P. Libby, Inflammation in atherosclerosis, Nature, vol.103, issue.6917, pp.868-74, 2002.
DOI : 10.1074/jbc.274.45.32048

Y. Chatzizisis, A. Coskun, J. M. Edelman, E. Feldman, C. Stone et al., Role of Endothelial Shear Stress in the Natural History of Coronary Atherosclerosis and Vascular Remodeling, Journal of the American College of Cardiology, vol.49, issue.25, pp.2379-93, 2007.
DOI : 10.1016/j.jacc.2007.02.059

O. Pello, C. Silvestre, D. Pizzol, M. Andrés, and V. , A glimpse on the phenomenon of macrophage polarization during atherosclerosis, Immunobiology, vol.216, issue.11, pp.1172-1178, 2011.
DOI : 10.1016/j.imbio.2011.05.010

T. Giannakopoulos, E. Avgerinos, K. Moulakakis, N. Kadoglou, O. Preza et al., Biomarkers for diagnosis of the vulnerable atherosclerotic plaque, Interventional Cardiology, vol.3, issue.2, pp.223-256, 2011.
DOI : 10.2217/ica.11.11

S. Ylä-herttuala, J. Bentzon, M. Daemen, E. Falk, H. Garcia-garcia et al., Stabilisation of atherosclerotic plaques, Thromb Haemost, vol.106, pp.1-19, 2011.

P. Assemat and K. Hourigan, Evolution and rupture of vulnerable plaques: a review of mechanical effects, ChronoPhysiol Ther, vol.3, pp.23-40, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01780143

D. Tang, C. Yang, G. Canton, Z. Wu, T. Hatsukami et al., Correlations between carotid plaque progression and mechanical stresses change sign over time: a patient follow up study using MRI and 3D FSI models, BioMedical Engineering OnLine, vol.12, issue.1, p.105, 2013.
DOI : 10.1146/annurev.fluid.29.1.399

URL : https://biomedical-engineering-online.biomedcentral.com/track/pdf/10.1186/1475-925X-12-105?site=biomedical-engineering-online.biomedcentral.com

A. Maehara, G. Mintz, A. Bui, O. Walter, M. Castagna et al., Morphologic and angiographic features of coronary plaque rupture detected by intravascular ultrasound, Journal of the American College of Cardiology, vol.40, issue.5, pp.904-914, 2002.
DOI : 10.1016/S0735-1097(02)02047-8

A. Versluis, A. Bank, and W. Douglas, Fatigue and plaque rupture in myocardial infarction, Journal of Biomechanics, vol.39, issue.2, pp.339-386, 2006.
DOI : 10.1016/j.jbiomech.2004.10.041

Y. Huang, Z. Teng, U. Sadat, J. He, M. Graves et al., In vivo MRI-based simulation of fatigue process: a possible trigger for human carotid atherosclerotic plaque rupture, BioMedical Engineering OnLine, vol.12, issue.1, p.36, 2013.
DOI : 10.1007/BF02584301

G. Holzapfel, G. Sommer, and P. Regitnig, Anisotropic Mechanical Properties of Tissue Components in Human Atherosclerotic Plaques, Journal of Biomechanical Engineering, vol.87, issue.5, pp.657-65, 2004.
DOI : 10.1161/01.CIR.87.4.1179

Z. Teng, D. Tang, J. Zheng, P. Woodard, and A. Hoffman, An experimental study on the ultimate strength of the adventitia and media of human atherosclerotic carotid arteries in circumferential and axial directions, Journal of Biomechanics, vol.42, issue.15, pp.2535-2544, 2009.
DOI : 10.1016/j.jbiomech.2009.07.009

Y. Wang, J. Ning, J. Johnson, M. Sutton, and S. Lessner, Development of a quantitative mechanical test of atherosclerotic plaque stability, Journal of Biomechanics, vol.44, issue.13, pp.2439-2484, 2011.
DOI : 10.1016/j.jbiomech.2011.06.026

D. Bluestein, Y. Alemu, I. Avrahami, M. Gharib, K. Dumont et al., Influence of microcalcifications on vulnerable plaque mechanics using FSI modeling, Journal of Biomechanics, vol.41, issue.5, pp.1111-1119, 2008.
DOI : 10.1016/j.jbiomech.2007.11.029

N. Maldonado, A. Kelly-arnold, Y. Vengrenyuk, D. Laudier, T. Fallon et al., A mechanistic analysis of the role of microcalcifications in atherosclerotic plaque stability: potential implications for plaque rupture, American Journal of Physiology-Heart and Circulatory Physiology, vol.5, issue.5, pp.619-647, 2012.
DOI : 10.1115/1.4001351

F. Otsuka, A. Finn, and R. Virmani, Do vulnerable and ruptured plaques hide in heavily calcified arteries? Atherosclerosis, 2014.
DOI : 10.1016/j.atherosclerosis.2012.12.032

Z. Teng, U. Sadat, Y. Huang, V. Young, M. Graves et al., In vivo MRI-based 3D Mechanical Stress???Strain Profiles of Carotid Plaques with Juxtaluminal Plaque Haemorrhage: An Exploratory Study for the Mechanism of Subsequent Cerebrovascular Events, European Journal of Vascular and Endovascular Surgery, vol.42, issue.4, pp.427-460, 2011.
DOI : 10.1016/j.ejvs.2011.05.009

X. Huang, Quantifying Effect of Intraplaque Hemorrhage on Critical Plaque Wall Stress in Human Atherosclerotic Plaques Using Three-Dimensional Fluid-Structure Interaction Models, Journal of Biomechanical Engineering, vol.6, issue.12, p.121004, 2012.
DOI : 10.1161/01.ATV.5.3.293

R. Virmani, F. Kolodgie, A. Burke, A. Farb, and S. Schwartz, Lessons From Sudden Coronary Death : A Comprehensive Morphological Classification Scheme for Atherosclerotic Lesions, Arteriosclerosis, Thrombosis, and Vascular Biology, vol.20, issue.5, pp.1262-75, 2000.
DOI : 10.1161/01.ATV.20.5.1262

URL : http://atvb.ahajournals.org/content/atvbaha/20/5/1262.full.pdf

D. Ku, D. Giddens, C. Zarins, and S. Glagov, Pulsatile flow and atherosclerosis in the human carotid bifurcation. Positive correlation between plaque location and low oscillating shear stress, Arteriosclerosis, Thrombosis, and Vascular Biology, vol.5, issue.3, pp.293-302, 1985.
DOI : 10.1161/01.ATV.5.3.293

A. Malek, S. Alper, and S. Izumo, Hemodynamic Shear Stress and Its Role in Atherosclerosis, JAMA, vol.282, issue.21, pp.2035-2077, 1999.
DOI : 10.1001/jama.282.21.2035

V. Peiffer, E. Rowland, S. Cremers, P. Weinberg, and S. Sherwin, Effect of aortic taper on patterns of blood flow and wall shear stress in rabbits: Association with age, Atherosclerosis, vol.223, issue.1, pp.114-121, 2012.
DOI : 10.1016/j.atherosclerosis.2012.04.020

H. Zhu, Differences in Aortic Arch Geometry, Hemodynamics, and Plaque Patterns Between C57BL/6 and 129/SvEv Mice, Journal of Biomechanical Engineering, vol.14, issue.12, p.121005, 2009.
DOI : 10.1161/01.ATV.0000105054.43931.f0

URL : http://europepmc.org/articles/pmc3047446?pdf=render

P. Stone, A. Coskun, S. Kinlay, J. Popma, M. Sonka et al., Regions of low endothelial shear stress are the sites where coronary plaque progresses and vascular remodelling occurs in humans: an in vivo serial study, European Heart Journal, vol.28, issue.6, pp.705-715, 2007.
DOI : 10.1093/eurheartj/ehl575

Y. Chatzizisis, A. Baker, G. Sukhova, K. Koskinas, M. Papafaklis et al., Augmented Expression and Activity of Extracellular Matrix-Degrading Enzymes in Regions of Low Endothelial Shear Stress Colocalize With Coronary Atheromata With Thin Fibrous Caps in Pigs, Circulation, vol.123, issue.6, pp.621-651, 2011.
DOI : 10.1161/CIRCULATIONAHA.110.970038

X. Liu, Y. Fan, X. Deng, and F. Zhan, Effect of non-Newtonian and pulsatile blood flow on mass transport in the human aorta, Journal of Biomechanics, vol.44, issue.6, pp.1123-1154, 2011.
DOI : 10.1016/j.jbiomech.2011.01.024

J. Knight, U. Olgac, S. Saur, D. Poulikakos, W. Marshall et al., Choosing the optimal wall shear parameter for the prediction of plaque location???A patient-specific computational study in human right coronary arteries, Atherosclerosis, vol.211, issue.2, pp.445-50, 2010.
DOI : 10.1016/j.atherosclerosis.2010.03.001

J. Dong, K. Wong, and J. Tu, Hemodynamics analysis of patient-specific carotid bifurcation: A CFD model of downstream peripheral vascular impedance, International Journal for Numerical Methods in Biomedical Engineering, vol.24, issue.1, pp.476-91, 2013.
DOI : 10.1161/01.RES.24.1.93

S. Lee, L. Antiga, and D. Steinman, Correlations Among Indicators of Disturbed Flow at the Normal Carotid Bifurcation, Journal of Biomechanical Engineering, vol.109, issue.6, p.61013, 2009.
DOI : 10.1007/s10439-008-9473-4

B. Fox and W. Seed, Location of Early Atheroma in the Human Coronary Arteries, Journal of Biomechanical Engineering, vol.103, issue.3, pp.208-2012, 1981.
DOI : 10.1115/1.3138280

M. Cocker, B. Mc-ardle, J. Spence, C. Lum, R. Hammond et al., Imaging atherosclerosis with hybrid [18F]fluorodeoxyglucose positron emission tomography/computed tomography imaging: What Leonardo da Vinci could not see, Journal of Nuclear Cardiology, vol.52, issue.6, pp.1211-1236, 2012.
DOI : 10.2967/jnumed.110.081208

URL : https://link.springer.com/content/pdf/10.1007%2Fs12350-012-9631-9.pdf

C. Feldman, Y. Chatzizisis, A. Coskun, K. Koskinas, M. Naghavi et al., Vulnerable anatomy; the role of coronary anatomy and endothelial shear stress in the progression and vulnerability of coronary artery lesions: is anatomy destiny Asymptomatic atherosclerosis: pathophysiology, detection and treatment, pp.495-506978, 2010.

A. Phinikaridou, N. Hua, T. Pham, and J. Hamilton, Regions of Low Endothelial Shear Stress Colocalize With Positive Vascular Remodeling and Atherosclerotic Plaque Disruption: An In Vivo Magnetic Resonance Imaging Study, Circulation: Cardiovascular Imaging, vol.6, issue.2, pp.302-312, 2013.
DOI : 10.1161/CIRCIMAGING.112.000176

S. Glagov, E. Weisenberg, C. Zarins, R. Stankunavicius, and G. Kolettis, Compensatory Enlargement of Human Atherosclerotic Coronary Arteries, New England Journal of Medicine, vol.316, issue.22, pp.1371-1376, 1987.
DOI : 10.1056/NEJM198705283162204

N. Wilett, R. Long, K. Maiello-rafferty, R. Sutliff, R. Shafer et al., An In Vivo Murine Model of Low-Magnitude Oscillatory Wall Shear Stress to Address the Molecular Mechanisms of Mechanotransduction--Brief Report, Arteriosclerosis, Thrombosis, and Vascular Biology, vol.30, issue.11, pp.2099-102, 2010.
DOI : 10.1161/ATVBAHA.110.211532

C. Cheng, D. Tempel, R. Van-haperen, A. Van-der-baan, and F. Grosveld, Atherosclerotic Lesion Size and Vulnerability Are Determined by Patterns of Fluid Shear Stress, Circulation, vol.113, issue.23, pp.2744-53, 2006.
DOI : 10.1161/CIRCULATIONAHA.105.590018

A. Harloff, A. Nußbaumer, S. Bauer, A. Stalder, A. Frydrychowicz et al., In vivo assessment of wall shear stress in the atherosclerotic aorta using flow-sensitive 4D MRI, Magnetic Resonance in Medicine, vol.42, issue.6, pp.1529-1565, 2010.
DOI : 10.1161/01.CIR.88.5.2235

Y. Hoi, Y. Zhou, X. Zhang, R. Henkelman, and D. Steinman, Correlation Between Local Hemodynamics and Lesion Distribution in a Novel Aortic Regurgitation Murine Model of Atherosclerosis, Annals of Biomedical Engineering, vol.30, issue.5, pp.1414-1436, 2011.
DOI : 10.1161/ATVBAHA.110.204198

H. Tomita, J. Hagaman, M. Friedman, and N. Maeda, Relationship between hemodynamics and atherosclerosis in aortic arches of apolipoprotein E-null mice on 129S6/SvEvTac and C57BL/6J genetic backgrounds, Atherosclerosis, vol.220, issue.1, pp.78-85, 2012.
DOI : 10.1016/j.atherosclerosis.2011.10.020

P. Assemat, J. Armitage, K. Siu, K. Contreras, A. Dart et al., Threedimensional numerical simulation of blood flow in mouse aortic arch around atherosclerotic plaques, Appl Math Model, 2014.

D. Tang, R. Kamm, C. Yang, J. Zheng, G. Canton et al., Image-based modeling for better understanding and assessment of atherosclerotic plaque progression and vulnerability: Data, modeling, validation, uncertainty and predictions, Journal of Biomechanics, vol.47, issue.4, pp.834-880, 2014.
DOI : 10.1016/j.jbiomech.2014.01.012

C. Guidoux, M. Mazighi, P. Lavallée, J. Labreuche, E. Meseguer et al., Aortic arch atheroma in transient ischemic attack patients, Atherosclerosis, vol.231, issue.1, pp.124-132, 2013.
DOI : 10.1016/j.atherosclerosis.2013.08.025

E. Schwammenthal, Y. Schwammenthal, D. Tanne, A. Tenenbaum, A. Garniek et al., Transcutaneous detection of aortic arch atheromas by suprasternal harmonic imaging, Journal of the American College of Cardiology, vol.39, issue.7, pp.1127-1159, 2002.
DOI : 10.1016/S0735-1097(02)01730-8

T. Gureyev, Y. Nesterets, D. Ternovski, D. Thompson, S. Wilkins et al., Toolbox for advanced x-ray image processing, Advances in Computational Methods for X-Ray Optics II, pp.81410-81414, 2011.
DOI : 10.1117/12.893252

D. Paganin, S. Mayo, T. Gureyev, P. Miller, and S. Wilkins, Simultaneous phase and amplitude extraction from a single defocused image of a homogeneous object, Journal of Microscopy, vol.206, issue.1, pp.33-40, 2002.
DOI : 10.1046/j.1365-2818.2002.01010.x

B. Nogueira, V. Peotta, S. Meyrelles, and E. Vasquez, Evaluation of Aortic Remodeling in Apolipoprotein E-deficient Mice and Renovascular Hypertensive Mice, Archives of Medical Research, vol.38, issue.8, pp.816-821, 2007.
DOI : 10.1016/j.arcmed.2007.06.005

S. Bonthu, D. Heistad, D. Chappell, K. Lamping, and F. Faraci, Atherosclerosis, Vascular Remodeling, and Impairment of Endothelium-Dependent Relaxation in Genetically Altered Hyperlipidemic Mice, Arteriosclerosis, Thrombosis, and Vascular Biology, vol.17, issue.11, pp.2333-2373, 1997.
DOI : 10.1161/01.ATV.17.11.2333

B. Trachet, J. Bols, D. Santis, G. Vandenberghe, S. Loeys et al., The Impact of Simplified Boundary Conditions and Aortic Arch Inclusion on CFD Simulations in the Mouse Aorta: A Comparison With Mouse-specific Reference Data, Journal of Biomechanical Engineering, vol.47, issue.12, p.121006, 2011.
DOI : 10.1111/j.1469-7580.2010.01220.x

Y. Nakashima, A. Plump, E. Raines, J. Breslow, and E. Ross, ApoE-deficient mice develop lesions of all phases of atherosclerosis throughout the arterial tree, Arteriosclerosis, Thrombosis, and Vascular Biology, vol.14, issue.1, pp.133-173, 1994.
DOI : 10.1161/01.ATV.14.1.133

M. Mcateer, Quantification and 3D Reconstruction of Atherosclerotic Plaque Components in Apolipoprotein E Knockout Mice Using Ex Vivo High-Resolution MRI, Arteriosclerosis, Thrombosis, and Vascular Biology, vol.24, issue.12, pp.2384-90, 2004.
DOI : 10.1161/01.ATV.0000146811.19029.fb

N. Maeda, L. Johnson, S. Kim, J. Hagaman, M. Friedman et al., Anatomical differences and atherosclerosis in apolipoprotein E-deficient mice with 129/SvEv and C57BL/6 genetic backgrounds, Atherosclerosis, vol.195, issue.1, pp.75-82, 2007.
DOI : 10.1016/j.atherosclerosis.2006.12.006

URL : http://europepmc.org/articles/pmc2151972?pdf=render

H. Williams, J. Johnson, K. Carson, and C. Jackson, Characteristics of Intact and Ruptured Atherosclerotic Plaques in Brachiocephalic Arteries of Apolipoprotein E Knockout Mice, Arteriosclerosis, Thrombosis, and Vascular Biology, vol.22, issue.5, pp.788-92, 2002.
DOI : 10.1161/01.ATV.0000014587.66321.B4

J. Lantz and M. Karlsson, Large eddy simulation of LDL surface concentration in a subject specific human aorta, Journal of Biomechanics, vol.45, issue.3, pp.537-579, 2012.
DOI : 10.1016/j.jbiomech.2011.11.039

Y. Huo, X. Guo, and G. Kassab, The Flow Field along the Entire Length of Mouse Aorta and Primary Branches, Annals of Biomedical Engineering, vol.258, issue.20, pp.685-99, 2008.
DOI : 10.1161/01.CIR.103.20.2508

C. Rodkiewicz, Localization of early atherosclerotic lesions in the aortic arch in the light of fluid flow, Journal of Biomechanics, vol.8, issue.2, pp.149-56, 1975.
DOI : 10.1016/0021-9290(75)90096-2

R. Despard and J. Miller, Separation in oscillating laminar boundary-layer flows, Journal of Fluid Mechanics, vol.18, issue.01, pp.21-31, 1971.
DOI : 10.1299/jsme1958.6.201

H. Groen, F. Gijsen, A. Van-der-lugt, M. Ferguson, T. Hatsukami et al., Plaque Rupture in the Carotid Artery Is Localized at the High Shear Stress Region: A Case Report, Stroke, vol.38, issue.8, pp.2379-81, 2007.
DOI : 10.1161/STROKEAHA.107.484766

D. Tang, Z. Teng, G. Canton, C. Yang, M. Ferguson et al., Sites of Rupture in Human Atherosclerotic Carotid Plaques Are Associated With High Structural Stresses: An In Vivo MRI-Based 3D Fluid-Structure Interaction Study, Stroke, vol.40, issue.10, pp.3258-63, 2009.
DOI : 10.1161/STROKEAHA.109.558676

U. Sadat, Z. Teng, and J. Gillard, Biomechanical structural stresses of atherosclerotic plaques, Expert Review of Cardiovascular Therapy, vol.35, issue.10, pp.1469-81, 2010.
DOI : 10.1161/01.STR.0000125856.25309.86