
HAL Id: hal-01782588
https://hal.science/hal-01782588

Submitted on 2 May 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Mitigating performance unpredictability in the IaaS
using the Kyoto principle

Alain Tchana, Vo Quoc Bao Bui, Vlad-Tiberiu Nitu, Boris Teabe, Daniel
Hagimont

To cite this version:
Alain Tchana, Vo Quoc Bao Bui, Vlad-Tiberiu Nitu, Boris Teabe, Daniel Hagimont. Mitigating
performance unpredictability in the IaaS using the Kyoto principle. 17th ACM/IFIP/USENIX
International Middleware Conference (Middleware 2016), Dec 2016, Trento, Italy. pp. 1-10,
�10.1145/2988336.2988342�. �hal-01782588�

https://hal.science/hal-01782588
https://hal.archives-ouvertes.fr

Open Archive TOULOUSE Archive Ouverte (OATAO)
OATAO is an open access repository that collects the work of Toulouse researchers and
makes it freely available over the web where possible.

This is an author-deposited version published in : http://oatao.univ-toulouse.fr/
Eprints ID : 18955

The contribution was presented at Middleware 2016 :
 http://2016.middleware-conference.org/

To link to this article URL :
http://dx.doi.org/10.1145/2988336.2988342

To cite this version : Tchana, Alain-Bouzaïde and Bui, Vo Quoc Bao and
Djomgwe Teabe, Boris and Nitu, Vlad and Hagimont, Daniel Mitigating
performance unpredictability in the IaaS using the Kyoto principle. (2016)
In: 17th ACM/IFIP/USENIX International Middleware Conference
(Middleware 2016), 12 December 2016 - 16 December 2016 (Trento, Italy).

Any correspondence concerning this service should be sent to the repository

administrator: staff-oatao@listes-diff.inp-toulouse.fr

Mitigating performance unpredictability in the IaaS using
the Kyoto principle

Alain Tchana
University of Toulouse, France
alain.tchana@enseeiht.fr

Bao Bui
University of Toulouse, France

bao.bui@enseeiht.fr

Boris Teabe
University of Toulouse, France
boris.teabedjomgwe@enseeiht.fr

Vlad Nitu
University of Toulouse, France

vlad.nitu@enseeiht.fr

Daniel Hagimont
University of Toulouse, France
daniel.hagimont@enseeiht.fr

ABSTRACT

Performance isolation is enforced in the cloud by setting to
each virtual machine (VM) a given fraction of each resource
type (physical memory, processor, and IO bandwidth). How-
ever, microarchitectural-level resources such as processor’s
caches cannot be divided and allocated to VMs: they are
globally shared among all VMs which compete for their use,
leading to cache contention. Therefore, performance isola-
tion and predictability are compromised. This situation is
devastating for HPC applications. In this paper, we propose
a software solution (called Kyoto) to this issue, inspired by
the polluters pay principle. A VM is said to pollute the cache
if it provokes significant cache replacements which impact
the performance of other VMs. Henceforth, using the Ky-
oto system, the provider can encourage HPC cloud users to
book pollution permits for their VMs. We have implemented
Kyoto in several virtualization systems including both gen-
eral purpose systems (Xen and KVM) and specialized HPC
systems (Pisces).

1. INTRODUCTION
Nowadays, many organizations tend to outsource the man-

agement of their physical infrastructure to hosting centers.
By this way, companies aim at reducing their cost by pay-
ing only for what they really need. This trend, commonly
called cloud computing, is general and concerns all field of
Information Technology. Notably, recent years have seen
HPC application developers and industries thinking about
the migration of their applications to the cloud [1].
In this context, the majority of platforms implements the

Infrastructure as a Service (IaaS) cloud model where cus-
tomers buy virtual machines (VM) with a set of reserved re-
sources. The main benefit of virtualization is that it provides
isolation among VMs running on the same physical machine.
Isolation takes different forms, including security (sandbox-
ing) and performance. Regarding security, isolation between

DOI: http://dx.doi.org/10.1145/2988336.2988342

VMs means that operating systems (and their applications)
running in VMs are executing in separate address spaces
and are therefore protected against illegal (bogus or mali-
cious) accesses from other VMs. Regarding performance,
isolation means that the performance of applications in one
VM should not be influenced or depend on the behavior of
other VMs running on the same physical machine.
This paper addresses an issue related to performance iso-

lation. Performance isolation is enforced by giving to each
VM a fraction of each resource type (physical memory, pro-
cessor, and IO bandwidth). However, microarchitectural-
level resources such as processors’ caches cannot be divided.
They are globally shared between all VMs. This situation
can lead to cache contention. Therefore, performance iso-
lation and predictability are compromised, as pointed out
by several research [3, 8, 2]. Many microarchitectural-level
resources may compromise performance isolation (QPI bus,
Lx caches), but Last Level Cache (LLC) contention has been
identified as one of the most critical component.
Several research have investigated the LLC contention is-

sue. They can be organized into two categories. The first
category includes research [7, 26, 28, 33, 31, 32] which pro-
poses to intelligently collocating processes or VMs. Con-
cerning the second category, it includes research [17, 19, 27]
which proposes to physically or softly partition the cache.
The main drawbacks of these solutions are the following:
cache partitioning solutions require the modification of hard-
ware (not yet adopted in today’s clouds) while VM place-
ment solutions are not always optimal (VM placement is
a NP-hard problem). Most important, these solutions
are not in the spirit of the cloud which relies on the pay-
per-use model: why not each VM is assigned an amount of
cache utilization in the same way as it is done for coarse-
grained resource types?
In this paper, we propose Kyoto, a software solution to

the issue of LLC contention. This solution is inspired by the
polluters pay principle. A VM is said to pollute a cache if
it provokes significant cache replacements which impact the
performance of other VMs. We rely on hardware counters
to monitor the cache activity of each VM and to measure
each VM cache pollution level. Henceforth, using the Ky-
oto system, the provider may compel cloud users to book
pollution permits for their VMs. Therefore, a VM which
exceeds its permitted pollution at runtime has its CPU ca-
pacity reduced accordingly. We have implemented Kyoto
in several virtualization systems including both general pur-
pose systems (Xen and KVM) and specialized HPC systems

(Pisces [4]). In summary, the main contributions we make
in this paper are:

• We introduce a new VM configuration parameter which
allows to book an amount of LLC pollution (a pollu-
tion permit).

• We implement Kyoto in three popular virtualization
systems. Notice that our approach can easily be im-
plemented within other systems.

• We perform several experimentation campaigns using
micro and macro benchmarks (provided by
SPEC CPU2006 [11]) in order to validate our approach.
The results of these experiments validate Kyoto’s ef-
fectiveness in terms of performance isolation and pre-
dictability. They also show that Kyoto introduces a
negligible overhead.

The rest of the article is organized as follows. Section 2
presents both the problematic and the motivations of our
work, including an experimental assessment of the addressed
issue. Contributions are detailed in Section 3 while Section 4
presents evaluation results. Section 5 presents the applica-
tion scoop. After a review of related works in Section 6, we
conclude the paper in Section 7.

2. MOTIVATIONS

2.1 Problem statement
Virtualization has proved to be one of the best technol-

ogy to isolate the execution of distinct applications in the
same computer. The main feature which allows achiev-
ing this goal is resource partitioning. The analysis of to-
day’s hypervisors shows that only the partitioning of coarse-
grained hardware resources (the main memory, the CPU,
etc.) are allowed. The partitioning of microarchitectural-
level components such as the Front Side Bus (FSB) and pro-
cessors’ caches are not taken into account, resulting in con-
tention. This situation suits for some application types like
network intensive applications. However, it is problematic
for a non negligible proportion of application types. Several
research have shown that contention on microarchitectural-
level components is one of the main source of performance
unpredictability [31]. The consequences of the latter are
twofold. On the one hand, it could require supplementary
tasks from cloud users. For instance, Netflix developers
have reported [8] that they needed to redesign their applica-
tions to deal with this issue in Amazon EC2. On the other
hand, some suggest that performance unpredictability con-
tributes to brake the inroad of the cloud in some domains
like HPC [1].

Contention on the LLC has been pointed by several re-
search [33, 31, 32] as a critical issue. Therefore, this paper
focuses on the problem of LLC contention.

Definition: LLC contention occurs when several VMs
compete on the same LLC lines. It concerns both VMs which
run in parallel (on distinct cores) or in an alternative manner
on the same core. The former situation is promoted by the
increase number of cores in today’s machines while the latter
situation comes from time sharing scheduling. The next
section presents evaluation results which attest the need to
handle LLC contention.

Main memory 8096 MB
L1 cache L1 D 32 KB, L1 I 32 KB, 8-way
L2 cache L2 U 256 KB, 8-way
LLC 10 MB, 20-way
Processor 1 Socket, 4 Cores/socket

Table 1: Experimental machine

2.2 Problem assessment
In order to provide a clear illustration of the issue we

address, we consider the following assumptions: any VM
runs a single application type and is configured with a single
vCPU which is pinned to a single core.

2.2.1 Experimental environment

All experiments have been performed on a Dell machine
with Intel Xeon E5-1603 v3 2.8 GHz processor. Its char-
acteristics are presented in Table. 1. The machine runs a
Ubuntu Server 12.04 virtualized with xen 4.2.0.

2.2.2 Benchmarks

Micro benchmark.
Micro benchmark applications come from [15]. In brief,

a micro benchmark application creates an array of elements
whose size corresponds to a specific working set size. Ele-
ments are randomly chained into a circular linked list. The
program walks through the list by following the link between
elements.

Macro benchmark.
We use both blockie [20] and applications from SPEC

CPU2006 [11] as complex benchmarks. They are widely used
to assess the processor and the memory subsystem perfor-
mance.

2.2.3 Metrics

The two following metrics are used: cache miss ratio (cache
misses per millisecond) and instruction per cycles (IPC).
The latter is used to measure an application performance.
To compute these metrics, we gathered statistical data from
hardware performance monitoring counters (PMC) using a
modified version of perfctr-xen [18].

2.2.4 Evaluation scenarios

Handling an intermediate level-cache (ILC) miss takes less
time (the probability to find the missed data within the
other cache is high) than handling an LLC miss (which al-
ways requires main memory accesses). In the case of our
experimental machine, the time taken to access each cache
level (measured with lmbench [14]) is the following (approx-
imately): 4 cycles for L1, 12 cycles for L2, 45 cycles for LLC,
and 180 cycles for the main memory. Therefore, VMs can
be classified into three categories: C1 includes VMs whose
working set fits within ILC (including L1 and L2), C2 in-
cludes VMs whose working set fits within the LLC (L3), and
C3 is composed of the other applications. For each category
Ci (1 ≤ i ≤ 3), we have developed both a representative and
a disruptive VM, respectively noted virep and vidis. Each virep
is executed in ten situations: alone (one situation), in an al-
ternate manner with each vidis (three situations), in parallel
with each vidis (three situations), and both in parallel and
in an alternate way with each vidis (three situations).

 0

 10

 20

 30

 40

 50

 60

 70

 80

v
1 re

p
v
2 re

p
v
3 re

p

%
 o

f
p

er
f.

 d
eg

ra
d

at
io

n

Alternative
 execution

v
1
dis

v
2
dis

v
3
dis

 0

 10

 20

 30

 40

 50

 60

 70

 80

v
1 re

p
v
2 re

p
v
3 re

p

%
 o

f
p

er
f.

 d
eg

ra
d

at
io

n Parallel
 execution

v
1
dis

v
2
dis

v
3
dis

 0

 10

 20

 30

 40

 50

 60

 70

 80

v
1 re

p
v
2 re

p
v
3 re

p

%
 o

f
p

er
f.

 d
eg

ra
d

at
io

n

Combination of
 alternative and
 parallel
 execution

v
1

dis
v

2
dis

v
3

dis

Figure 1: LLC contention could impact some applications.

2.2.5 Evaluation results

Fig. 1 presents the execution results of the above scenar-
ios. Firstly, we can see that the competition on ILC is not
critical for any VM type (all the first bars are invisible be-
cause the performance degradation percentage is almost nil).
In addition, C1’s VMs are agnostics to both ILC and LLC
contention (the three first bars of each curve is invisible be-
cause the performance degradation of virep is almost nil).
Indeed, the cost needed to handle an ILC miss is negligi-
ble. Secondly, we can see that both C2 and C3’s VMs are
severely affected by LLC contention (the four visible bars
in each curve show that the performance degradation per-
centage is not negligible). Thirdly, contention generated by
a parallel execution is more devastating than the contention
generated by an alternative execution: up to 70% of per-
formance degradation in the former vs about 13% in the
latter. In order to complete the analysis, let us zoom-in on
the first six v2rep’s time slices1 (v2rep is the most penalized
VM type). We can see from Fig. 2 that when the VM runs
alone, LLC misses occur only during the first time slice (data
loading). It is not the case in the other situations because of
the competition on LLC lines. This problem is well observed
in the alternative execution which has a zigzag shape: the
first tick of each time slice is used for loading data to the
LLC (because the data have been evicted by the disruptive
VM during the previous time slice). Concerning the parallel
execution, the cache miss rate is very high because of data
eviction. This is caused by the parallel execution with the
disruptive VM.

In conclusion, sharing the LLC without any partitioning
strategy under its utilization could be problematic for some
VMs. In this paper we propose a solution in this direction,
see the next section. In the rest of the article, C2 and C3’s
VMs are called sensitive VMs.

3. CONTRIBUTIONS
This section presents our solution (called Kyoto) to the

LLC contention issue. After a presentation of the basic idea
behind Kyoto (simple but powerful), a detailed description
of its implementation within the Xen virtualization system is
given (the patch can be downloaded at https://bitbucket.org/
quocbaoit/xen-4.2.0-perfctr.git). We have also implemented
Kyoto within KVM (the default Linux virtualization sys-
tem) and Pisces [4] (a lightweight co-kernel for achieving
performance isolation for HPC applications). An evaluation

1A time slice (30msec) is composed of 3 ticks (10msec) in
Xen.

 0

 5000

 10000

 15000

 20000

 25000

 3 6 9 12 15 18 21
L

L
C

M

Tick (msec)
(1 time slice = 3 ticks)

Alone
Alternative

Parallel
Alter.+Para.

Figure 2: Impact of LLC contention explained with
LLC misses

of the latter is presented in Section 4. In order to respect
the page length, we only present the Xen implementation.

3.1 Basic idea: "polluters pay"
We propose a software solution whose basic idea is the

same as the ”polluters pay” principle of the Kyoto proto-
col [9]. This solution relies on the following assumptions. (1)
A VM execution time results in the pollution of the LLC at
a certain level. (2) Therefore, a VM which generates a high
pollution level is likely to cause more contention (thus ag-
gressive against other VMs) when it is collocated with other
VMs. Under these assumptions, if one is able to instanti-
ate a VM with a booked pollution level, and to enforce that
pollution level during the overall VM lifetime, then he will
have defined a solution to the problem of cache partitioning,
thus cache contention. Therefore, the utilization of the LLC
could be charged to cloud users in the same way as coarse-
grained resources (e.g. processor, disk, main memory). This
is the main idea we follow in this paper. This idea raises two
main challenges:

• How to monitor a specific VM pollution level at run-
time?

• How to enforce a booked pollution level at runtime?

The first challenge can be achieved using hardware perfor-
mance monitoring counters (PMCs). The latter allow to
gather information about the utilization of the majority of
microarchitectural-level components such as the LLC. Sec-
tion 3.3 presents which metrics Kyoto uses to compute a
VM pollution level. Concerning the second challenge, Ky-
oto relies on the processor, which is the central resource in

a computer: a VM is only able to pollute the LLC when it
is scheduled on a processor. Therefore, the processor can
service as a lever to enforce a pollution level (this is illus-
trated in Section 4.1). A VM whose actual pollution level
exceeds the booked one sees its computing capacity reduce.
Therefore, handling the second challenge requires the ex-
tension of the hypervisor component which is responsible to
schedule VM on processors. The next section presents an
implementation of the Kyoto’s scheduler within Xen.

3.2 The Kyoto’s scheduler within Xen
The Kyoto’s scheduler (hereafter noted KS4Xen) enforces

each VM’s booked pollution level during the overall life-
time of the VM. Before presenting KS4Xen, we firstly gives
a quick description of the Xen credit scheduler (hereafter
noted XCS), knowing that further details could be found
in [16].

XCS.
It is the default scheduler in Xen. It is suitable for cloud

platforms since the customer books for an amount of com-
puting capacity which should be ensured without wasting
resources. XCS works as follows. A VM v is configured at
start time with a credit c which should be ensured by the
scheduler. To this end, the latter defines remainCredit, a
scheduling variable, which is initialized with c. Each time
a v’s vCPU is scheduled on a processor, (1) the scheduler
translates into a credit value (let us say burntCredit) the
time spent by v on that processor. (2) Subsequently, the
scheduler computes a new value for remainCredit by sub-
tracting burntCredit from remainCredit. When the latter
reaches a lower threshold, the VM is no longer allowed to
get the processor. We can say that the VM is ”blocked”. Pe-
riodically, the scheduler increases the value of remainCredit

for each VM blocked VM according to its initial credit c.
This allows the VM to become schedulable.

KS4Xen.
We propose KS4Xen as an extension of XCS. The former

works as follows. In addition to c (introduced above), a VM
is configured (booked by its owner) with the pollution level
(noted llc cap) it intends to generate during a time slice.
At runtime, a scheduling variable named pollution quota is
assigned to each VM. As well as XCS ensures the respect
of c, KS4Xen does the same for llc cap. This is achieved
by periodically monitoring LLC related statistics for each
VM. From these collected data, the actual llc cap (noted
llc capact) of each VM is computed (see Section 3.3). The
scheduler then debits the VM’s pollution quota according to
this llc capact. If a VM’s pollution quota goes negative, that
VM will be in priority OVER, meaning that it cannot use the
processor any more. At the end of each time slice, VMs earn
a specific amount of pollution quota based on their booked
llc cap. If a pollution quota is positive, the VM is marked
UNDER, meaning that it can use the processor. There are
also some codes we have introduced in order to provide a way
to set a VM’s llc cap as a Xen command line parameter. In
summary, apart from the code provided by perfctr-xen [18],
which is used to collect PMCs, we made our modifications
in 8 files of Xen source codes, representing about 110 LOCs.

3.3 Computation of llc capact

The computation of llc capact is periodically performed

(e.g. each 100 million of instructions) for all active vCPUs.
We assume that vCPUs of the same VM have the same
behaviour. Therefore, only one vCPU of each VM is consid-
ered. Kyoto relies on two performance metrics: LLC Misses
and UnHalted Core Cycles. Subsequently, the llc capact is
estimated using equation 1.

llc capact =
llc misses× cpu freq khz

unhalted core cycles
(1)

Being able to collect LLC related statistics is not suffi-
cient to compute llc capact for each specific VM. A crucial
question goes unresolved: How to rightly identify PMCs of
a specific VM knowing that several VMs may run in parallel
atop the same LLC2? The Kyoto monitoring system is able
to use two solutions. The first solution consists in dedicating
the use of the LLC to the vCPU whose llc capact needs to
be computed. In other words, only one core in the socket
is activated during the sampling time (about one billion of
cycles). The other vCPUs are migrated to another socket.
This solution could impact migrated vCPU performance (as
shown in Section 4.5). The second solution comes as a re-
sponse to this limitation.
The second solution relies on the use of a microarchitectural-

level simulator. We have used the McSimA+ [12] simulator
in our prototype. McSimA+ [12] is able to be configured
to reflect a specific hardware (including processor caches,
pipelines, etc.). Using a pin tool [13], the instructions gen-
erated during the execution of an application can be con-
currently replayed within the simulator. McSimA+ returns
PMCs related to the architecture of the machine given as
the input. Relying on such a simulator, which runs atop a
dedicated machine, the computation of each VM’s llc capact
can be achieved following these steps:

1. KS4Xen asks the simulator to start the pin tool for a
sampling period,

2. the simulator replays instructions and sends PMCs
back to KS4Xen,

3. and KS4Xen computes the llc capact based on the col-
lected PMCs.

The next section presents the evaluation results of all KS4Xen
aspects.

4. EVALUATIONS
After the presentation of the results which justify our

choices, the evaluation of both KS4Xen’s effectiveness and
overhead are presented. Unless otherwise specified, any VM
uses a single vCPU (having the computing capacity of a
core) and runs either a SPEC CPU2006 application or blockie.
The latter is one of the most contentious application from
the contention benchmark suite developed in [20]. To make
reading easier, we use the following notations: visen and vidis
respectively identify a sensitive and a disruptive VM, lcv

means that the VM v is configured with a booked llc cap

value equals to lc. Table 2 shows the name of the applica-
tion which corresponds to each visen and vidis (1 ≤ i ≤ 3).
Throughout the rest of the article, the expression ”we ran
an application x” is equivalent to ”we ran a VM hosting ap-
plication x”.

2A VM should not be punished for the pollution of another
VM.

VM name Applications
vsen1 , vsen2 , vsen3 respectively gcc, omnetpp, soplex
vdis1 , vdis2 , vdis3 respectively lbm, blockie, mcf

Table 2: Experimental VMs

 0

 5

 10

 15

 20

 25

 0 20 40 60 80 100

%
 o

f
p
er

f.
 d

eg
ra

d
at

io
n

vdis
1 computation power

vsen
1

vsen
2

vsen
3

Figure 3: The processor is a good lever for punishing
polluter/disruptive VMs

4.1 The processor is a good lever
KS4Xen uses the processor as the lever to enforce an as-

signed llc cap. The first experiment type confirms a strong
relationship between a VM’s computing capacity and its ag-
gressiveness, which is correlated to its pollution level. The
scenario we use for these experiments is the following. We
run each vseni in parallel with a vidis (let us say vdis1 (lbm))
while varying the computing capacity of the latter. Fig. 3
shows the results of these experiments. We can see that
each vseni ’s performance degradation percentage linearly in-
creases with vdis1 ’s. Indeed, increasing vdis1 ’s computing
capacity increases its scheduling frequency, which in turn
increases its aggressiveness.

4.2 Equation 1 vs LLC misses (LLCM): which
indicator as the llc cap?

This section presents evaluation results which confirm the
better accuracy of equation 1 (introduced in [7]) in compar-
ison with LLCM for the estimation of each VM pollution
level. The latter can be seen as the aggressiveness level of
the VM. We use the following scenario. We evaluate the ag-
gressiveness of 10 applications (astar, blockie, bzip, gcc, lbm,
mcf, milc, omnetpp, soplex, and xalan) as follows. Each ap-
plication is firstly executed alone and its llc cap is computed
in two manners: using LLCM and using equation 1. Sub-
sequently, each application is executed in parallel with each
of the other applications to evaluate its real aggressiveness.
The latter corresponds to the performance degradation level
the causes. The average aggressiveness of each application
is computed. The results of these experiments are presented
in Fig. 4 in a descending order regarding real aggressive-
ness values. The latter lead to the order o1=(blockie, lbm,
mcf, soplex, milc, omnetpp, gcc, xalan, astar, bzip) while
the order obtained with LLCM is o2=(milc, lbm, soplex,
mcf, blockie, gcc, omnetpp, xalan, astar, bzip) and the one
obtained with equation 1 is o3=(lbm, blockie, milc, mcf,

 0

 5

 10

 15

 20

 25

bl
oc

ki
e

lb
m

m
cf

so
pl

ex

m
ilc

om
ne

tp
p

gc
c

xa
la

n

as
ta

r
bz

ip

 0

 10

 20

 30

 40

 50

 60

A
v
g
.
ag

re
ss

iv
it

y

1
k
 L

L
C

M

Avg. agressivity
LLCM values

 0

 5

 10

 15

 20

 25

bl
oc

ki
e

lb
m

m
cf

so
pl

ex

m
ilc

om
ne

tp
p

gc
c

xa
la

n

as
ta

r
bz

ip

 0

 10

 20

 30

 40

 50

 60

A
v
g
.
ag

re
ss

iv
it

y

1
0
k
 e

q
u
at

io
n
 1

Avg. agressivity
Equation 1 values

Figure 4: Equation 1 vs LLCM

soplex, gcc, omnetpp, xalan, astar, bzip). Relying on the
Kendall’s tau [36] method, we can see that o3 is more closer
to o1 than o2. In conclusion, equation 1 is a better indicator
for llc cap than LLCM.

4.3 KS4Xen’s effectiveness
This section evaluates the benefits of KS4Xen in terms of

LLC contention limitation. This can be judged by the abil-
ity of KS4Xen to ensure performance predictability. This
evaluation is straightforward. We run in parallel 250kvsen1

(gcc) with different 250kvdisi (lbm, blockie, and mcf). Fig. 5
shows the results of these experiments. We can see that the
performance of vsen1 is almost kept whatever the aggressive-
ness of the concurrent VM (Fig. 5 top left). Fig. 5 top right
shows respectively the number of times where vsen1 and vdisi

have been punished. All vdisi (disturber VMs) have received
more penalties than vsen1 . To complete the analysis, curves
in Fig. 5 bottom plot for vdis1 (lbm) respectively the varia-
tion of both measured llc cap and the processor utilization.
Contrary to XCS (the red line), we can see that in KS4Xen,
the VM is deprived of the processor for long moment every
time the measured llc cap exceeds the booked llc cap (the
zigzag line).
We have also evaluated KS4Xen scalability. To this end,

we execute 250kvsen1 while varying the number of colocated
50kvdisi (from 1 to 15 vCPUs3). KS4Xen is scalable if vsen1 ’s
performance is kept. From Fig. 6, we can see that KS4Xen
always keeps the performance of the sensitive VM whatever
the number of colocated disturbers.

4.4 Comparison with existing systems
The previous section have presented the Kyoto’s effective-

ness in comparison with the Xen system, a general purpose

3According to [10], the average number of vCPUs sharing
the same core is about 4. Having 4 cores in our socket,
we can colocate up to 16 vCPUs (remember that vsen1 is
already assigned one vCPU).

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

v di
s
1

v di
s
2

v di
s
3

N
o

rm
al

iz
ed

 v
se

n
1
 p

er
f. vsen

1 perf.

 0

 2

 4

 6

 8

 10

v di
s
1

v di
s
2

v di
s
3

1
k

 #
p

u
n

is
h

m
en

ts

vsen
1

vdis
i

 0 10 20 30 40 50 60 70
running

running

vdis
1 CPU usage with XCS

vdis
1 CPU usage with KS4Xen

-1200

-800

-400

 0

 400

 800

 0 10 20 30 40 50 60 70

1
k

.
ll

c_
ca

p

Ticks (10msec)

Figure 5: KS4Xen minimizes LLC contention, thus avoids performance variations

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

1 2 4 6 8 10 13 14 15

N
o
rm

al
iz

ed
 v

se
n

1
 p

er
f.

clocated vdis
1

Figure 6: KS4Xen’s scalability

Figure 7: Pisces architecture

virtualization system. We have also compared Kyoto with
Pisces [4], a co-kernel [5] which allows building strongly iso-
lated HPC applications (see Fig. 7). To guarantee perfor-
mance isolation, a Pisces application runs in a VM which
has the entire control of its assigned resources, without the
intervention of an hypervisor. By doing so, Pisces avoids
the contention within the hypervisor and other virtualiza-
tion components (such as driver domains), which is known
to be source of performance interference [6]. We have eval-
uated the Pisces capability to (1) isolate a sensitive ap-
plication (vsen1) and to limit the negative effect of a dis-
ruptive application (vdis1). Subsequently, we have imple-
mented and evaluated the effectiveness of two other Kyoto
versions: one for the Linux virtualization system (via the
CFS scheduler, noted KS4Linux) and the other for Pisces
(noted KS4Pisces). Fig. 8 (the first two bars) shows that

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

Pisc
es

KS4Pisc
es

E
x
e
c
.
ti

m
e
 (

se
c
)

vsen
1
 alone

vsen
1
 colocated

Figure 8: Comparison of Kyoto with Pisces

Pisces does not ensure performance predictability when the
LLC is shared between a sensitive and a disruptive VM (the
performance difference is about 24%). This is explained by
the fact that the performance interference issue considered
by Pisces is the one which comes from shared virtualiza-
tion components (such as the driver domain) and coarse-
grained resources (such as processors). Microarchitectural-
level components like the LLC are not considered. Fig. 8
(the last two bars) also shows that when the previous exper-
iment is played in a Kyoto environment, performance pre-
dictability is achieved (notice that we use the same llc cap

value presented in the previous section).

4.5 Kyoto’s overhead
The complexity of Kyoto is O(n), where n is the number

of VMs (about a hundred) in the physical machine. This sec-
tion evaluates Kyoto’s overhead by relying on KS4Xen know-
ing the lessons learned here are applicable to other Kyoto’s
implementations. The execution of KS4Xen can introduce
two overhead types: (1) from the solution used to identify
LLC statistics related to a specific vCPU (to compute its
llc capact, see Section 3.3), and (2) from the monitoring sys-
tem (PMCs gathering). This section evaluates the impact
(if ever exists) of these overheads.

llc capact computation.
Recall that one of the solutions used by KS4Xen to iden-

tify the LLC statistics related to a specific vCPU relies on
the dedication of a socket to that vCPU for the duration of
the sampling. This requires the migration of not concerned
vCPUs to another socket. We evaluate the impact of this mi-
gration using the following scenario. We experiment 8 SPEC
CPU2006 applications atop a NUMA machine (PowerEdge
R420) composed of 2 sockets (noted numa0 and numa1).
Each experiment uses a single VM composed of a single
vCPU which starts its execution on numa0. KS4Xen is con-
figured to periodically migrate the vCPU between numa0

and numa1. The return migration from numa1 to numa0 is
performed after a random period in order to mimic the time
taken by KS4Xen to compute all vCPUs’ llc capact. Fig. 9
presents the results of these experiments. We can see that
all VMs are not impacted at the same level. We have ob-
served that the most affected applications (milc, omnetpp,

 0

 2

 4

 6

 8

 10

 12

 14

m
cf

so
pl

ex

m
ilc

om
ne

tp
p

xa
la

n

as
ta

r
bz

ip
lb

m

P
er

f.
 d

eg
ra

d
at

io
n
 (

%
)

Figure 9: Migrating vCPU could impact VMs which
host memory bound applications

lbm) are those which run memory intensive applications (up
to 12% overhead). This is explained by the fact that when
the vCPU is migrated to numa1, all memory accesses are
done remotely.
This degradation can be minimized by reducing the num-

ber of migrations. We have identified two situations in which
vCPU isolation is not mandatory. These situations are:

• A vCPU which generates a very low level of LLCmisses
(let us say lower than a configurable threshold) will not
be isolated. Indeed, such vCPUs are neither disturbers
nor sensitive. The first two bars in Fig. 10 shows the
value of llc capact for a VM running hmmer (known to
generate low LLC misses) when its vCPU is isolated
and not isolated (colocated with several disturbers vC-
PUs). We can see that the difference is almost nil.

• A vCPU which shares the LLC only with vCPUs which
generate low level LLC misses will not be isolated. In-
deed, since colocated vCPUs are not disturbers, it is
most likely that the obtained llc capact is not far from
the correct value. The last two bars in Fig. 10 shows
bzip’s llc cap is almost the same when it is colocated
with several hmmer applications.

PMCs gathering.
We have also evaluated KS4Xen’s overhead in terms of

the amount of resources it consumes. Concerning the main
memory, KS4Xen extends two data structures (structcsched vcpu

and structcsched dom) to record PMCs for each VM. This
extension is about 72 bytes, which is negligible. Concern-
ing the processor, the execution of perfctr-xen (for gathering
PMCs) is the only source of processing time consumption.
To evaluate the latter, we ran in parallel two VMs which
host the same CPU bound application (the SPEC CPU2006
application povray) atop the same processor. KS4Xen and
XCS are experimented with different time slices (scheduling
periods) to vary the intervention delay (thus the execution
of the monitoring system, the potential source of overhead).
Fig. 12 presents the results of these experiments. We can
see that both KS4Xen and XCS lead VMs to the same per-
formance level. In other words, the monitoring system used
by KS4Xen does not introduce an overhead.

 0

 50

 100

 150

 200

 250

 300

hmmer bzip

ll
c c

ap
ac

t
(k

)

Not isolated
Isolated

Figure 10: vCPU isolation could be avoided in some
situations

 0

 5

 10

 15

 20

 25

bl
oc

ki
e

lb
m

m
cf

so
pl

ex

m
ilc

om
ne

tp
p

gc
c

xa
la

n

as
ta

r
bz

ip

 0

 10

 20

 30

 40

 50

 60

A
v
g
.
ag

re
ss

iv
it

y

1
0
k
 e

q
u
at

io
n
 1

Avg. agressivity
Socket dedication

No socket dedication

Figure 11: Socket dedication could be avoided when
computing llc capact

 0

 50

 100

 150

 200

 250

 300

 350

 0 5 10 15 20 25 30

E
x
e
c
u
ti

o
n
 t

im
e
 (

se
c
)

Time slice (ms)

With XCS
With KS4Xen

Figure 12: The overhead incurs by KS4Xen is near
zero.

5. DISCUSSION
The contribution of this paper does not target all cloud

types. It is suitable for HPC clouds since they run appli-
cations which are very sensitive to microarchitectural-level
components behavior (such as LLC contention). Therefore,
we assume that users of such clouds are able to deal with the
new parameter we have introduced: the llc cap. A question
that one could ask is how the user chooses a VM’s llc cap

value? We answer this question as follows. A cloud platform
often defines a set of bookable instance types (e.g. Amazon
EC2 proposes 38 instance types4) which are different each
other by the amount of resource they are assigned regarding
each resource type. For instance in Amazon EC2, the par-
ticularity of a R3 instance is the fact that it is assigned a
lot of memory in comparison with the computing capacity.
Therefore, relying on VM typed, the provider can associate
to each instance type a llc cap level. We can assume that the
latter is proportional to the amount of memory assigned to
the instance. For instance, R3’s instances will be assigned
much more llc cap than C3’s instances since the primary
needs of the latter is the computing capacity.

6. RELATED WORK
Existing solutions can be organized into two categories:

placement algorithms and cache partitioning.

Placement algorithms.
Several prior work have proposed cache aware schedul-

ing algorithms to address the problem of LLC contention.
In the context of non-virtualized environments, [7, 26, 28,
38, 39, 40] presented some methods to evaluate the sensi-
tivity and the aggressiveness of an application. Our Kyoto
system uses one of these approaches, particularly the one
presented by [7]. [21] proposed ATOM (Adaptive Thread-
to-Core Mapper), a heuristic to find the optimal mapping
between a set of processes and cores such that the effect of
cache contention is minimized. [24] is situated in the same
vein. It proposed two scheduling algorithms to distribute
processes across different cores such that miss rate is fairly
distributed. [25] presented a cache aware scheduling algo-
rithm which awards more processing time to a process when
it suffers from cache contention. Therefore, [25] confirms in
some way the fact that the processor can serve as a lever for
controlling LLC utilization as we did.
Several researches [33, 31, 32, 38, 39, 40] have pointed the

problem of LLC contention in the context of virtualized en-
vironments. However, very few of them have proposed a so-
lution to this problem. [30] studied the effects of collocating
different types of VMs under various VM to processor place-
ment schemes to discover the best placement. The main lim-
itation of this solution is the fact that it needs to know the
applications which are running within VMs (to evaluate the
collocation effects). [37] proposed a cache aware VM consol-
idation algorithm which chooses the consolidation plan so
that the overall LLC misses are minimized in the IaaS. This
solution considers the entire IaaS, not a single machine as
we did.

Cache partitioning.
In this category we can distinguish two main approaches.

The first approach is based on cache replacement policies.

4https://aws.amazon.com//ec2/instance-types/

It is independent from the execution environment (virtual-
ized or not). According to this approach, [17, 19] proposed a
dynamic insertion policy (DIP) which adapts the insertion
policy (LRU or BIP) according to process memory activ-
ities. By doing so, DIP avoids to keep in the cache data
of a VM which is parsing a large working set (a kind of
disruptive VM). This solution is limited to a single cate-
gory of disruptive VMs. [26] trends in the same direction by
proposing PD (Protecting Distance), a cache replacement
policy which protects cache lines that may be reused. [29]
proposes a cache management policy called PIPP (Promo-
tion/Insertion Pseudo-Partitioning). The latter partitions
the cache by managing both cache insertion and promo-
tion policies. [27] presents UCP (Utility-based Cache Par-
titioning), a runtime mechanism for partitioning the cache
between multiple applications. UCP monitors each applica-
tion using a cost estimation hardware circuit. Collected data
are used by a partitioning algorithm to decide the amount
of cache resources to allocate to each application. The pol-
icy is implemented through hardware and software modifica-
tions. [34] presented a QoS enabled cache architecture which
enables more cache resources for high priority applications.
Applications are assigned a priority level (this is compara-
ble to our llc cap). Then each cache line is tagged with a
priority level.

The second approach addresses the cache contention issue
using software based cache partitioning. Our solution uses
this approach. [22, 23] proposed to partition the cache using
page coloring [35]. Each VM is reserved a portion of the
cache, and the physical memory is allocated such that a VM
cache lines map only that reserved portion. This idea is
very nice but difficult to implement. It depends on both
the architecture of the cache and the replacement policy.
Moreover, allocating physical pages to enforce the use of a
specific place of the cache could be difficult to implement
without wasting memory resources. For these reasons, [22,
23] only presented preliminary results.

Positioning of our work.
The main drawbacks of the above solutions are the fol-

lowing: cache partitioning solutions require the modification
of hardware while VM placement solutions are not always
optimal (VM placement is a NP-hard problem), most im-
portant these solutions are not in the spirit of the
cloud which relies on the pay-per-use model: why not each
VM books for an amount of cache utilization such that the
virtualization system ensures that in the same way as it does
for other coarse-grained resource types (CPU, memory, etc.).
In this paper, we have proposed the Kyoto system which is
a step in that direction.

7. CONCLUSION
We presented in this paper a new approach to address

the issue of performance unpredictability due to LLC con-
tention in a virtualized cloud environment. Our approach is
inspired by the polluters pay principle which is applied as
follows: any VM should pay for the amount of pollution it
generates in the LLC. To implement it, we relied on hard-
ware counters to monitor the utilization of the LLC by VMs,
and we implemented a new vCPU scheduler which enforces
at runtime a booked pollution level of a VM. We have pre-
sented a prototype for Xen system, KVM and Pisces. These
prototypes have been evaluated using reference benchmarks

(SPEC CPU2006), showing that they can enforce perfor-
mance isolation between VMs even in case of LLC con-
tention.

8. REFERENCES

[1] Dejan Milojicic (HP Labs), ’High Performance
Computing (HPC) in the Cloud’, Computing Now
journal, September 2012.

[2] MicrosoftâĂŹs Top 10 Business Practices for
Environmentally Sustainable Data Centers,
’http://www.microsoft.com/environment/news-and-
resources/datacenter-best-practices.aspx’.

[3] Xi Chen, Chin Pang Ho, Rasha Osman, Peter G.
Harrison, and William J. Knottenbelt, ’Understanding,
modelling, and improving the performance of web
applications in multicore virtualized environments’,
ICPE 2014.

[4] J. Ouyang, B. Kocoloski, J. Lange and K. Pedretti,
’Achieving Performance Isolation with Lightweight
Co-Kernels’, HPDC 2015.

[5] R. Riesen, R. Brightwell, P. G. Bridges, T. Hudson, A.
B. Maccabe, P. M. Widener, and K. Ferreira.
’Designing and Implementing Lightweight Kernels for
Capability Computing’. Concurrency and
Computation: Practice and Experience, 21(6), 2009.

[6] Boris Teabe, Alain Tchana, and Daniel Hagimont.
’Billing system CPU time on individual VM’.
CCGRID, 2016.

[7] Lingjia Tang, Jason Mars, and Mary Lou Soffa,
’Contentiousness vs. Sensitivity: improving contention
aware runtime systems on Multicore architecture’,
EXADAPT 2011.

[8] 5 Lessons We’ve Learned Using AWS:
http://techblog.netflix.com/2010/12/5-lessons-weve-
learned-using-aws.html

[9] Kyoto Protocol,
http://unfccc.int/kyoto protocol/items/2830.php

[10] Lingfang Zeng, Yang Wang, Wei Shi, Dan Feng, ’An
Improved Xen Credit Scheduler for I/O
Latency-Sensitive Applications on
Multicores’,CLOUDCOM 2013

[11] SPEC CPU2006, ‘https://www.spec.org/cpu2006/.

[12] Jung Ho Ahn, Sheng Li, O. Seongil, and Norman P.
Jouppi, ’McSimA+: A manycore simulator with
application-level+ simulation and detailed
microarchitecture modeling’, ISPASS 2013.

[13] Prashanth P. Bungale and Chi-Keung Luk, ’PinOS: a
programmable framework for whole-system dynamic
instrumentation’, VEEE 2007.

[14] lmbench, ‘http://www.bitmover.com/lmbench/.

[15] Ulrich Drepper. What every programmer should know
about memory;
http://people.redhat.com/drepper/cpumemory.pdf,
2007.

[16] Ludmila Cherkasova, Diwaker Gupta, and Amin
Vahdat, ’Comparison of the Three CPU Schedulers in
Xen’, SIGMETRICS Performance Evaluation Review,
35(2) 2007.

[17] Moinuddin K., Aamer Jaleel, Yale N. Patt, Simon C.
Steely, and Joel Emer, ’Adaptive insertion policies for
high performance caching’, ISCA 2007.

[18] Ruslan Nikolaev and Godmar Back, ’Perfctr-Xen: a
framework for performance counter virtualization’,
VEE 2011.

[19] Aamer Jaleel, William Hasenplaugh, Moinuddin
Qureshi, Julien Sebot, Simon Steely, Jr., and Joel
Emer, ’Adaptive insertion policies for managing shared
caches’, PACT 2008.

[20] Jason Mars and Mary Lou Soffa, ’Synthesizing
contention’, WBIA 2009.

[21] Lingjia Tang, Jason Mars, Neil Vachharajani, Robert
Hundt, and Mary Lou Soffa, ’The Impact of Memory
Subsystem Resource Sharing on Datacenter
Applications’, ISCA 2011.

[22] Xinxin Jin, Haogang Chen, Xiaolin Wang, Zhenlin
Wang, Xiang Wen, Yingwei Luo, and Xiaoming Li, ’A
Simple Cache Partitioning Approach in a Virtualized
Environment’, ISPA 2009.

[23] Xiaolin Wang, Xiang Wen, Yechen Li, and Yingwei
Luo, ’A Dynamic Cache Partitioning Mechanism under
Virtualization Environment’, TrustCom 2012.

[24] Sergey Zhuravlev, Sergey Blagodurov, and Alexandra
Fedorova, ’Addressing shared resource contention in
multicore processors via scheduling’, ASPLOS 2010.

[25] Alexandra Fedorova, Margo Seltzer, and Michael D.
Smith, ’Improving Performance Isolation on Chip
Multiprocessors via an Operating System Scheduler’,
PACT 2007.

[26] Nam Duong, Dali Zhao, Taesu Kim, Rosario
Cammarota, Mateo Valero, and Alexander V.
Veidenbaum, ’Improving Cache Management Policies
Using Dynamic Reuse Distances’, MICRO 2012.

[27] Moinuddin K. Qureshi and Yale N. Patt,
’Utility-Based Cache Partitioning: A Low-Overhead,
High-Performance, Runtime Mechanism to Partition
Shared Caches’, MICRO 2006.

[28] Gaurav Dhiman, Giacomo Marchetti, and Tajana
Rosing, ’vGreen: a system for energy efficient
computing in virtualized environments’, ISLPED 2009.

[29] Yuejian Xie and Gabriel H. Loh, ’PIPP:
Promotion/Insertion Pseudo-Partitioning of Multi-core
Shared Caches’, ISCA 2009.

[30] Indrani Paul, Sudhakar Yalamanchili, and Lizy K.
John, ’Performance impact of virtual machine
placement in a datacenter’, IPCCC 2012.

[31] Younggyun Koh, Rob C. Knauerhase, Paul Brett, Mic
Bowman, Zhihua Wen, and Calton Pu, ’An Analysis of
Performance Interference Effects in Virtual
Environments’, ISPASS 2007.

[32] Padma Apparao, Ravi R. Iyer, and Donald Newell,
’Implications of Cache Asymmetry on Server
Consolidation Performance’, IISWC 2008.

[33] Natalie Enright Jerger, Dana Vantrease, and Mikko
Lipasti, ’An Evaluation of Server Consolidation
Workloads for Multi-Core Designs’, IISWC 2007.

[34] Ravi Iyer, Li Zhao, Fei Guo, Ramesh Illikkal, Srihari
Makineni, Don Newell, Yan Solihin, Lisa Hsu, and
Steve Reinhardt, ’QoS policies and architecture for
cache/memory in CMP platforms’, SIGMETRICS 2007.

[35] Xiao Zhang, Sandhya Dwarkadas, and Kai Shen,
’Towards practical page coloring-based multicore cache
management’, EuroSys 2009.

[36] Mirella Lapata, ’Automatic Evaluation of Information
Ordering: Kendall’s Tau,’ Comput. Linguist. 32, 4,
2006.

[37] Jeongseob Ahn, Changdae Kim, Jaeung Han,
Young-Ri Choi, and Jaehyuk Huh, ’Dynamic virtual
machine scheduling in clouds for architectural shared
resources’, HotCloud 2012.

[38] Richard West, Puneet Zaroo, Carl A. Waldspurger,
Xiao Zhang, ”Online cache modeling for commodity
multicore processors”, SIGOPS 2010

[39] Marco Caccamo, Rodolfo Pellizzoni, Lui Sha, Gang
Yao, Heechul Yun, ”MemGuard: Memory bandwidth
reservation system for efficient performance isolation in
multi-core platforms”, RTAS 2013

[40] Abhishek Gupta, Laxmikant V. Kale, Dejan Milojicic,
Paolo Faraboschi, Susanne M. Balle,”HPC-Aware VM
Placement in Infrastructure Clouds”, IC2E 2013

