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The charge-transfer insulating perovskite oxides currently used as fuel cell electrolytes undergo, at high
temperature, an oxidation reaction 1

2 O2(g) + V••
O → OX

O + 2h•, that produces oxygen-type holes. Understanding
the nature and mobility of these oxygen-type holes is an important step to improve the performance of devices,
but presents a theoretical challenge since, in their localized form, they cannot be captured by standard density
functional theory. Here, we employ the DFT+U formalism with a Hubbard correction on the p orbitals of
oxygen to investigate several properties of these holes, in the particular case of BaSnO3. We describe the small
oxygen-type hole polarons, the self-trapping at their origin, and their trapping by trivalent dopants (Ga, Sc, In, Lu,
Y, Gd, La). Strong similarities with protonic defects are observed concerning the evolution of the trapping energy
with ionic radius of the dopant. Moreover, we show that long-range diffusion of holes is a complex phenomenon,
that proceeds by a succession of several mechanisms. However, the standard implementation of DFT+U within
the projector augmented-wave (PAW) formalism leads to use very large, unphysical values of U for the O-p
orbital. We propose here a slightly modified DFT+U scheme, that takes into account the fact that the O-p is
truncated in usual DFT+U implementation in PAW. This scheme yields more physical values of U than the ones
traditionally used in the literature, and describes well the properties of the hole polaron.
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I. INTRODUCTION

Solid oxide fuel cells (SOFCs) and protonic ceramic fuel
cells (PCFCs) are promising devices for the conversion into
electricity of the chemical energy stored in the H2 molecule.
They could overcome several drawbacks encountered in poly-
mer exchange membrane fuel cells. For instance, these devices
work at sufficiently high temperature to allow easy dissociation
of the dihydrogen molecule and avoid the use of expensive
catalysts such as platinum. The electrolytes of SOFCs and
PCFCs are oxide compounds in which an aliovalent doping
(substitution of cations by elements of lower valence) creates,
by charge compensation, a large concentration of charged
oxygen vacancies V••

O . In SOFCs, these charged oxygen
vacancies allow oxide ion migration, while in PCFCs, they are
favorable to water dissociation when put in contact with humid
atmosphere. This creates ionic conductivity, by the migration
of O2− ions in the first case, and protonic conductivity in
the latter [1]. In PCFCs, the materials currently used as
electrolytes are insulating perovskite oxides such as BaZrO3,
BaSnO3, or BaCeO3, doped by trivalent elements on their
B site.

However, at the high working temperatures of the devices
(typically 600–1000 K), these compounds are subject to an ox-
idation reaction that may deteriorate their quality as electrolyte
materials because it makes the compounds hole-type electronic
conductors, whereas they should remain electronic insulators
whatever the conditions. It consists in the dissociative insertion
of oxygen molecules in the charged vacancies, according to

1
2 O2(g) + V••

O → OX
O + 2h•. (1)

Since the zirconate, stannate, cerate, or titanate perovskites
in question, with a tetravalent B ion, are charge-transfer
insulators, the holes, that correspond to empty states at the top
of the valence band, are formed by depopulated 2p orbitals of
oxygen. It has been suggested that they may be rather delocal-
ized under the form of large polarons [2]. It is now commonly
admitted that, in many charge-transfer oxides, these holes
localize on single oxygen atoms, under the form of small po-
larons O− (that can be noted as O•

O) [3–7], which may be con-
sidered as true at least at low temperature. This oxygen-type
self-trapped hole polaron (STHP) occupies, in these perovskite
oxides, a 2p orbital oriented perpendicular to the B-O-B
bond [4,8]. Recent hybrid density functional calculations
report self-trapping energies favorable to the formation of
small oxygen-type hole polarons in BaCeO3 (−0.15 eV [9]),
in SrTiO3 (−0.05 eV [8]), and in BaZrO3 (−0.2 eV [4]).

Improving the quality of the electrolytes in the high-
temperature working regime of SOFCs/PCFCs requires to
understand clearly this oxidation, including the behavior of
the holes resulting from this reaction. Theoretically, previ-
ous studies have revealed that advanced electronic structure
calculations are needed to correctly describe this oxidation
phenomenon. Indeed, the generalized gradient approximation
(GGA) finds it exothermic in several perovskite oxides
[10–12], while hybrid functionals (PBE0) provide an endother-
mic picture [12]. This is related to the band-gap problem,
more precisely to the incorrect position of the valence band
maximum, formed by oxygen-2p states, obtained with GGA.
Moreover, density functional theory (DFT) at its local and
semilocal level of approximation (LDA, GGA) is unable to
capture the localized oxygen-type hole polarons, while hybrid
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functionals such as PBE0 or HSE06 are able to [13,14].
This is mainly due to the self-interaction error that local
and semilocal functionals exhibit. Alternatively, the so-called
DFT+U with an onsite correction Hubbard term U applied
on the p orbitals of oxygen, may successfully remove part
of this self-interaction [15]. Indeed, it has been used in the
past years to describe oxygen-type hole polarons in various
charge-transfer insulating oxides, including titanate/zirconate
perovskite oxides [4,13] or TiO2 [16,17]. It is interesting to
note that very large values of U (typically ∼5−10 eV) are
needed, typical of the ones used in strongly correlated systems.
For instance, note the following:

(i) In titanates ATiO3 (A = Pb, Ba, Sr), Erhart et al.
[13] have shown that LDA+U , with U = 8 eV, can be used
to simulate oxygen-type self-trapped small hole polarons,
reproducing in a satisfactory manner the results obtained on
these entities by the hybrid HSE06 functional.

(ii) Very recently, Lindman et al. used DFT+U to model
the oxygen-type self-trapped hole polaron in BaZrO3 [4]:
they predict a favorable self-trapping energy of ∼ − 0.11 eV
(U = 6.5 eV), close to that provided by HSE06 on that system
(−0.2 eV), and a rather low activation energy for hole mobility
(∼0.2 eV).

The ability of DFT+U to offer the same precision as hybrid
functionals on such polaronic systems is thus well established.
Besides, the lower computational cost of DFT+U enables
to extend the study of self-trapped small hole polarons to
larger and more complex systems. However, as pointed out
by Lany and Zunger [18], the large value of U that has to be
introduced (necessary to describe well the localization effect of
the polaron) may be inappropriate to describe simultaneously
some properties of the host matrix.

In this work, we use DFT+U , with U applied on the p

states of oxygen, to describe the self-trapped state, the trap-
ping effect of dopants and the mobility of holes, in the case
of barium stannate, BaSnO3 (BSO), a potential electrolyte
material for SOFCs and PCFCs [19–28], for which hole-type
conductivity at high temperature has been reported [20,27,28].
Besides, we propose a slightly modified DFT+U scheme,
more adapted to p orbitals, and show that such scheme is
able to provide similar physics, but with more physical values
of U than the ones traditionally used in the literature. This
modified scheme, which is a simple renormalization of the
number of electrons, will be denoted as scheme oC throughout
the paper, while the standard one will be denoted as scheme
oA (see Sec. II B and Appendix C).

BSO, interestingly, also presents high level of electronic
conductivity under n-type doping, which has been recently in-
vestigated using hybrid density functional approaches [29,30].
This last point, however, will not be treated in this work, and we
only focus on holes, i.e., on the material behavior in oxidative
atmosphere.

The paper is organized as follows. Section II gives com-
putational details and presents this slightly modified DFT+U

scheme. Then, we describe the oxygen-type hole polaron O−
in BaSnO3, as obtained by GGA+U , either self-trapped in the
lattice, or trapped in the vicinity of trivalent dopants (Ga, Sc,
In, Lu, Y, Gd, La) (Sec. III). After that, we carefully investigate
its mobility and show that hole diffusion occurs by a complex
succession of hoppings and reorientations (Sec. IV).

II. COMPUTATIONAL DETAILS

A. Density functional theory calculations

Density functional theory calculations [31] have been per-
formed using the ABINIT code [32]. The projector augmented-
wave (PAW) formalism [33] is employed, with the gen-
eralized gradient approximation (GGA-PBE) [34] and the
GGA-PBE+U , the Hubbard correction being applied on the
p states of oxygen (in what follows, the term U denotes
exclusively the Hubbard correction applied on the p states
of oxygen). The plane-wave cutoff is 25 Hartrees (50 Ha for
the double grid). We use a 3 × 3 × 3 supercell with fixed
dimension (three times that of perfect BaSnO3), in terms of
the primitive 5-atom unit cell (135 atoms), in which several
defects are introduced in different charge states: (i) hole (i.e.,
electron removed, either localized or delocalized), (ii) trivalent
dopant (Ga, Sc, In, Lu, Y, Gd, La) in charge state −1 and
0 (in the latter case, this corresponds to the association of
a negative dopant and a hole). Two kinds of calculations
are performed: structural optimizations and minimum energy
paths.

Charged supercells are computed using a uniform com-
pensating background, and the total energies are corrected
according to the Makov-Payne scheme [35] (except in the
case of the delocalized hole) and by a band alignment based
on the 5s semicore levels of barium [36]. The Brillouin
zone of the supercell is sampled by a 2 × 2 × 2 k-point
mesh (increased to 4 × 4 × 4 in the case of the delocalized
hole, which is a metallic system). The various configurations
are optimized until all the Cartesian components of the
atomic forces are below 2.0 × 10−4 Ha/Bohr (∼0.01 eV/Å).
All the calculations involving a hole, either localized or
delocalized, are spin polarized. Our k-point grid is shifted
in the usual way. However, we have checked in particular
cases that inclusion of the � point does not modify the
results: within scheme oC, the total energy of the supercell
containing a self-trapped hole polaron is changed by less than
1 meV when using a nonshifted 2 × 2 × 2 grid, while that
of the supercell containing the delocalized hole is changed
by less than 5 meV when using a nonshifted 4 × 4 × 4
grid.

The PAW atomic data sets are described in Appendix A
(PAW radii, semicore electrons). In the ABINIT and VASP codes,
the DFT+U is implemented on the PAW spheres only (see
discussion in the next subsection). Thus, the radius of the
PAW atomic data set is likely to have a large influence on
the DFT+U results, especially in the case of the 2p orbitals
of O, which are rather extended in space. Here, an oxygen
atomic data set with a radius of 1.6 a.u. has been used in all
the DFT+U calculations (except in Appendix D, where an
atomic data set with a radius of 1.4 a.u. has been tested). The
PBE calculations, provided here for comparison, have been
performed using a 1.4 a.u. data set. For Sn, a PAW atomic data
set treating explicitly the 4d electrons has been used for all
the calculations, except for the computation of the minimum
energy paths for hopping/reorientation of the hole polarons,
where the 4d electrons of Sn are frozen in the core of the
atomic data set (the plane-wave cutoff is 18 Ha in that case).
The energy barriers for hole migration have been computed
using the simplified string method [37].
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B. DFT+U peculiarities

Formally, DFT+U formalism could be applied to any kind
of correlated orbitals. However, and as discussed by Lany and
Zunger [18], implementations of DFT+U in PAW lead to a
huge variations of the number of electrons for O-p orbitals,
depending on the choice of PAW atomic data. In this section,
we discuss a simple modification that has to be done in the PAW
implementation of the DFT+U in order that calculations on
O-p orbitals are of the same precision as calculations on more
localized orbitals (d or f ).

The main physical quantity which occurs in a DFT+U cal-
culation is the density matrix of correlated orbitals n

l,σ
m,m′ [38].

The diagonal element of this matrix is the number of electrons
in the orbital indexed by quantum numbers l and m and spin
σ . This density matrix can be written simply as

n
l,σ
m,m′ =

∑
k,ν

f k,σ
ν

〈
�k,σ

ν

∣∣χlm′
〉〈
χlm

∣∣�k,σ
ν

〉
, (2)

where �k,σ
ν and f k,σ

ν are the Kohn-Sham orbital and its
occupation for k point k, spin σ , and band ν. Importantly,
the density matrix also depends on the definition of correlated
orbitals χlm. The angular part of χlm is the spherical harmonic
Ylm and is well defined by the angular momentum (here
l = 1 for p orbitals). However, the radial part of χlm is
more subject to variation. This radial part can be the radial
part of LDA (or LDA + U ) atomic orbitals, of truncated
orbitals [39,40], or of Wannier functions [41]. The DFT+U

formulation [39,40] often used in the projector augmented-
wave (PAW) method (scheme oA, as in ABINIT and VASP

[see Eq. (C1) in Appendix C]) is in practice equivalent [40]
to using renormalized truncated atomic orbitals φ̄t

0 as the
radial part of correlated orbitals [scheme oB, as in Eq. (C2)
in Appendix C]. Renormalized truncated atomic orbitals are
used instead of atomic orbitals because in order to simplify
the PAW implementation, the projection of atomic orbitals
over Kohn-Sham orbitals (〈�k,σ

ν |Ylmφ̄t
0〉) is only done inside

the PAW atomic sphere defined by the PAW radius [40]. So,
the renormalization is here to compensate for the part of the
correlated orbital which is outside the PAW atomic sphere.
For the sake of completeness, Fig. 1 compares radial parts
of an atomic orbital φ0, a truncated atomic orbital φt

0, and a

renormalized atomic orbital φ̄t
0 = φt

0√
〈φt

0|φt
0〉

for an oxygen-p

orbital.
Let us now investigate the consequence of this truncation

on the scalar product 〈�k,σ
ν |Ylmφ̄t

0〉. We focus on the particular
case of an oxygen atom and we select the Kohn-Sham wave
function of a p orbital which can be written as � = Ylmφ0.
In this case, this scalar product is simply 〈φ0|φ̄t

0〉 = 〈φt
0|φ̄t

0〉 =√〈φt
0|φt

0〉. Indeed, not only the atomic orbital, but also the
Kohn-Sham orbital is truncated because of the scalar product
〈�k,σ

ν |Ylmφ̄t
0〉 which appears in Eq. (C2). Thus, using Eq. (C2),

and as can be seen on Table I, the maximal number of p

electrons within this scheme is not 6 as it should be, but
6〈φt

0|φt
0〉 (the precise value depends on the PAW radius): it

is thus a drawback of the truncation of the scalar product
as it is commonly done in PAW. This drawback has limited
consequences for d and f orbitals which are mainly localized
inside the PAW sphere. However, for the p orbital, the

0 1 2 3
r (au)

0

0.5

1

1.5

2

φ0

φ0
t

φ0
t

FIG. 1. Comparison of the radial part of an atomic orbital φ0, a
truncated atomic orbital φt

0, and a renormalized atomic orbital φ̄t
0 for

an oxygen-p orbital.

problem is more important and the number of electrons cannot
be typically greater than 4.5. A solution to this problem
would be to implement the calculation of the density matrix
without truncation of the scalar product. It is, however, an
important task beyond the scope of this work because it
requires an important modification of the DFT+U Kohn-Sham
potential, of the total energy and of the expression of forces
on atoms. Here, we focus on a very simple way to circumvent
this problem. One can easily see that the use of a correct
renormalization of the density matrix as in Eq. (C4) (scheme
oC) enables to recover the good number of electrons (see
Appendix C for an extensive discussion). This renormalization
is equivalent to renormalize the scalar product 〈�k,σ

ν |Ylmφ̄t
0〉

with
√〈φt

0|φt
0〉 in order that the scalar product is simply one in

the atomic limit. We emphasize that this modification does not
modify the physical meaning of the DFT + U approximation
and is just a simple renormalization of the scalar product in
order to recover the correct number of electrons and thus the
correct physics (see Table I).

As we emphasize below, for an oxygen with a hole polaron
in BaSnO3, this simple change in the calculation of the density
matrix enables to obtain a more physical value of U (see next
section), and also more physical values for the number of
electrons and the band gap.

TABLE I. Comparison of the maximal number of electrons of
oxygen-p orbital in the standard projection scheme of DFT+U (oA

or oB), as used in ABINIT and VASP, and using our renormalized
projection (oC). The numerical results for oB depend on the value of
the PAW radius. For a typical value, standard projection severely
underestimates the number of electrons, but our renormalized
projection recovers the correct result. For d and f orbitals which
are mainly inside the PAW sphere, the two schemes are close to each
other.

Occupation matrix Max. number of electrons

Standard projection (oA) 4.44 = 6 〈φt
0|φt

0〉
Renormalized projection (oC) 6.00
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FIG. 2. Energy change with respect to piecewise linearity, as a
function of fractional charge (number of electrons) in the polaron,
and DFT+U contribution to the total energy, due to the orbital on
which the hole is located, namely, U/2(ni − n2

i ). The linearity is
subtracted so that the concavity or convexity appears clearly. Left
panels: standard DFT+U scheme (oA), with U = 6, 7, and 8 eV;
right panels: scheme oC (U = 4, 5, 6, and 7 eV). The atomic geometry
(positions, lattice constant) is fixed to that of the STHP at U = 6 eV
(with scheme oA).

C. Piecewise linearity of the energy as a function
of fractional charge

We now determine which value of U must be used to
simulate the oxygen-type hole polarons in BSO. In a self-
trapped hole polaron, the hole is localized in space and thus
is no more in a Bloch state. As a consequence, it exhibits
self-interaction effects [42] when calculated in GGA-PBE,
which destabilize the polaron and favor the delocalized state.
Following Erhart et al. [13] and Lindman et al. [4], we
compute, in the STHP geometry, the energy as a function
of a fractional excess electronic charge in PBE + U . We plot
this energy on Fig. 2 for both DFT+U schemes, as a function
of excess charge and for different values of U .

In such situation, it is known that deviations from the
piecewise linearity are due to the self-interaction error of
GGA [15,18]. Whereas LDA and PBE exhibit convexity,
the Hubbard correction is concave and can thus restore the
piecewise linearity [15] of energy. The same correction can
be done by a contribution of exact exchange as in hybrid
functionals [13].

Using scheme oA, the energy is convex for U = 6 and 7 eV,
whereas for U = 8 eV, the energy is concave. The value of
U for which the self-interaction disappears is thus � 7.5 eV
within this DFT+U scheme. We emphasize that such value is,
however, dependent on the radius of the PAW atomic data set,
here equal to 1.6 a.u.

We now perform the same calculations using scheme oC

[Eq. (C4)]. The results are plotted on Fig. 2 (right panels) for
U = 4, 5, 6, and 7 eV (with the linearity subtracted), allowing
comparison with the standard implementation (scheme oA).

We see that the optimal value of U is dependent on the
choice of the density matrix. Whereas the optimal U is ∼7.5 eV
in scheme oA [Eq. (C1)], it is much smaller, ∼4.5 eV, in
scheme oC [Eq. (C4)]. It can be interpreted easily: as discussed
above, the values of the number of electrons in each orbital
are larger in scheme oC [Eq. (C4)] with respect to scheme oA

[Eq. (C1)]. Let us call ni the number of electrons in the orbital
i, for excess charge q. The DFT + U correction to concavity
[U

2

∑
i(ni − n2

i )] is different in the two schemes.1 Moreover,
as ni = n0

i is lower than 1 (whatever the scheme, because
of hybridization effects), when the hole is completely filled
(q = 0, number of electrons = 1 on Fig. 2), there is a linear
contribution in the DFT+U correction which is U

2

∑
i(1 −

n0
i )ni , thus, the deviation to linearity of the DFT+U correction

is U
2

∑
i ni(n0

i − ni). In this quantity, the main effect comes
from the oxygen-p orbital in which the hole is located. So,
we plot this quantity for this orbital only (and for the two
schemes) on Fig. 2 (bottom panels). We see that the DFT+U

correction is much lower for oA [Eq. (C1)] with respect to oC

[Eq. (C4)] because n0
i is lower in the former case (coherently

with the data in Table V). As a consequence, it explains why
a lower U is required in the scheme oC [Eq. (C4)] to achieve
linearity of the total energy, and cancellation of the GGA-PBE
self-interaction error. As we emphasize in Appendix C, using
the scheme oC [Eq. (C4)] is much more physical. We stress
that a fair comparison between different calculations requires
to use not only the same scheme (oA or oC), but also the same
PAW radius for oxygen atom.

III. OXYGEN-TYPE HOLE POLARON IN BaSnO3:
SELF-TRAPPING, TRAPPING BY DOPANTS

We now describe the oxygen-type hole polaron in BSO,
either self-trapped in the lattice (Sec. III B) or trapped next
to a dopant (bound polaron, Sec. III C). The value of U that
minimizes the self-interaction error is, within scheme scheme
oA (resp. scheme oC), U = 7.5 eV (resp. 4.5 eV). Within
scheme oA, we have investigated self-trapping and trapping
by dopants using the two values U = 6 and 8 eV, in order
to examine how the different properties of the polaron are
sensitive to U (the properties at U = 7.5 eV can be estimated
by an extrapolation). Within scheme oC, the calculations have
been done using U = 4.5 eV.

A. Simulating self-trapped small polarons
within DFT+U: Methodology

We wish to place the hole on a precise atom, and also in a
precise orbital. It is mandatory to achieve such control because
two orbitals are possible per O atom, that do not drive the same
self-trapping distortion, the 2p orbitals being very directional.

For that, we use a numerical functionality implemented in
the ABINIT code: within the DFT+U formalism, it is possible
to select, and constrain, over a certain number of electronic
steps, the configuration of the correlated electrons (those on
which +U is applied), by imposing the occupation matrices

1One assumes for simplicity in these formulas a diagonal density
matrix.
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TABLE II. Self-trapping energy (eV) of the STHP in BaSnO3, in
the different PBE+U schemes. The value at U = 7.5 eV is a linear
extrapolation between U = 6 and 8 eV.

DFT+U scheme oA oA oC

U (eV) 6 7.5 8 4.5
ST energy +0.10 −0.16 −0.25 −0.20

of these correlated states [15]. Such procedure has been used
up to now to avoid the metastable states in DFT+U [43,44].
We use it here to choose the atom and the orbital on which
the hole is placed. Practically, we use the following two-step
procedure:

(i) A structural optimization is first performed under the
constraint of the hole localized on the chosen oxygen atom,
in the chosen orbital, using occupation matrices of correlated
orbitals which are kept fixed during all this preoptimization.
This preliminary step produces a self-trapping distortion
around O− favorable to the hole localization on the good atom,
and in the good orbital.

(ii) Then, we restart the structural optimization, from
this preoptimized geometry, by constraining the correlated
electrons only over the first few electronic steps of the first self-
consistent loop, and release completely this constraint after-
ward. The calculation terminates by relaxing self-consistently
the atomic positions and the electrons, with the hole localized
on the chosen atom, in the chosen orbital.

We have used such procedure to obtain the isolated STHP
in the lattice, and in the vicinity of one of the dopants. The
occupation matrices and optimized geometry obtained have
then been used to initialize directly the structural optimization
of the hole in the case of other dopants.

B. Self-trapped hole in the lattice

We first focus on the self-trapping energy, i.e., the en-
ergy difference between the STHP and the delocalized hole
(Table II). Within scheme oA, U = 6 and 8 eV drive, interest-
ingly, two different pictures: the hole polaron is more stable
than the delocalized hole using the latter value (−0.25 eV),
less stable using the former (+0.10 eV), which implies that, at
U = 6 eV, the hole might rather diffuse throughout the lattice
as a delocalized charge. The linear extrapolation at U = 7.5 eV
leads to a self-trapping energy of −0.16 eV, indicating that
holes rather have the tendency to form small polarons in
barium stannate. Using scheme oC with U = 4.5 eV, the
self-trapping energy is −0.20 eV, which is close to the previous
value. The stability of the polaronic state is thus preserved from
scheme oA to scheme oC.

These values are close to the self-trapping energies of −0.05
and −0.15 eV computed for oxygen-type hole polarons in
SrTiO3 and in BaCeO3 by hybrid functionals [8,9], and to the
value of −0.11 eV obtained by Lindman et al. [4] on BaZrO3

using also PBE+U , with U determined from the piecewise
linearity of the energy.

The hole polaron is localized on a 2p orbital perpendicular
to the Sn-O-Sn bond and oriented along one axis of the cubic
structure. An isosurface of the hole state is shown on Fig. 3(a),
in which the hole occupies a 2px orbital, while the Sn-O-Sn

is oriented along z. More precisely, this state consists of a 2px

orbital on the O−, slightly hybridized with other 2pz orbitals of
the four O atoms first neighbors in the (x,z) plane. The oxygen
atom on which the hole is localized is magnetic, and carries a
magnetic moment of ∼0.74μB (scheme oA, U = 8 eV), while
this hybridization leads to a very small magnetic moment on
the four oxygen atoms in question, of about 0.04μB [46].

There are two possible states for the hole on each oxygen
atom [in the case of Fig. 3(a), this would be 2px and 2py]. In the
perfect (cubic) lattice, these two states obviously have the same
energy, but each one is associated with a specific self-trapping
distortion. This is illustrated on Fig. 3(b): as expected, the
two Sn first neighbors are repelled from O− by 0.11 Å, while
the distance between the four oxygens first neighbors in the
(x,z) plane, and O−, is decreased by ∼0.10 Å. By contrast,
the four oxygens first neighbor in the (y,z) plane are almost
not moved [Fig. 3(a), inset], showing the strong anisotropy of
the self-trapping distortion associated to the hole occupying
a very directional 2p-type orbital. In BaZrO3, Lindman et al.
observe very similar self-trapping distortions [4].

C. Trapping by dopants

We now investigate the trapping of the hole polarons by
seven trivalent dopants (Ga, Sc, In, Lu, Y, Gd, La) placed
in substitution of one Sn (bound polarons). Practically, one
Sn is replaced by the dopant, without additional charge in the
supercell. We define the interaction energy between the dopant
and the hole Eint(M

′
Sn,h

•), as

Eint(M
′
Sn,h

•) = Etot(BSO + MSn,0) + Etot(BSO)

−{Etot(BSO + MSn,−1)+Etot(BSO,+1)},
(3)

where the four terms are, respectively, the total energy of
the supercell with one dopant and one hole (with PBE, only
the delocalized hole can be considered), that of the perfect
supercell, that of the supercell with one dopant (charged −1),
and with one hole (charged +1).

We have computed, for each dopant, three different con-
figurations according to the hole-dopant distance: 1st, 2nd,
and 3rd neighbor (N), schematically depicted on Fig. 4. The
configurations of the hole localized as 1st and 2nd neighbor
close to Y (large dopant) and Ga (small dopant) are shown
on Figs. 3(c)–3(f). The presence of the dopant modifies the
surrounding distortions with respect to the self-trapped case.
In second-neighbor position [Figs. 3(d) and 3(f)], the hole
orbital is strongly hybridized with another 2p orbital of the
oxygen first neighbor lying in the same plane, and strongly bent
in the direction of the dopant, suggesting a strong attractive
interaction between the dopant and the hole (a configuration
already reported by Lindman el al. in the case of BaZrO3

[4]), and probably a small energy barrier separating the 2nd
N configuration from the 1st N one. Note that in several cases
(detailed hereafter), it was not possible to obtain this 2nd
N position, the system evolving to a configuration with the
polaron in 1st N position.

The dopant-hole interaction energies are gathered in
Table III for both DFT+U schemes, for each dopant-hole
position, and plotted on Fig. 5 as a function of ionic radius of
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FIG. 3. The oxygen-type hole polaron, in its self-trapped state (a), (b), bound to the yttrium dopant in first-neighbor (c) and second-neighbor
(d) position, and to a Ga dopant, in first-neighbor (e) and second-neighbor (f) position. Panels (a), (c), (d), (e), and (f) are isosurfaces of the
hole state, while (b) illustrates the lattice distortions associated to the self-trapped hole. Panels (a) and (b) show the self-trapped hole polaron
in the lattice (the hole occupies a 2px orbital), with a self-trapping distortion confined to the (x,z) plane. The insets in (a) and (b) show the
quasiabsence of distortion in the (y,z) plane, and thus the anisotropy of the self-trapping distortion. The orange arrows schematically depict the
atomic distortions, and the numbers correspond to the variations of the distance between the atom and O−. In second neighbor of the dopant
[(d), (f)], the hole has a nonzero probability to be found on the oxygen first neighbor. Figure 3 has been done with the XCRYSDEN software [45].

the dopant ri . In 1st N, the interaction energy globally becomes
less negative as ri increases, while in 2nd N, it becomes more
negative, yielding a crossing that takes place close to the ionic
radius of Gd. Thus, for the dopants with ionic radii from Ga

to Y, the hole is the most stable as 1st N of the dopant (and
strongly trapped for the smallest dopants), while in the case of
Gd and La, it is more stable as 2nd N. It is remarkable that holes
obey exactly the same tendency as protons in this oxide [47], at

TABLE III. Dopant-hole interaction energies Eint(M
′
Sn,h

•) (eV) computed in GGA-PBE and GGA-PBE+U , U = 6 and 8 eV (scheme oA),
and U = 4.5 eV (scheme oC), relative to the self-trapped hole polaron and the ionized dopant isolated in the lattice. The hole polaron has been
computed close to the dopant in the three positions shown on Fig. 4, denoted as 1st, 2nd, and 3rd neighbors (N). For PBE, only one value is
given that corresponds to the delocalized hole.

Functional PBE PBE+U PBE+U PBE+U

Scheme oA oA oC

U (eV) 0 6 8 4.5
Hole position 1st N 2nd N 3rd N 1st N 2nd N 3rd N 1st N 2nd N 3rd N

Ga −0.16 −0.51 – −0.18 −0.54 −0.19 −0.17 −0.62 – −0.18
Sc −0.16 −0.43 – −0.20 −0.45 −0.22 −0.20 −0.51 −0.24 −0.21
In −0.15 −0.34 – −0.21 −0.36 −0.25 −0.21 −0.41 −0.27 −0.23
Lu −0.16 −0.35 – −0.23 −0.34 −0.28 −0.23 −0.41 −0.32 −0.25
Y −0.17 −0.34 −0.31 −0.23 −0.32 −0.29 −0.24 −0.38 −0.32 −0.25
Gd −0.18 −0.35 −0.39 −0.25 −0.33 −0.33 −0.25 −0.42 −0.36 −0.27
La −0.19 – −0.48 −0.27 −0.27 −0.44 −0.28 −0.34 −0.51 −0.30
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FIG. 4. The three configurations of the hole polaron close to the
trivalent dopant. Gray, green, and red circles are, respectively, Sn,
dopant, and O atoms.

the difference that the crossing occurs for protons at a smaller
radius, slightly below 0.90 Å. Note that using U = 6 eV within
scheme oA does not significantly modify the results, at the
exception that, for the dopants with the smaller radii (from
Ga to Lu), we did not obtain the 2nd N position (the hole
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FIG. 5. Dopant-hole interaction energy as a function of ionic
radius of the dopant, as obtained with the two DFT+U schemes
used in this work. Note that with scheme oC, we could not obtain the
hole polaron as stable in 2nd neighbor position from the Ga dopant
(the configuration evolved to a polaron localized as 1st neighbor).

systematically falls in 1st N position, which is the most stable):
the 2nd N position was obtained only for Y, Gd, and La, and the
1st N position was not obtained for La. The same problem was
encountered for the 2nd N position close to Ga using scheme
oC. Both DFT+U schemes yield the same coherent scenario,
with trapping energies rather close to each other.

All these configurations, in which the hole is bound to the
dopant, are more stable than the delocalized hole, whatever the
case. However, at U = 6 eV within scheme oA, the hole has
a mixed behavior: it is localized when trapped in the vicinity
of a dopant (and probably up to a rather large distance from
it), and itinerant when it is far enough. In other words, it may
have an intermediate behavior between localized and more
delocalized depending on its proximity to dopants. By contrast,
at U = 8 eV within scheme oA, the hole is localized as a
small polaron, whether it is far from a dopant or close to
it, in coherence with the picture given by scheme oC with
U = 4.5 eV.

We now comment on the values obtained within scheme oA.
The association energy between the hole and the dopant, that
we define as the minimum of the three interaction energies,
increases therefore (for U = 8 eV) from −0.54 eV (Ga) to
−0.32/ − 0.33 eV (Y/Gd), before redecreasing for La down
to −0.44 eV. The dopants commonly employed in BSO (In,
Lu, Y, Gd) exhibit typical dopant-hole association energies
∼ − 0.35/ − 0.30 eV. This trapping energy is rather strong
and should be considered when modeling the diffusion of
holes throughout the lattice, at least at low temperature (at
high temperature, the holes may have escaped from dopants).
It is comparable to the association energy between protons
and dopants [47]. These values are in line with the trapping
energy calculated by Lindman et al. [4] for the hole polaron in
BaZrO3 around the Y dopant (−0.1 to −0.2 eV), though a bit
more negative: this is probably due to the fact that interaction
energies are calculated here with respect to reference systems
in which the two defects have no interaction, whereas Lindman
et al. use as reference a configuration in which the two defects
are as far as possible in the supercell. In real systems where the
defect concentration is rather large (typically a few % or more),
our values thus probably overestimate the effective interaction
between the defects.

IV. OXYGEN-TYPE HOLE POLARON
IN BaSnO3: MOBILITY

We now investigate the possible motions of the STHP,
isolated in the lattice. Owing to the computational cost of these
simulations, we only use here scheme oA, with U = 8 eV, and
an atomic data set for Sn with 4d electrons frozen in the
core. We compute the minimum energy paths (MEPs) joining
two different optimized polaronic configurations using the
simplified string method (SM) [37]. The paths are sampled
with 13 images, and the procedure is stopped when the energy
difference per image between two consecutive SM steps is
lower than 5.0 × 10−5 Ha. The SM allows to describe rather
sharp and rough energy paths, with possibility of several events
occurring along the MEP. Moreover, since the consecutive
images are equally distributed along the path, the image index
is proportional to the distance along the path, and can therefore
be used as a reaction coordinate. We compute the MEPs cor-
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FIG. 6. The four possible motions of the self-trapped hole polaron
studied in this work: (a) simple hopping, from the 2py orbital of an
O atom onto the 2px orbital of its first-neighbor oxygen; (b) re-
orientation from the 2py orbital onto the 2px orbital of the same O
atom; (c) parallel hopping, from the 2pz orbital of an O atom onto the
2pz orbital of its first-neighbor oxygen; (d) rotating hopping, from
the 2py orbital of an O atom onto the 2pz orbital of its first-neighbor
oxygen. Gray and red circles are, respectively, Sn and O atoms.

responding to four different mechanisms, described on Fig. 6.
In the standard theory of small polaron hopping [48], the hole
polaron may hop, quantum mechanically (tunneling), onto a
neighboring site in so-called coincidence configurations (see
Appendix B), in which the energy is the same whether the hole
is on the initial or on the final site (i.e., the two diabatic ground
states are in coincidence). The highest-energy point of the
MEP is assumed here as corresponding to the lowest-energy
coincidence configuration for the considered mechanism.

The most intuitive motion for the STHP is a hopping onto
the 2p orbital of an oxygen first neighbor lying in the same
plane [Fig. 6(a), mechanism denoted hereafter as “simple
hopping”]. However, such hopping is not sufficient to allow
tridimensional long-range diffusion of the hole. Exactly as
the diffusion of protons requires the succession of hopping
and reorientations, the hole may be able to rotate around its
oxygen [4], i.e., change of 2p orbital without hopping onto
another atom [Fig. 6(b)]. The two last mechanisms, in which
the hole is (i) hopping by staying in an orbital perpendicular
to the path (“parallel hopping”), and (ii) hopping and rotating at
the same time (“rotating hopping”), have also been investigated
[Figs. 6(c) and 6(d)].

A. Simple hopping

The simple hopping (Fig. 7) exhibits a small barrier of
0.15 eV. In the starting geometry, which corresponds to an
optimized configuration of the STHP, the magnetic moment
on the starting O, mi is ∼0.72 μB [46], but is not zero on
the final O, consistently with the picture provided in Fig. 3(a),
in which the STHP has a nonzero density of probability on
the four oxygen first neighbors in the plane containing the
empty 2p orbital. Along the MEP, mi progressively decreases,
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FIG. 7. Simple hopping of the self-trapped hole polaron.
(a) Energy along the path (black: linear interpolation, red: minimum
energy path from string method calculation). (b) Magnetic moments
(μB ) of the initial (mi) and final (mf ) oxygen atoms along the
minimum energy path. Dashed lines: Gaussian fit.

while mf , the magnetic moment on the final O, progressively
increases up to ∼0.72 μB in the final optimized geometry.
In the coincidence configuration for hopping, reached at the
middle of the MEP, mi ≈ mf ∼ 0.4μB , i.e., the hole is equally
shared between the two O atoms. Such behavior, with a very
smooth evolution of the hole state, and progressive mixing
between the initial and final states along the path, is consistent
with an adiabatic hopping (i.e., the charge is progressively
transferred with the self-trapping distortion). However, we
cannot be sure that this hopping is adiabatic in the present
situation because we have no information about the electronic
coupling in the coincidence configuration.

The energy barrier obtained along an approximation of
the MEP defined by a simple linear interpolation between the
initial and final optimized configurations is slightly larger than
that of the MEP, ∼0.18 eV. The energy barrier for hopping,
0.15 eV, is in line with values computed for oxygen-type holes
in other charge-transfer insulating oxides, e.g., 0.05–0.1 eV
in BaZrO3 [4] or 0.16–0.25 eV in TiO2 [16] (case of adiabatic
transfers).

B. Reorientation

The reorientation of the STHP, i.e., its evolution from a 2py

to a 2px orbital of the same atom, can be treated similarly as
hopping because each of the two possible states of the STHP
is associated with a specific self-trapping distortion. Here, the
magnetic moment cannot be used to follow the evolution of
the hole since the hole stays on the same atom. Instead, we use
the two diagonal components Oxx and Oyy of the occupation
matrix of the 2p states of the O atom (Fig. 8).

Despite a low-energy barrier, ∼0.03 eV, the results suggest
a strongly nonadiabatic behavior because Oxx and Oyy exhibit
a clear discontinuity at the middle of the MEP, where the hole
is transferred abruptly from an orbital to the other, whereas the
polaronic distortion is, in contrast, progressively transferred.

As a consequence, the point in the middle of the MEP
(number 7 on Fig. 8) falls in one of the two electronic states,
in contrast, e.g., to what happens for the mechanism of simple
hopping, and the SM algorithm produces an asymmetry in the
distribution of the images on the final MEP.

134123-8



DFT+U STUDY OF SELF-TRAPPING, TRAPPING, AND . . . PHYSICAL REVIEW B 96, 134123 (2017)

2 4 6 8 10 12
Image index

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

En
er

gy
 (e

V
)

(a) Energy along the path

2 4 6 8 10 12
Image index

0.0

0.2

0.4

0.6

0.8

O
cc

up
at

io
n 

m
at

rix
 c

om
po

ne
nt

s

(b) Occupation matrices

FIG. 8. Reorientation of the hole polaron on a O atom, from a 2py

to a 2px orbital. (a) Energy along the minimum energy path (black:
hole on 2py , red: hole on 2px). (b) Occupation matrix components of
the p orbitals on the O atom along the minimum energy path. Purple:
yy component, orange: xx component.

It is, however, possible to restore the symmetry expected
at the coincidence configuration, which is done in a separate
calculation. Practically, the configuration of image number 7
on the MEP, which is very close to the crossing point, is sym-
metrized according to the expected space group (P 4/mmm).
Then, we recompute in this symmetrized configuration the
two electronic states, i.e., the hole polaron either in 2px or in
2py . The two electronic configurations are found to have the
same energy with a difference lower than 10 μeV. Moreover,
for the electronic configuration corresponding, for instance,
to the hole polaron in the 2px orbital, the two Kohn-Sham
states corresponding to the 2px and 2py orbitals have different
energies because the electronic density has a broken symmetry,
lower than that of the atomic structure. These results suggest
that the coincidence point for reorientation of the hole is a
Born-Oppenheimer crossing point.

C. Parallel hopping

In the parallel hopping mechanism (Fig. 9), the MEP
exhibits a barrier of 0.35 eV, significantly larger than the
two previous ones. In the coincidence configuration, the hole
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FIG. 9. Parallel hopping of the hole polaron, from a 2pz to a 2pz

orbital. (a) Energy along the minimum energy path; (b) magnetic
moments (μB ) of the initial (mi) and final (mf ) oxygen atoms along
the minimum energy path.
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FIG. 10. Rotating hopping of the self-trapped hole polaron.
(a) Energy along the MEP; (b) magnetic moments (μB ) of the initial
(mi) and final (mf ) oxygen atoms along the minimum energy path;
(c) diagonal components of the p orbital occupation matrix on the
final atom [see Fig. 6(d)].

is equally shared between the two O atoms (which have a
magnetic moment of ∼0.27μB ), but a significant part of it
is localized on the two O atoms labeled as O2 on Fig. 6(c)
(∼0.10μB per O2). In other words, part of the hole is
transferring via the two O2 oxygen atoms.

On the one hand, the hole charge is continuously transferred
from the initial atom onto the final one and moves with the
atomic distortion, but on the other hand, the two profiles of
Fig. 9 are much less smooth than the ones of “simple hopping,”
suggesting for this parallel hopping a behavior intermediate
between simple hopping and reorientation.

D. “Rotating hopping”

The last mechanism (Fig. 10) corresponds to a hopping of
the hole polaron, from one O atom onto another (1st N), but
the final orbital of the hole does not lie in the same plane as
initially [Fig. 6(d)]. Although the hopping distance is the same
as for simple hopping, the initial and final states obviously
have a smaller overlap, suggesting lower electronic coupling
between initial and final states. However, the optimized MEP
provides a barrier of 0.16 eV, close to that of the simple hopping
mechanism (0.15 eV). In fact, this mechanism is simply the
succession of a simple hopping and a reorientation, as it can be
seen on Fig. 10: the hole first progressively transfers from the
2py of the initial atom onto the 2px of the final one, and then
abruptly rotates onto the the 2pz, with a sharp discontinuity in
the occupation matrices.

V. HOLE DIFFUSION IN THE LATTICE

The results may be used to draw a picture of hole diffusion
in BSO. In their most stable state, holes are trapped around
dopants. This trapping probably slows down their motions, at
least at low dopant concentration and low temperature, as for
protons, for which the trapping effect by negative dopants is
well documented [47,49,50]. However, our calculations drive
two different models for hole diffusion far from the dopants,
according to the DFT+U scheme and value of U :

(i) U = 6 eV (scheme oA): the delocalized hole is more
stable than the STHP in the lattice, and the hole is localized
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only when trapped around dopants. When the hole has escaped
from the attraction of the dopant, it tends to delocalize,
and moves throughout the lattice as a free particle. The
system would be here rather similar to an extrinsic p-type
semiconductor, at the exception that the trapping energy of
the holes may be as large as ∼0.3−0.5 eV (depending on the
dopant), and their concentration in the lattice determined by
the free enthalpy of the oxidation reaction.

(ii) U = 8 eV (scheme oA): the STHP is always more
stable than the delocalized hole, whether trapped or self-
trapped, suggesting that diffusion occurs by a succession of
hoppings, with the hole being always under the form of a
small polaron. Scheme oC with U = 4.5 eV is consistent with
this picture.

The value of U predicted by the piecewise linearity of the
energy provides a picture corresponding to this second model,
with an itinerant level 0.16–0.20 eV higher than the STHP.

The simple hopping mechanism allows diffusion of the
hole inside a {100} plane only, and is thus not enough to
explain its tridimensional long-range diffusion. The hole, to
be able to migrate on long distances, should be able to change
plane, either by rotating (reorientation/rotating hopping) or by
parallel hopping. However, it remains undetermined, from our
calculations, whether the reorientation process is more likely to
occur than the parallel hopping processes, owing to its possible
nonadiabatic character (despite a very low activation energy,
the transition rate for reorientation could be considerably low-
ered by a possible very low prefactor). The activation energy
for hole mobility far from dopants (i.e., independently of the
trapping effect) is thus at least the value obtained in the case
of simple hopping, i.e., 0.15 eV, and at most that obtained with
parallel hopping, i.e., 0.35 eV. At high temperature, it is likely
that only holes which have escaped from dopants contribute
to the conductivity, providing a rather small activation energy
for hole migration between 0.15 and 0.35 eV.

Alternatively, the hole mobility could be dominated by the
few holes thermally excited in the itinerant level [12].

VI. CONCLUSION

In this work, we have performed density functional theory
calculations, in the GGA+U framework, with a Hubbard
correction applied on the p states of oxygen, to model
oxygen-type holes in acceptor-doped barium stannate. Using
a U determined from the piecewise linearity of the energy,
holes are found localized as small polarons in BaSnO3, with a
self-trapping energy of ∼ − 0.2 eV. Close to negative dopants,
the holes are localized, and trapped, with trapping energies
typically ∼ − 0.3/ − 0.4 eV. The hole-dopant association
energy behaves like the proton-dopant association energy
[47]: the hole polaron is trapped at oxygen 1st neighbors for
small dopants, while it is trapped at an oxygen 2nd neighbor
for large dopants, the crossing occurring for a dopant ionic
radius close to that of Gd.

The hole mobility has been modeled on the basis of four
possible motions (three hoppings and a rotation, or reorienta-
tion), that strongly differ from each other: in simple hopping,
the hole charge is continuously transferred along the minimum
energy path, together with the atomic distortions, whereas this
is not the case in the reorientation process. The rotating hop-

ping consists of a simple hopping followed by a reorientation
and, thus, exhibits the same behavior as reorientation. Finally,
the parallel hopping probably has a behavior intermediate
between simple hopping and reorientation. It follows that hole
migration is a complex process, with an activation energy Eh

between 0.15 and 0.35 eV, depending on the possibility of
occurrence of reorientations, and on the trapping by dopants.
At high temperature, where barium stannate is likely to be
oxidized [Eq. (1)], the holes contributing to the conductivity
have probably escaped from dopants. Therefore, a rather small
activation energy for hole migration is expected. This is in line
with the conclusions of Ref. [4] on BaZrO3.

A slightly modified DFT+U scheme is proposed, of partic-
ular importance for the p orbital of oxygen. This scheme leads
to use more physical values of U , lower than with the standard
scheme, and describes well the properties of the hole polaron.

Note added in proof. Recently, we became aware of a
related work of Wang and coworkers [55], which emphasizes
also the impact of the projection radius in DFT+U for polaron
properties.
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APPENDIX A: SEMICORE ELECTRONS, PAW RADII
OF ATOMIC DATA SETS

Details about semicore electrons and PAW radii are given
in Table IV. The atomic data sets for Ga, Sc, Lu, Y, Gd, and
La are taken from the JTH02 table [51]. Gd is treated as spin
polarized.

APPENDIX B: HOLE POLARONS IN CHARGE-TRANSFER
INSULATING OXIDES

We recall here a few basic concepts about small polarons
in crystals [48], with emphasis on oxygen-type hole polarons
in perovskites. Small polarons are obtained when an excess
charge (electron or hole), typically consecutive to the forma-

TABLE IV. Atomic data sets used in this work: valence electrons
and PAW radius.

Element Electrons PAW radius (a.u.)

Ba 5s2 5p6 6s2 2.4
Sn 4d10 5s2 5p2 2.3
O 2s2 2p4 1.4/1.6

Ga 3d10 4s2 4p1 2.1
Sc 3s2 3p6 4s2 3d1 2.4
In 4d10 5s2 5p1 2.3
Lu 5s2 5p6 6s2 5d1 4f 14 2.5
Y 4s2 4p6 5s2 4d1 2.2
Gd 5s2 5p6 6s2 5d1 4f 7 2.5
La 5s2 5p6 6s2 5d1 4f 0 2.5
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FIG. 11. Schematic representation of a small polaron in a crystal.
Upper panels: schematic view of the potential felt by the excess
charge; lower panels: application to the oxygen-type hole polaron in
a perovskite oxide (only one plane of the SnO2 sublattice is shown).
(a), (b) Undistorted lattice, all the O sites (red circles) are equivalent,
the hole is delocalized. (c), (d) Self-trapped configuration: the hole
polaron is localized on the yellow O atom. It repels the two nearest-
neighbor Sn atoms (purple arrows), which contribute to stabilize its
site. (e), (f) Coincidence configuration for hopping: the hole has the
same energy whether it is placed on a yellow O or on the other.

tion of a point defect (donor or acceptor), in a polarizable
insulating lattice localize on one single atom instead of
being delocalized throughout the crystal. Such localization is
concomitant with a polarization distortion of the surrounding
matrix (called “self-trapping” distortion) that contributes to
create on the site in question a deep electrostatic potential fa-
vorable to the localization of the charge [Figs. 11(c) and 11(d)].
This electrostatic energy counterbalances the cost associated
with the quantum confinement of the charge. The localized
charge and its self-trapping distortion cannot be dissociated
from each other. Both of them form the entity commonly
called as “small polaron.”

In the case of an oxygen-type STHP in a perovskite oxide,
the self-trapping distortion mainly corresponds to the two B
ions first neighbor being repelled [Fig. 11(d)] and four oxygens
first neighbor being slightly attracted, in the plane defined by
the B-O-B bond and the 2p orbital of the hole.

The migration of small polarons is a thermally activated
phenomenon. However, such thermal activation does not result
from the thermal overbarrier motion of the electronic charge
itself. The motion of the charge is indeed, intrinsically, a
tunneling process. But, such tunneling is not likely to take
place in the stable, self-trapped, configuration because the
charge is strongly trapped in the potential well caused by the
surrounding self-trapping distortion, making the neighboring
sites of high energy with respect to the self-trapped site
[Figs. 11(c) and 11(d)]. For such tunneling to occur, it
is necessary that the crystal around be distorted until one
neighboring site has the same energy as the polaron site,
producing degenerate (diabatic) energy levels, a state called
“coincidence configuration” [48] [Figs. 11(e) and 11(f)].
Such distortion can be produced by the thermal agitation of
the surrounding atoms, with a probability ∝e−Ec/kBT , where

Ec is the coincidence energy, i.e., the energy of the most
stable coincidence configuration with respect to the stable
self-trapped one. The coincidence energy Ec plays the role
of an activation energy for the hopping process of the polaron.

The hopping rate for the small polaron hopping is thus
∝e−Ec/kBT , but the energy in this Arrhenius term, to be
paid by thermal agitation, is related to the motions of the
surrounding atoms, not to the motion of the electronic charge
itself. According to the typical tunneling probability in the
coincidence configuration, compared to the time scale of the
coincidence, the transfer can be adiabatic (i.e., the electronic
charge has the time to tunnel), nonadiabatic (i.e., the electronic
charge has not the time to tunnel, so that many occurrences
of the coincidence are necessary before a jump occurs),
or lie in-between. In an adiabatic hopping, the charge is
progressively transferred from the initial to the final site,
together with the self-trapping distortion [4].

APPENDIX C: DFT+U AND O- p ORBITALS

This appendix intends to deepen the explanation concerning
the calculation of the density matrix in PAW. We first remind
the basic equation of DFT+U in PAW, and present expression
for the renormalization of the density matrix as detailed in
Sec. II B.

As seen above, such renormalization enables to obtain
reasonable and physical values of U while preserving the
physical properties of the hole polaron (self-trapping, trapping
energies). An important aspect of DFT+U calculations is the
definition of correlated orbitals. Indeed, DFT+U , as well as
the DFT+DMFT method, is dependent on their definition: it
was recently highlighted [52,53] that using different definitions
and different implementations lead to important differences in
transition-metal oxides. Importantly, the number of correlated
electrons is very sensitive to this choice, and thus the total
energy, and thus the effect of DFT+U to restore the piecewise
linearity of the total energy as a function of the number of
electrons [15] (see discussion in Sec. II C).

We thus first focus on the definition of the correlated
orbitals: most DFT+U calculations on hole polaron used the
same implementation [39,54], in which the correlated orbitals
are not directly defined and occupation matrices are computed
thanks to Eq. (20) of Ref. [53]:

n
l,σ
m,m′ =

∑
nn′

ρ
l,σ
(m,n),(m′,n′)〈φt

n|φt
n′ 〉, [scheme oA] (C1)

where m,m′ are the quantum numbers related to the projection
of the angular momentum and n,n′ are index for PAW projec-
tors. ρ

l,σ
(m,n),(m′,n′) is defined in, e.g., Ref. [40]. Importantly, in

this definition, scalar products are carried out only inside PAW
atomic sphere as discussed in Ref. [40]. This is the scheme
called “PAW” in Ref. [53]. A nearly identical formulation
in terms of occupation matrix can be obtained by defining
correlated orbitals as truncated renormalized atomic orbitals.
Let us call |φt

0〉 a truncated (t) unnormalized atomic orbital, as
used in the PAW scheme. We define a renormalized orbital as
|φ̄t

0〉 = |φt
0〉√

〈φt
0|φt

0〉
. The occupation matrix thus reads as

n
l,σ
m,m′ =

∑
nn′

ρ
l,σ
(m,n),(m′,n′)〈φt

n|φ̄t
0〉〈φ̄t

0|φt
n′ 〉. [scheme oB]

(C2)
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TABLE V. For the three occupation matrices presented in
Eqs. (C1), (C2), and (C4), the table gives the number of p electrons
np in BaSnO3, computed with U = 4.5 eV and J = 0 eV, the mathe-
matical maximum possible number of electrons nmax (corresponding
to an infinite Fermi level), and the Kohn-Sham gap. The difference
between np and nmax comes from the hybridization between oxygen
and metal atoms. In a purely ionic limit, we should thus have
np = nmax. Occupation matrices oA and oB give identical results.
Only the occupation matrix oC is able to recover the physical exact
maximum number of p electrons, and thus has a correct number of
electrons np .

Occupation matrix np nmax Gap (eV)

oA 3.64 4.44 1.36
oB 3.63 4.44 1.36
oC 4.99 6.00 2.16

Let us assume that one has only one projector, and that this
projector corresponds to the atomic O-p eigenstates. Thus,
φt

n = φt
n′ = φt

0 and the two formulations are equivalent. The
assumption of only one projector is not drastic in localized
systems because the energy dispersion is weak. So, we
established that occupation matrices obtained from Eqs. (C1)
and (C2) are equivalent. This is confirmed by direct calculation
of the number of electrons and gap reproduced on Table V.

Going back to the original definition of the occupation
matrix, Eq. (C2) is thus equivalent to

n
l,σ
m,m′ =

∑
k,ν

f k,σ
ν

〈
�k,σ

ν

∣∣Ylm′ φ̄t
0

〉〈
Ylmφ̄t

0

∣∣�k,σ
ν

〉
, (C3)

where the scalar product is still done only inside atomic sphere.
As discussed in Sec. II B, in order to recover the physical

number of electrons in the correlated orbitals, one needs to
renormalize the density matrix, using

n
l,σ
m,m′ =

∑
k,ν

f k,σ
ν

〈
�k,σ

ν

∣∣Ylm′ φ̄t
0

〉〈
Ylmφ̄t

0

∣∣〈
φt

0

∣∣φt
0

〉 �k,σ
ν

〉

=
∑
k,ν

f k,σ
ν

〈
�k,σ

ν

∣∣Ylm′φt
0

〉〈
Ylmφt

0

∣∣(〈
φt

0

∣∣φt
0

〉)2 �k,σ
ν

〉
.

[scheme oC] (C4)

With this definition, one recovers the same number of elec-
trons as if we would use an untruncated atomic orbital in place
of a renormalized truncated orbital in Eq. (C2). Indeed, one can
easily show that, for, e.g., an atom or a simple heteronuclear
diatomic molecule in the linear combination of atomic orbital
assumption, the simple expression of Eq. (C4) gives the correct
number of electrons (see also Table V). We thus emphasize
that this renormalization keeps the essential and important
physics of hybridization. On contrary, schemes oA [Eq. (C1)]
and oB [Eq. (C2)] do not even reproduce the correct number
of electrons in atomic oxygen. The formulation of Eq. (C4)
is thus equivalent to the “ATOMIC” scheme in Ref. [53]. An
important point is indeed that this formulation can recover the
maximum number of electrons in oxygen orbitals, in contrary
to other schemes, as can be seen in Table V. So, the scheme oC

[Eq. (C4)] is much more physical than schemes oA [Eq. (C1)]
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FIG. 12. Energy change with respect to piecewise linearity, as a
function of fractional charge (number of electrons) in the polaron,
using an oxygen atomic data set with a radius of 1.4 a.u. The linearity
is subtracted so that the concavity or convexity appears clearly. Left
panel: standard DFT+U scheme (oA), with U = 7, 8, 9, and 10 eV;
right panel: scheme oC (U = 4, 5, 6, and 7 eV). The atomic geometry
(positions, lattice constant) is the same as in Fig. 2.

and oB [Eq. (C2)], as used in the literature. The difference is
noticeable for oxygen-p orbitals, but weak for d and f orbitals
for which atomic orbitals are mainly inside the atomic sphere.

APPENDIX D: IMPACT OF PAW ATOMIC RADIUS

In this appendix, we scrutinize the impact of the oxygen
PAW radius on the best value of U and on the self-trapping
energy, using both DFT+U schemes. The piecewise linearity
curves are recomputed using an oxygen PAW atomic data set
with a radius of 1.4 a.u., and displayed on Fig. 12. Using
scheme oA, the shorter radius enhances U by more than 1 eV,
as expected, providing a U between 8 and 9 eV (closer to
9 eV). However, scheme oC provides a U very close to 4 eV,
thus closer to the one obtained using the previous oxygen
pseudopotential.
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FIG. 13. Hole self-trapping energy (eV) as a function of U (eV),
in the two DFT+U schemes, and using two oxygen atomic data sets
with two different radii (1.6 and 1.4 a.u.). The arrow indicates, for
each scheme, the approximate best value of U as dictated by piecewise
linearity of the energy.
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The self-trapping energies have been recomputed with this
new oxygen PAW data set using older U and other values
corresponding more closely to the piecewise linearity of the
energy. They are plotted on Fig. 13 using both DFT+U

schemes, as a function of U . From this figure, it is manifest
that at fixed U , the self-trapping energy is strongly modified

when the radius is changed in scheme oA, but much less in
scheme oC. However, the slope of the ST energy versus U

curve remains large. Thus, owing to the uncertainty we have
on the best possible U (a few 0.1 eV), it is not possible to
accurately quantify the dependency of the ST energy itself on
the pseudopotential radius.
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