N

HAL

open science

A Cryptographer’s Conspiracy Santa

Xavier Bultel, Jannik Dreier, Jean-Guillaume Dumas, Pascal Lafourcade

» To cite this version:

Xavier Bultel, Jannik Dreier, Jean-Guillaume Dumas, Pascal Lafourcade. A Cryptographer’s Con-
spiracy Santa. FUN 2018 - 9th International Conference on Fun with Algorithms, Jun 2018, La
Maddalena, Italy. pp.13:1-13:13, 10.4230/LIPIcs.FUN.2018.13 . hal-01777997v2

HAL Id: hal-01777997
https://hal.science/hal-01777997v2
Submitted on 27 Apr 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-01777997v2
https://hal.archives-ouvertes.fr

A Cryptographer’s Conspiracy Santa

Xavier Bultel

LIMOS, University Clermont Auvergne, Campus des Cézeaux, Aubiere, France
xavier.bultel@Quca.fr
https://orcid.org,/0000-0002-8309-8984

Jannik Dreier
Université de Lorraine, CNRS, Inria, LORIA, F-54000 Nancy, France
jannik.dreier@loria.fr

https://orcid.org/0000-0002-1026-3360

Jean-Guillaume Dumas
Université Grenoble Alpes, Laboratoire Jean Kuntzmann, UMR CNRS 5224, 700 avenue
centrale, IMAG - CS 40700, 38058 Grenoble cedex 9, France
Jean-Guillaume.Dumas@univ-grenoble-alpes.fr

https://orcid.org/0000-0002-2591-172X

Pascal Lafourcade
LIMOS, University Clermont Auvergne, Campus des Cézeaux, Aubiére, France

pascal.lafourcade@uca.fr
https://orcid.org/0000-0002-4459-511X

—— Abstract

In Conspiracy Santa, a variant of Secret Santa, a group of people offer each other Christmas
gifts, where each member of the group receives a gift from the other members of the group. To
that end, the members of the group form conspiracies, to decide on appropriate gifts, and usually
divide the cost of each gift among all participants of that conspiracy. This requires to settle the
shared expenses per conspiracy, so Conspiracy Santa can actually be seen as an aggregation of
several shared expenses problems.

First, we show that the problem of finding a minimal number of transaction when settling
shared expenses is NP-complete. Still, there exists good greedy approximations. Second, we
present a greedy distributed secure solution to Conspiracy Santa. This solution allows a group
of people to share the expenses for the gifts in such a way that no participant learns the price of
his gift, but at the same time notably reduces the number of transactions with respect to a naive
aggregation. Furthermore, our solution does not require a trusted third party, and can either
be implemented physically (the participants are in the same room and exchange money using
envelopes) or, virtually, using a cryptocurrency.

2012 ACM Subject Classification Security and privacy — Privacy-preserving protocols
Security and privacy — Formal security models
Theory of computation — Problems, reductions and completeness

Keywords and phrases Secret Santa, Conspiracy Santa, Secure Multi-Party Computation, Cryp-
tocurrency, Physical Cryptography.

Digital Object Identifier 10.4230/LIPIcs.FUN.2018.13

Funding This research was conducted with the support of the FEDER program of 2014-2020, the
region council of Auvergne-Rhéne-Alpes, the support of the “Digital Trust” Chair from the Uni-
versity of Auvergne Foundation, the Indo-French Centre for the Promotion of Advanced Research
(IFCPAR), the Center Franco-Indien Pour La Promotion De La Recherche Avancée (CEFIPRA)
@ Xavier Bultel, Janpik Dreier, Jean.-Guillaume Dumas, and Pascal Lafourcade;

5v licensed under Creative Commons License CC-BY

9th International Conference on Fun with Algorithms (FUN 2018).
Editors: Hiro Ito, Stefano Leonardi, Linda Pagli, and Giuseppe Prencipe; Article No. 13; pp. 13:1-13:13

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:xavier.bultel@uca.fr
https://orcid.org/0000-0002-8309-8984
mailto:jannik.dreier@loria.fr
https://orcid.org/0000-0002-1026-3360
mailto:Jean-Guillaume.Dumas@univ-grenoble-alpes.fr
https://orcid.org/0000-0002-2591-172X
mailto:pascal.lafourcade@uca.fr
https://orcid.org/0000-0002-4459-511X
http://dx.doi.org/10.4230/LIPIcs.FUN.2018.13
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

13:2

A Cryptographer’s Conspiracy Santa

through the project DST/CNRS 2015-03 under DST-INRIA-CNRS Targeted Programme, and
the OpenDreamKit Horizon 2020 European Research Infrastructures project (#676541).

Acknowledgements Many thanks to Marie-Béatrice, Anne-Catherine, Marc, Jacques and Luc
for such great conspiracy Santas! A big thanks also to the Gilbert family for having big instances
of the Shared Expenses Problem problem regularly, and to Cyprien for asking the question of its
complexity. More thanks go to Mathilde and Gwénaél for the discussions on and propositions of
efficient algorithms.

1 Introduction

Secret Santa is a Christmas tradition, where members of a group are randomly assigned to
another person, to whom they have to offer a gift. The identity of the person offering the
present is usually secret, as well as the price of the present.

In Conspiracy Santa, a variant of Secret Santa, for each participant, the other members
of the group collude and jointly decide on an appropriate gift. The gift is then usually
bought by one of the colluding participants, and the expenses are shared among the colluding
participants.

In this setting, the price of the gift must remain secret and, potentially, also who
bought the present. At the same time, sharing the expenses usually results in numerous
transactions. Existing results in the literature (e.g., [3, 4, 5, 12]) aim at minimizing the
number of transactions, but they assume that all expenses are public, that all participants
are honest, and that communications are safe. Our goal is to propose a secure Conspiracy
Santa algorithm for cryptographers that do not want to disclose the prices.

1.1 Contributions

We provide the following contributions:

We show that the general problem of finding a solution with a minimal number of
transactions when sharing expenses is NP-complete.

We provide a secure protocol for Conspiracy Santa. The algorithm ensures that no
participant learns the price of his gift, nor who bought it. Moreover, the algorithm
reduces the number of transactions necessary compared to a naive solution (although the
solution in general is not optimal, as this could leak information).

Our secure algorithm is entirely distributed and does not require any trusted third party.
To also realize the payments in a distributed fashion, a secure peer-to-peer cryptocurrency
can be used. We also discuss a physical payment solution, using envelopes and bank
notes.

Our algorithm can also be used in the case where expenses are shared within multiple
groups. There, some people belong to several of these groups and the goal is to reduce the
number of transactions while still ensuring privacy: all participants only learn about the
expenses of their groups, not the other groups. One can also see this problem as a variant of
the dining cryptographers [7]. However, instead of respecting the cryptographers’ right to
anonymously invite everybody, we here want to respect the cryptographers’ right to privately
share expenses of multiple diners with different groups.

http://opendreamkit.org
https://ec.europa.eu/programmes/horizon2020/
https://ec.europa.eu/programmes/horizon2020/en/h2020-section/european-research-infrastructures-including-e-infrastructures
http://cordis.europa.eu/project/rcn/198334_en.html

X. Bultel, J. Dreier, J.-G. Dumas, and P. Lafourcade

1.2 OQutline

The remainder of the paper is structured as follows: in Section 2, we analyze the complexity
of the general problem of sharing expenses. In Section 3, we present our protocol to solve
the problem of privately sharing expenses in Conspiracy Santa, in a peer-to-peer setting. We
also discuss further applications of our solution, and how to realize the anonymous payments
required by the algorithm. We then conclude in Section 4.

2 The Shared Expenses Problem and its Complexity

Before analyzing the Conspiracy Santa problem in more detail, we now discuss the more
general problem of settling shared expenses with a minimal number of transactions. This
problem frequently arises, for example when a group of security researchers attends a FUN
conference and wants to share common expenses such as taxis, restaurants etc. Reducing
the overall number of transactions might then reduce the overall currency exchange fees paid
by the researchers.

In such a case, each participant covers some of the common expenses, and in the end
of the conference, some transactions are necessary to ensure that all participants payed the
same amount. Note for this first example, there are no privacy constraints, as all amounts
are public.

» Example 1. Alice, Bob, and Carole attended FUN’16. The first night, Alice payed the
restaurant for 155 €, and Bob the drinks at the bar for 52 €. The second day Carole payed
the restaurant and drinks for a total of 213 €.

The total sum is then 155 + 52 + 213 = 420 €, meaning 140 € per person. This means
that Alice payed 140 — 155 = —15 € too much, Bob needs to pay 140 — 52 = 88 € more,
and Carole has to receive 140 — 213 = —73 €. In this case, the optimal solution uses two
transactions: Bob gives 15 € to Alice, and 73 € to Carole.

There are numerous applications implementing solutions to this problem (e.g., [3, 4, 5]), but
it is unclear how they compute the transactions. Moreover, in these applications all expenses
are public, making them unsuitable for Conspiracy Santa.

David Vévra wrote a master’s thesis [12] about a similar smartphone application that
allows to settle expenses within group. He discusses a greedy approximation algorithm (see

below), and conjectures that the problem is NP-complete, but without giving a formal proof.

We start by formally defining the problem.

» Definition 2. Shared Expenses Problem (SEP). Given a multiset of values K = {k1,...,ky}
such that Y. | k; = 0 (where a positive k; means that participant i has to pay money, and
a negative k; means that ¢ has to be reimbursed), is there a way to do all reimbursements
using (strictly) less than n — 1 transactions?

Note that there is always a solution using n—1 transactions using a greedy approach: given the
values in K = {k1,...,ky,}, let i be the index of the maximum value of K (i = arg max,(k;))
and let j be the index of the minimum value of K (j = arg min,(k;)), we use one transaction

between ¢ and j such that after the transaction either the participant ¢ or j ends up at 0.

Le., if |k;| — |k;| > O, then the participant j ends up at 0, otherwise the participant ¢ ends
up at 0. By then recursively applying the same procedure on the remaining n — 1 values, we
can do all reimbursements. Overall, this greedy solution uses n — 1 transactions in the worst
case.

13:3

FUN 2018

13:4

A Cryptographer’s Conspiracy Santa

It is easy to see that SEP € N'P: guess a list of (less than n — 1) transactions, and verify
for each participant that in the end there are no debts or credits left.

We show that SEP is A'P-complete, for this we use a reduction from the Subset Sum
Problem [10] which can be seen as a special case of the well known knapsack problem [9].

» Definition 3. Subset Sum Problem (SSP) Given a multiset of values K = {ky,...,ky}, is
there a subset K’ C K such that)7, ., k' = 07

The Subset Sum Problem is known to be N'P-complete (see, e.g., [8]).
» Theorem 4. The Shared Expenses Problem is N'P-complete.

Proof. Consider the following reduction algorithm:

Given a Subset Sum Problem (SSP) instance, i.e., a multiset of values K = {k1,...,kp},
compute s = >, k. If s = 0, return yes, otherwise let K’ = K U {—s} and return the
answer of an oracle for the Shared Expenses Problem for K'.

It is easy to see that the reduction is polynomial, as computing the sum is in O(n).

We now need to show that the reduction is correct. We consider the two following cases:

Suppose the answer to the SSP is yes, then there is a subset K" C K such that), . k =
0. If K” = K, then the check in the reduction is true, and the algorithm returns yes. If
K" # K, then we can balance the expenses in the sets K" and K’ \ K" independently
using the greedy algorithm explained above. This results in |[K”| —1 and |K'| — |K"| -1
transactions respectively, for a total of |[K'| — |[K"| -1+ |K"|-1=|K'| -2 < |K'| -1
transactions. Thus there is a way to do all reimbursements using strictly less than |K'| —1

transactions, hence the answer will be yes.
Suppose the answer to the SSP is no, then there is no subset K” C K such that
> kEeK k = 0. This means that there is no subset K3 C K’ such that the expenses within
this set can be balanced independently of the other expenses. To see this, suppose it were
possible to balance the expenses in K3 independently, then we must have , - k=0,
contradicting the hypothesis that there is no such subset (note that w.l.o.g. K5 C K, if
it contains the added value one can simply choose K’ \ K3).
Hence any way of balancing the expenses has to involve all n participants, but building
a connected graph with n nodes requires at least n — 1 edges. Thus there cannot be a
solution with less than n — 1 transactions, and the oracle will answer no.

<

3 Cryptographer’s Conspiracy Santa

Consider now the problem of organizing Conspiracy Santa, where no participant shall learn
the price of his gift. Obviously we cannot simply apply, e.g., the greedy algorithm explained
above on all the expenses, as this would imply that everybody learns all the prices.

More formally, an instance of Conspiracy Santa with n participant consists of n shared
expenses problem (sub-SEP), each with n — 1 participants and with non-empty intersections
of the participants. In each sub-SEP, the n — 1 participants freely discuss, decide on a gift,
its value v; and who pays it; then agree that their share for this gift is v;/(n — 1). Overall
the share of each participant j is

Z?:l,i;éj Vi

n—1

A participants balance p; is this share minus the values of the gifts she bought.

X. Bultel, J. Dreier, J.-G. Dumas, and P. Lafourcade

A simple solution would be to use a trusted third party, but most cryptographers are
paranoid and do not like trusted third parties. A distributed solution would be to settle
the expenses for each gift within the associated conspiracy group individually, but this then
results in n instances of the problem, with n — 2 transactions each (assuming that only one
person bought the gift), for a total of n x (n — 2) transactions.

Moreover, the problem becomes more complex if several groups with non-empty in-
tersections want to minimize transactions all together while preserving the inter-group
privacy.

» Example 5. Ezample 1 continued. For the same conference, FUN’16, Alice, Bob and Dan
shared a taxi from the airport and Bob paid for a total of 60€, that is 20€ per person. There
are two possibilities. Either Alice and Dan make two new transactions to reimburse Bob.
Or, to minimize the overall number of transactions, they aggregate both accounts, i.e. those
from Example 1 with those of the taxi ride. That is [—15,88, —73,0] + [20,—40,0,20] =
[5,48, —73,20]. Overall Alice thus gives 5 € to Carole, Bob reduces his debt to Carole to only
48€ and Dan gives 20 € to Carole. The security issue, in this second case, is that maybe
Alice and Bob did not want Dan to know that they were having lunch with Carole, nor that
they had a debt of more than 20 €, etc.

In the next part we present our solution for the generalization of Conspiracy Santa as the
aggregation of several shared expenses problems with non-empty intersections between the
participants. This solution uses 3n transactions, preserves privacy, and does not require a
trusted third party.

3.1 A Distributed Solution using Cryptocurrencies

We suppose that all participants know a fixed upper bound B for the value of any gift.
Apart from the setup, the protocol has 3 rounds, each one with n transactions, and one
initialization phase.

Note that we consider semi-honest participants in the sense that the participants follow
honestly the protocol, but they try to exploit all intermediate information that they have
received during the protocol to break privacy.

Initialization Phase

In the setup phase, the participants learn the price of the gifts in which they participate and
can therefore compute their overall balance, p;. They also setup several anonymous addresses
in a given public transaction cryptocurrency like Bitcoin [1], ZCash [6] or Monero [2].

Finally the participants create one anonymous address which is used as a piggy bank.
They all have access to the secret key associated to that piggy bank address. For instance,
they can exchange encrypted emails to share this secret key. Protocol 1 presents the details
of this setup phase.

First Round

The idea is that the participants will round their debts or credits so that the different amounts
become indistinguishable. For this, the participants perform transactions to adjust their
balance to either 0, B or a negative multiple of B. The first participant randomly selects an
initial value between 1 and B €, and sends it to the second participant. This transaction is
realized via any private payment channel between the two participants (physical payment,
bank transfer, cryptocurrency payment, ..., as long as no other participant learns the

13:5

FUN 2018

13:6

A Cryptographer’s Conspiracy Santa

Protocol 1 SEP broadcast setup

Require: An upper bound B on the value of any gift;
Require: All expenses.
Ensure: Each participant learns his balance p;.
Ensure: Each participant creates 1 or several anonymous currency addresses.
Ensure: A shared anonymous currency address.
1: One anonymous currency address is created and the associated secret key is shared
among all participants.
2: for each exchange group do
3 for each payment within the group do
4 broadcast the amount paid to all members of the group;
5 end for
6: for each participant in the group do
7 Sum all the paid amounts of all the participants;
8 Divide by the number of participants in the group;
9 This produces the in-group share by participant.
10: end for
11: end for
12: for each overall participant do
13: Add up all in-group shares;

14: Subtract all own expenses to get p;;

15: if p; <0 then

16: Create | %] anonymous currency addresses.
17: end if

18: end for

transferred amount). Then the second participant adds his balance to the received amount
modulo B, and forwards the money (up to B, or such that its credit becomes a multiple of
B) to the next participant, and so on. The last participant also adds his balance and sends
the resulting amount to the first participant. In the end, all participants obtain a balance
of a multiple of B, and the random amount chosen by the first participant has hidden the
exact amounts. The details are described in Protocol 2.

Second Round

The second and third rounds of the protocol require anonymous payments, for which we use
anonymous cryptocurrency addresses. These two rounds are presented in Protocol 3. In the
second round, every participant makes one public transaction of B € to the piggy bank.

Third Round

Each creditor recovers their assets via | % | public transactions of B € from the piggy bank.
Note that if a participant needs to withdraw more than B € he needs to perform several
transactions. To ensure anonymity, he needs to use a different anonymous address for each
transaction. In the end, the account is empty and the number of transactions corresponds
exactly to the number of initial transactions used to credit the piggy bank’s account.

» Theorem 6. For n participants, Protocols 1, 2, 3 are correct and require 3n transactions.

X. Bultel, J. Dreier, J.-G. Dumas, and P. Lafourcade

Protocol 2 Secure rounding to multiple of the bound

Require: An upper bound B on the value of any gift;

Require: Each one of n participants knows his balance p;;

Require: Y. p; =0.

Ensure: Each one of n participants has a new balance p;, either 0, B or a negative multiple
of B;

Ensure:) " p; = 0;

Ensure: Each transaction is between 1 and B €;

Ensure: The protocol is zero-knowledge.

Pty & [1..B] uniformly sampled at random;

Py:pp =p1 — iy

Py sends t1 € to Ps; > Random transaction 1..B on a secure channel

Pa: py = pa+ 1y

fori=2ton—1do
PZ‘Z ti =D; mod .B7
PZiftz:Othentlztz—i—B,endif DlStZSB
Pi: pi =pi —ti;
P; sends t; € to Piy1; > Random transaction 1..B on a secure channel
Piy1: pit1 = piy1 +ti;

end for

: P,: t, = p, mod B;

: P,. if t, =0 then t, =t, + B; end if >1<t,<B

: Py pp=pn — ta;

: P, sends t,, € to Py; > Random transaction 1..B on a secure channel

: Priopr=p1 A+t

o T e S S S T T
D U W N = O

Proof. Including the piggy bank, all the transactions are among participants, therefore the
sum of all the debts and credits is invariant and zero. There remains to prove that in the
end of the protocol all the debts and credits are also zero. The value of any gift is bounded
by B, thus any initial debt for any gift is at most B/(n — 1). As participants participate to
at most n — 1 gifts, the largest debt is thus lower than B €. Then, during the first round,
all participants, except P;, round their credits or debts to multiples of B. But then, by
the invariant, after the first round, the debt or credit of P; must also be a multiple of B.
Furthermore, any debtor will thus either be at zero after the first round or at a debt of
exactly B €. After the second round any debtor will then be either at zero or at a credit
of exactly B €. Thus after the second round only the piggy bank has a debt. Since the
piggy bank received exactly nB €, exactly n transactions of B € will make it zero and the
invariant ensures that, after the third round, all the creditors must be zero too. <

» Remarks. It is important to use a cryptocurrency such as Bitcoin, Monero or ZCash in
order to hide both the issuer and the receiver of each transaction in the third round. This
ensures that nobody can identify the users.

Note that when using Bitcoin, users can potentially be tracked if the addresses are used
for other transactions. Using Monero or Zcash can offer more privacy since the exchanged
amount can also be anonymized. Moreover, to avoid leaking the fact that some persons need
to withdraw B€ multiple times, and are thus doing multiple transaction at the same time,
all the withdrawals should be synchronized. If exact synchronization is difficult to achieve,
one can decide on a common time interval, e.g., an hour, and all the transactions have to be

13:7

FUN 2018

13:8

A Cryptographer’s Conspiracy Santa

Protocol 3 Peer-to-peer secure debt resolution

Require: An upper bound B on the value of any gift;
Require: n participants each with a balance p;, either 0, B or a negative multiple of B.
Ensure: All balances are zero;
Ensure: The protocol is zero-knowledge.
1: parfor i =1 ton do > Everybody sends B to the piggy bank
2 P;: p;-=B;
3 P; sends B € to the shared anonymous address; > Public transaction of B
4: end parfor
5. parfor i =1 to n do
6 if p; <0 then > Creditors recover their assets
7 parfor j =1 to —%* do
8 P; makes the shared anonymous address pay B€ to one of his own anonymous

addresses; > Public transaction of B
9: end parfor
10: Pl pi = 0.
11: end if

12: end parfor

done at random time points during this interval, independently, whether they are executed
from the same or a different participant.

» Example 7. We now have a look at the algorithm for our example with Alice, Bob, Carole
and Dan. As in Example 5, the initial balance vector is [5,48, —73,20]. They decide on an
upper bound of B = 50 € (note that to provably ensure exactly 3n = 12 transactions they
should take an upper bound larger than any expense, that is larger than 213 €, but 50 is
sufficient for our example here). For the first round, Alice randomly selects 1 < ¢; = 12 < 50
and makes a first private transaction of ¢t; = 12 € to Bob. Bob then makes a private
transaction of to = 12 448 mod 50 = 10 € to Carole; Carole makes a private transaction
of t3 =10 — 73 mod 50 = 37 € to Dan; who makes a private transaction of t, = 37 + 20
mod 50 = 7 € to Alice. All these transactions are represented in Figure 1. The balance vector
is thus now [0, 50, —100, 50], because for instance Bob had a balance of 48 €, received 12 €
from Alice and sends 10 € to Carole, hence his new balance is 48+12—10 = 50 €. Everybody
sends 50 € to the piggy bank address, so that the balance vector becomes [—50, 0, —150, 0].
Finally there are four 50 € transactions, one to an address controlled by Alice and three to
(different) addresses controlled by Carole. These two last rounds are illustrated in Figure 2.
Note that we have exactly n = 4 transactions per round.

3.2 Security Proof

We now provide a formal security proof for our protocol. We use the standard multi-party

computations definition of security against semi-honest adversaries [11]. As stated above, we

consider semi-honest adversaries in the sense that the entities run honestly the protocols, but

they try to exploit all intermediate information that they have received during the protocol.
We start by formally defining the indistinguishability and the view of an entity.

» Definition 8 (Indistinguishability). Let 1 be a security parameter and X, and Y, two
distributions. We say that X, and Y, are indistinguishable, denoted X,, =Y, if for every

X. Bultel, J. Dreier, J.-G. Dumas, and P. Lafourcade

12 €
t =12 N
A5 B: 48
37+20 =7 mod 50 12 4+ 48 = 10 mod 50
D: 20 C:-73

10 — 73 =37 mod 50

Figure 1 First round of Example 7.

A: 0 B: 50 A: -50 B: 0
A\
50 € 50 € 50 € ™.
50 €
Piggy Bank Piggy Bank .
;B0 €
50 e/(yo € oel
D: 50 C: -100 D: 0 T O 2150

Figure 2 On the left: second round of Example 7. On the right: third round of Example 7.

Dotted arrows represent anonymous transactions, in particular Carole uses three different anonymous
addresses.
probabilistic distinguisher D we have:

Priz <~ X,,: 1< D(z)] - Prly < Y, : 1 < D(y)] =0

» Definition 9 (view). Let w(I) be an n-parties protocol for the entities (P;)1<;<, using
inputs I = (I;)1<i<n- The view of a party P;(I;) (where 1 <4 < n) during an execution of r,

denoted VIEW (1) (Pi(I;)), is the set of all values sent and received by P; during the protocol.

To prove that a party P learns nothing during execution of the protocol, we show that P
can run a simulator algorithm that simulates the protocol, such that P (or any polynomially
bounded algorithm) is not able to differentiate an execution of the simulator and an execution
of the real protocol. The idea is the following: since the entity P is able to generate his
view using the simulator without the secret inputs of other entities, P cannot extract any
information from his view during the protocol. This notion is formalized in Definition 10.

» Definition 10 (Security with respect to semi-honest behavior). Let 7(I) be an n-parties
protocol between the entites (P;)1<i<p using inputs I = (I;)1<i<n. We say that 7 is secure
in the presence of semi-honest adversaries if for each P; (where 1 < i < n) there exists a
protocol Sim;(I;) where P; interacts with a polynomial time algorithm S;(I;) such that:

VIEWSim, (1) (Pi(13)) = VIEW (1) (P; (1))

» Theorem 11. Our conspiracy santa protocol is secure with respect to semi-honest behavior.

13:9

FUN 2018

13:10

A Cryptographer’s Conspiracy Santa

Proof. We denote our protocol by SCS,,(I) (for Secure Conspiracy Santa). For all 1 <1i < n,
each entity P; has the input I; = (n, B,p;), where I = (I;)1<i<n. For all 1 <i <n, we show
how to build the protocol Sim; such that:

VIEWSsim, (1,) (P (1i)) = VIEWscs,, (1) (Pi(1:))

Simy is given in Simulator 4, and Sim; for 1 < ¢ < n is given in Simulator 5.

Simulator 4 Algorithm S; of the protocol Simy([7).

Require: S; knows I; = (n, B,p1)

1: Si receives t; € from Pi;

2: if 0 < (p; —t1) then

3: S1 sends (B — (p1 — t1)) € to Py

4: else if (p; —t1) < 0 then

5: Sy sends (B — ((t1 — p1) mod B)) € to Pi;
6: end if

7: for j=1ton—1do

8: S1 sends B € to the shared anonymous address;
9: end for
10: if 0 < (pl — tl) then
11: T =n;
12: else if (p; —¢1) < 0 then
13: r=n+ (Pl*tl)*((tllgpl) mod B);
14: end if
15: for j =1 to = do

—
@

S1 makes the shared anonymous address pay B € to an anonymous address;
: end for

[
N |

Simulator 5 Algorithm S; of the protocol Sim;(I;), where 1 < i < n.

Require: S; knows I; = (n, B, p;)

: ti—l (i [13} 3

: S; sends t;_1 € to Pj;

: S; receives t; € from P;;

: for j=1ton—1do

S; sends B € to the shared anonymous address;

: end for

r=n-+ 107‘,+t7',—]13—t7:—B;

: for j =1 to z do

S; makes the shared anonymous address pay B € to an anonymous address;

© 0 N DT AW N

: end for

—_
o

We first show that the view of P; in the real protocol SCS,, is the same as in the protocol
Sim1:

At Instruction 1 of Simulator 4, S receives t; € from P; such that 1 < t; < B, as at
Instruction 3 of Protocol 2.
At Instruction 15 of Protocol 2, P, sends t,, € to P; such that:

1<t,<B

X. Bultel, J. Dreier, J.-G. Dumas, and P. Lafourcade 13:11

The balance of P; is a multiple of B.

We show that these two conditions hold in the simulator. At Instruction 2 of Protocol 2,
the balance of P; is (p1 — t1).

1. If the balance is positive, then 0 < (p; —t1) < B and Sj sends B — (p; — t1) € to P;.
We then have:
1<B—-(pp—t1)<B
The balance of Py is B — (p1 — t1) + (p1 — t1) = B which is multiple of B.
2. If the balance is negative, then S; sends (B — ((t; —p1) mod B)) € to P;. We then
have:
1< B—-((t1 —p1) mod B) < B
ic _ _ _ — pizti| —
’{Fﬁjaicf)?fB{Dlv:lzchBis a(giﬂtif)?lle)ofm f(;d P =B L 7 J ?

At Instruction 8 of Simulator 4, S; sends B € to the shared anonymous address (n — 1)
times, and P; sends B € to the shared anonymous address 1 time, so together they send
B € n times to the shared anonymous address, as at Instruction 3 of Protocol 3.

At Instruction 8 of Protocol 3, the users make the shared anonymous address pay B € to
n anonymous addresses. At Instruction 16 of Simulator 4, the balance of P is:

0if 0 < (p1 —t1) (because P; had B € and sent B € to the shared address).
Otherwise, the balance of P, is B — ((t; — p1) mod B) + (p1 —t1) — B = ((t1 — p1)

mod B) + (p1 — t1). Hence P; receives B € from the shared anonymous address
((t1—p1) mod B)+(p1—t1)
B

’ times, and S; receives B € from the shared anonymous

address n+ {(1=p1) mog B)te1=t1) times. We note that ((t; —py) mod B)+(py—t1) <
0 because (p; —t1) < 0and ((t; —p1) mod B) < —(p1 —t1). Finally, P; and S; make
the shared anonymous address pay B € to n anonymous addresses because:

((ti —p1) mod B)+ (p1 —t1) |((tx —p1) mod B)+ (p1 —t1)| _
n -+ B + B =n

Finally, we deduce that the view of P; in the real protocol SCS,, is the the same as in the
simulator Simy:

VIEWSim, (1,)(P1(11)) = VIEWscs,, () (P1(11))

We then show that the view of P; in the real protocol SCS,, is the same as in the protocol
Simy for any 1 <i < mn:

At instruction 3 and 9 of Protocol 2, each user P; receives t;_1 € from P;_; for any
1 <i < nsuch that 1 < t;_y < B. We note that each t;_; depends on the value t;
chosen by P;. Moreover, t; comes form a uniform distribution and acts as a one-time
pad on the values t;,_1, i.e., it randomizes t;_1 such that P; cannot distinguish whether
t;—1 was correctly generated or comes from the uniform distribution on {1,..., B}. At
instruction 1 of Simulator 5, S; chooses t;_1 at random in the uniform distribution on
{1, ceey B} and sends ti—1 to P;.

At Instruction 3 of Simulator 5, S; receives t; € from P; such that 1 < ¢; < B, like at
Instruction 9 of Protocol 2.

At Instruction 5 of Simulator 5, S; sends B € to the shared anonymous address (n — 1)
times, and P; sends B € to the shared anonymous address 1 time, so together they send
B € n times to the shared anonymous address, as at Instruction 3 of Protocol 3.

FUN 2018

13:12

A Cryptographer’s Conspiracy Santa

At Instruction 8 of Protocol 3, the users make the shared anonymous address pay B € ton
anonymous addresses. At Instruction 9 of Simulator 5, the balance of P; is p;+t;_1—t;— B.

pitti—1—ti—
B

. B .
Hence P, receives B € from the shared anonymous address times, and

. i+ti_1—t;—B .
S; receives B € from the shared anonymous address n + % times. We note

that p; + t,_1 —t; — B < 0; indeed, we have ¢; = (p; + t;—1) mod B (Instruction 6 of
Protocol 2). Since p; < B and t;_1 < B, then we have (p; + t;—1) — t; < B, so we have
pi +t;i—1 —t; — B <0. Finally, P; and S; make the shared anonymous address pay B €
to n anonymous addresses because:

pi+tii—t;—B |pi+ti1—t;—B

n -+ B + B ‘n

Finally, to conclude the proof, we deduce that for all 1 < ¢ < n the view of P; in the real
protocol SCS,, is the the same as in the simulator Sim;:

VIEWSimi(Ii)(Pi(Ii)) = VIEWSCS”([) (R(L)) <

3.3 Physical Variant

If one does not wish to use cryptocurrencies, one can use the following physical variant of
the protocol. In the first round each participant needs to transfer some money to another
participant using a private channel. A simple physical solution is that they meet and perform
the transfer face to face, while ensuring that nobody spies on them. For the second round,
the balance of all participants is a multiple of B €. During the first part of this algorithm,
everyone puts an envelope containing B € onto a stack that is in a secure room. By secure
room, we mean a place where no other participants can spy what is going on inside. In the
second part all participants enter this secure room one after the other and do the following
according to their balance:

If the balance is 0 then the participant does nothing.

If the balance is a multiple k£ of B €, the participant takes k envelopes from the top of

the stack, opens them and collects the corresponding &k * B €. Then he places, in each of

the now empty k envelopes, a piece of paper that have the same shape and weight as a

the B €. These envelopes are placed under the stack of envelopes.

This method allows everyone to collect his money without revealing to the other ones how
much they have taken.

We show that this protocol is secure with respect to semi-honest behavior. For this, we
physically simulate the protocol for any participant. We first note that the first round of the
protocol is the same as Protocol 2, so this round can be simulated exactly as in the proof of
Theorem 11. We simulate the second round for any participant as follows. During the first
part of the algorithm, the simulator enters n — 1 times the secure room and puts an envelope
containing B € onto the stack. When it is his turn, the participant enters the room and
puts an envelope containing B € onto the stack. Finally, there are n envelopes containing
B € on a stack. In the second part the simulator enters the room n — 1 times and does
nothing. When it is his turn, the participant enters the room and takes k envelopes from the
top of the stack, opens them and collects the corresponding k * B € as in the real protocol,
where 0 < k < n. Since each of the n envelopes contains B €, the simulation works for any
0<k<n.

We deduce that the view of the participant during the simulation is the same as during the
real protocol, which implies that our physical protocol is secure with respect to semi-honest
behavior.

X. Bultel, J. Dreier, J.-G. Dumas, and P. Lafourcade

» Remark. This physical protocol mimics exactly the solution using cryptocurrencies. One

advantage, though, of the physical world is that it is easier to perform transactions with 0 €.

Therefore there exists a simpler solution for the second round, where creditors do not have
to give B € in advance: if the participant is in debt he puts an envelope containing B €
onto the stack, otherwise he puts an envelope containing a piece of paper under the stack.

The first and third rounds are not modified, and the simulator for the security proof is
not modified either.

4 Conclusion

In this paper we showed that the Shared Expenses Problem (SEP) is A/P-complete. Moreover,
we devised a privacy-preserving protocol to share expenses in a Conspiracy Santa setting
where members of a group offer each other gifts.

Our protocol ensures that no participant learns the price of his gift, while reducing the
number of transactions compared to a naive solution, and not relying on a trusted third
party. We formally prove the security of our protocol and propose two variants, one relying
on cryptocurrencies for anonymous payments, the other one using physical means, such as
envelopes, to achieve anonymous payments.

Our protocol can also be used to share expenses among different groups with non-empty
intersections, while still ensuring that each participant only learns the expenses of his group(s).

—— References

Bitcoin. https://bitcoin.org/. Accessed: 2018-02-13.

Monero. https://getmonero.org/. Accessed: 2018-02-13.

Settle up. https://settleup.io/. Accessed: 2018-02-13.

Splitwise. https://www.splitwise.com/. Accessed: 2018-02-13.

Tricount. https://www.tricount.com/. Accessed: 2018-02-13.

Zcash. https://z.cash/. Accessed: 2018-02-13.

David Chaum. The dining cryptographers problem: Unconditional sender and recipient

untraceability. Journal of Cryptology, 1(1):65-75, Jan 1988. doi:10.1007/BF00206326.

8 Thomas H. Cormen, Clifford Stein, Ronald L. Rivest, and Charles E. Leiserson. Introduction
to Algorithms. McGraw-Hill Higher Education, 2nd edition, 2001.

9 Michael R. Garey and David S. Johnson. Computers and Intractability; A Guide to the
Theory of NP-Completeness. W. H. Freeman & Co., New York, NY, USA, 1990.

10 Richard M. Karp. Reducibility among combinatorial problems. In Michael Jinger,
Thomas M. Liebling, Denis Naddef, George L. Nemhauser, William R. Pulleyblank, Ger-
hard Reinelt, Giovanni Rinaldi, and Laurence A. Wolsey, editors, 50 Years of Integer
Programming 1958-2008: From the FEarly Years to the State-of-the-Art, pages 219-241.
Springer, Berlin, Heidelberg, 2010.

11 Qingkai Ma and Ping Deng. Secure multi-party protocols for privacy preserving data
mining. In Yingshu Li, Dung T. Huynh, Sajal K. Das, and Ding-Zhu Du, editors, Wireless
Algorithms, Systems, and Applications, pages 526537, Berlin, Heidelberg, 2008. Springer.
doi:10.1007/978-3-540-88582-5_49.

12 David Vavra. Mobile Application for Group Expenses and Its Deployment. Master’s thesis,

N OO s WN =

Czech Technical University in Prague, Faculty of Electrical Engineering, Department of
Computer Graphics and Interaction, 2012.

13:13

FUN 2018

https://bitcoin.org/
https://getmonero.org/
https://settleup.io/
https://www.splitwise.com/
https://www.tricount.com/
https://z.cash/
http://dx.doi.org/10.1007/BF00206326
http://dx.doi.org/10.1007/978-3-540-88582-5_49

	Introduction
	Contributions
	Outline

	The Shared Expenses Problem and its Complexity
	Cryptographer's Conspiracy Santa
	A Distributed Solution using Cryptocurrencies
	Security Proof
	Physical Variant

	Conclusion

