Semi-Linearized Proximal Alternating Minimization for a Discrete Mumford–Shah Model

Abstract : The Mumford–Shah model is a standard model in image segmentation and many approximations have been proposed in order to approximate it. The major interest of this functional is to be able to perform jointly image restoration and contour detection. In this work, we propose a general formulation of the discrete counterpart of the Mumford–Shah functional, adapted to nonsmooth penalizations, fitting the assumptions required by the Proximal Alternating Linearized Minimization (PALM), with convergence guarantees. A second contribution aims to relax some assumptions on the involved functionals and derive a novel Semi-Linearized Proximal Alternated Minimization (SL-PAM) algorithm, with proved convergence. We compare the performances of the algorithm with several nonsmooth penalizations, for Gaussian and Poisson denoising, image restoration and RGB-color denoising. We compare the results with state-of-the-art convex relaxations of the Mumford–Shah functional, and a discrete version of the Ambrosio–Tortorelli functional. We show that the SL-PAM algorithm is faster than the original PALM algorithm, and leads to competitive denoising, restoration and segmentation results.
Liste complète des métadonnées

Littérature citée [43 références]  Voir  Masquer  Télécharger
Contributeur : Marion Foare <>
Soumis le : mardi 1 mai 2018 - 19:19:52
Dernière modification le : mercredi 19 décembre 2018 - 13:36:31
Document(s) archivé(s) le : mardi 25 septembre 2018 - 03:48:05


Fichiers produits par l'(les) auteur(s)


  • HAL Id : hal-01782346, version 1


Marion Foare, Nelly Pustelnik, Laurent Condat. Semi-Linearized Proximal Alternating Minimization for a Discrete Mumford–Shah Model. 2018. 〈hal-01782346v1〉



Consultations de la notice


Téléchargements de fichiers