A third Strang lemma for schemes in fully discrete formulation

Abstract : In this work, we present an abstract error analysis framework for the approximation of linear partial differential equation (PDE) problems in weak formulation. We consider approximation methods in fully discrete formulation, where the discrete and continuous spaces are possibly not embedded in a common space. A proper notion of consistency is designed, and, under a classical inf--sup condition, it is shown to bound the approximation error. This error estimate result is in the spirit of Strang's first and second lemmas, but applicable in situations not covered by these lemmas (because of a fully discrete approximation space). An improved estimate is also established in a weaker norm, using the Aubin--Nitsche trick. We then apply these abstract estimates to an anisotropic heterogeneous diffusion model and two classical families of schemes for this model: Virtual Element and Finite Volume methods. For each of these methods, we show that the abstract results yield new error estimates with a precise and mild dependency on the local anisotropy ratio. A key intermediate step to derive such estimates for Virtual Element Methods is proving optimal approximation properties of the oblique elliptic projector in weighted Sobolev seminorms. This is a result whose interest goes beyond the specific model and methods considered here. We also obtain, to our knowledge, the first clear notion of consistency for Finite Volume methods, which leads to a generic error estimate involving the fluxes and valid for a wide range of Finite Volume schemes. An important application is the first error estimate for Multi-Point Flux Approximation L and G methods.
Type de document :
Article dans une revue
Calcolo, Springer Verlag, 2018, 55 (40), 〈10.1007/s10092-018-0282-3〉
Liste complète des métadonnées

Littérature citée [41 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01778044
Contributeur : Daniele Antonio Di Pietro <>
Soumis le : dimanche 29 avril 2018 - 09:01:46
Dernière modification le : dimanche 16 décembre 2018 - 14:30:35

Fichier

strang.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Daniele Antonio Di Pietro, Jérôme Droniou. A third Strang lemma for schemes in fully discrete formulation. Calcolo, Springer Verlag, 2018, 55 (40), 〈10.1007/s10092-018-0282-3〉. 〈hal-01778044v2〉

Partager

Métriques

Consultations de la notice

79

Téléchargements de fichiers

67