours 3 hours 4 hours 5 hours 6 hours 

StP
+
 1 1 71 84 83 82 

StP
x
 1 1 2 3 94 93 

Table 2. Value of the optimized N for each horizon (Ajaccio) 344 

Now the stochastic persistences are optimized, it is essential to compare the results of prediction with 345 

classical methodologies (SP, AR and MLP). Fig  5 shows the errors related to all these models. 346 

 347 

Figure 5. nRMSE Vs horizon for the 5 studied models (Ajaccio) 348 

If the AR and MLP models give the best results, using StP
x 
allows to improve the prediction related to 349 

SP. The numerical values of nRMSE are given is Table 3. We note that StP
+
 and mainly StP

x
 represent 350 

a high improvements compared to SP and P for long horizons (from h+4 to h+6) and reach a good 351 

level of accuracy compared with AR and MLP. 352 

horizons P SP AR MLP StP+ StPx 

1 hour 0.3442 0.1988 0.1954 0.1929 0.2246 0.1988 

2 hours 0.5981 0.2778 0.2570 0.2543 0.3301 0.2778 

3 hours 0.8061 0.3375 0.2931 0.2908 0.3830 0.3353 

4 hours 0.9662 0.3923 0.3179 0.3163 0.3852 0.3770 

5 hours 1.0741 0.4359 0.3352 0.3340 0.3865 0.3820 

6 hours 1.1269 0.4650 0.3492 0.3490 0.3873 0.3844 

Table 3. nRMSE for  all models (Ajaccio) 353 



14 
  

It is now interesting to show profiles of prediction in order to visually verify the quality of the 354 

stochastic persistence. In Figure 6 is shown the 1 hour horizon case concerning StP
+ 

and StP
x
. 355 

 356 

Figure 6. Profile of prediction related to StP
+ 

and StP
x
 between the 5000

th
 and 5300

th
 hour (spring in 357 

Ajaccio) 358 

We see a very good accordance between predictions and measures even when the variability is 359 

important. In the next subsection, we will verify the conclusion drawn here with another kind of time 360 

granularity and another location. 361 

 362 

 363 

 364 

4.2.  15 minutes time granularity in Tilos 365 

 366 

As for Ajaccio using hourly data, for Tilos with 15 min data, the first step is to optimize the stochastic 367 

persistences using Figs 7 and 8. 368 
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 369 

Figure 7. Prediction error (from horizon 15 minutes to 90 minutes in Tilos) in term of size of the 370 

sliding window concerning the StP
x
 (Eq 12) 371 

 372 

Figure 8. Prediction error (from horizon 15 minutes to 90 minutes in Tilos) in term of size of the 373 

sliding window concerning the StP
+
 (Eq 12) 374 

The conclusions are similar to the hourly case for Ajaccio, but here the additive mode seems more 375 

relevant than the multiplicative mode. In fact, we think this phenomenon is related to the clear sky 376 

estimation. In hourly case, it is less important to have a precise CS function (smoothing related to the 377 

hourly aggregation). The hourly sum tends to minimize the impact of the quality of the CS modeling. 378 

For lower time granularity, the consequence of using a good clear sky model becomes very important 379 

with the use of multiplicative mode and the division by CS (ratio to trend). Indeed, introducing briefly 380 

the condition number of a problem as tool measuring how the output value of the modeling can change 381 

for a small change in the input argument, we can certainly consider that our CS estimation is not 382 

efficient for the concerning problem. It is really difficult to improve the CS modeling because a lot of 383 

parameters (not always available) change during the year, the day and each hour. So as minimal 384 

conclusion, we can consider that the additive scheme is the most interesting when the time granularity 385 
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decreases. Concerning the multiplicative case, the CS estimation induces an ill-conditioned problem 386 

not really performant. In Table 4 are listed the optimized value of N parameters. 387 

 

15 min 30 min 45 min 60 min 75 min 90 min 

StP
+
 1 1 2 2 2 3 

StP
x
 1 1 2 1 2 2 

Table 4. Value of the optimized N for each horizon (Tilos) 388 

Now the stochastic persistences are optimized, we can compare the prediction errors with the other 389 

reference models (SP, AR and MLP). Figure 9 shows this comparison concerning 6 horizons from 15 390 

minutes to 90 minutes.  391 

 392 

Figure 9. nRMSE vs horizon for the 5 studied models (Tilos) 393 

Bellow 60 minutes, the three persistences (SP, StP
x
 and StP

+
) give better results than sophisticated 394 

methods. The best model is, for all the horizon, StP
+
. The  nRMSE values are given in Table 5. 395 

 396 

horizons P SP AR MLP StP+ StPx 

15 min 0.1929 0.1708 0.1600 0.1587 0.1489 0.1708 

30 min 0.2804 0.2254 0.2728 0.2552 0.1986 0.2254 

45 min 0.3419 0.2582 0.2784 0.2695 0.2299 0.2582 

60 min 0.3988 0.2869 0.2872 0.2701 0.2545 0.2841 

75 min 0.4528 0.3005 0.2896 0.2922 0.269 0.2979 

90 min 0.5013 0.3291 0.2997 0.2957 0.2902 0.3194 

Table 5. nRMSE for all models (Tilos) 397 
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We observe that the prediction is more reliable in the 15 minutes case than in the hourly case. 398 

Probably because there are some weather afterglow for very short duration. For this time granularity, 399 

the stochastic persistence model is the best whatever the time horizon is. 400 

As for the hourly case in Ajaccio, in Fig 10, is presented a comparison between measured and 401 

forecasted values on a period of several days for StP
+ 

and StP
x 
(15 minutes ahead). 402 

 403 

Figure 10. Profile of prediction related to StP
+ 

and StP
x
 between the 15000

th
 and 22500

th
 minutes 404 

(spring in Tilos) 405 

We observe a high accordance between measurements and predictions and that predicted values of 406 

GHI by StP
+ 

are better than ones predicted by StP
x
. 407 

 408 

5. Conclusion 409 

 410 

A new forecasting methodology was presented, it is based on the assumption that GHI signal has two 411 

components: a stochastic and a deterministic parts. Two stochastic methods were developed an 412 

additive and a multiplicative schemes. The stochastic persistence allows to easily establish GHI 413 

prediction with a good accuracy without the need of large historical data collection.  414 

The stochastic persistence was experimentally tested in two sites Ajaccio, Corsica, France and Tilos, 415 

Greece with two time granularities (1 hour and 15 min). It appeared that the results obtained by 416 

stochastic persistence model are systematically better than those obtained with classical or smart 417 

persistences; For 1 hour horizon, they are relatively close to those obtained with some sophisticated 418 

machine learning tools. For other prediction horizons and time granularities (15 minutes), the data 419 

driven methods are less interesting than the stochastic persistence in the additive mode.  420 
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In the hourly case, the stochastic persistence should be considered as naïve predictor in order to 421 

compare and valid more sophisticated methods of machine learning.  Moreover, the reliability of the 422 

multiplicative stochastic persistence method, is not so very far from those obtained by sophisticated 423 

methods. 424 

 It would probably be interesting to construct error metric related to this tool, especially a new version 425 

of the skill score which is actually the most common parameter in the production of global radiation.  426 

For the 15 minutes case, the stochastic persistence gives very good results mainly with the additive 427 

scheme. Some investigation related to clear sky modeling concerning the very short time granularity 428 

should be undertaken with the goal to improve the multiplicative scheme of the stochastic persistence 429 

and to valid the conclusions drawn here. 430 

Thus the developed forecasted tool (with its two versions, additive and multiplicative) showed very 431 

good performances for a forecasting method that does not need a long and rare set of historical data 432 

and complicated training phase for nowcasting purpose.  433 
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Annex 434 

 435 

Result 1:                                    436 

Result 2 :                                                        437 

Result 3 :                                        438 

Proof of results 1 439 

We have: 440 

                                         441 

Related to the variance definition, we can write: 442 

                                                       
 
   443 

If         is a white noise, so: 444 

                                              
 
      445 

Signifying that                                          
 
                  446 

  447 

Proof of results 2 448 

Related to the bias definition, we have: 449 

                            
 

                                     
 
  

If         is a write noise, we also can consider: 450 

                            
 

                             
 
   451 

     452 

So, we can write that:  453 

                             
 

                             
 

  454 

Proof of results 3 455 
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The results 1 and 2 lead to                                   , according to the definition 456 

of the normalized root mean square error (nRMSE, []), we obtain: 457 

                                        458 

  459 
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