Skip to Main content Skip to Navigation
Journal articles

Vortex survival in 3D self-gravitating accretion discs

Min-Kai Lin A. Pierens 1
1 ECLIPSE 2018
LAB - Laboratoire d'Astrophysique de Bordeaux [Pessac]
Abstract : Large-scale, dust-trapping vortices may account for observations of asymmetric protoplanetary discs. Disc vortices are also potential sites for accelerated planetesimal formation by concentrating dust grains. However, in 3D discs vortices are subject to destructive `elliptic instabilities', which reduces their viability as dust traps. The survival of vortices in 3D accretion discs is thus an important issue to address. In this work, we perform shearing box simulations to show that disc self-gravity enhances the survival of 3D vortices, even when self-gravity is weak in the classic sense (e.g. with a Toomre Q ≃ 5). We find a 3D self-gravitating vortex can grow on secular time-scales in spite of the elliptic instability. The vortex aspect ratio decreases as it strengthens, which feeds the elliptic instability. The result is a 3D vortex with a turbulent core that persists for ˜103 orbits. We find when gravitational and hydrodynamic stresses become comparable, the vortex may undergo episodic bursts, which we interpret as an interaction between elliptic and gravitational instabilities. We estimate the distribution of dust particles in self-gravitating, turbulent vortices. Our results suggest large-scale vortices in protoplanetary discs are more easily observed at large radii.
Complete list of metadatas
Contributor : Marie-Paule Pomies <>
Submitted on : Wednesday, April 25, 2018 - 8:02:48 AM
Last modification on : Friday, April 5, 2019 - 8:24:09 PM

Links full text





Min-Kai Lin, A. Pierens. Vortex survival in 3D self-gravitating accretion discs. Monthly Notices of the Royal Astronomical Society, Oxford University Press (OUP): Policy P - Oxford Open Option A, 2018, 478 (1), pp.575-591. ⟨10.1093/mnras/sty947⟩. ⟨hal-01777647⟩



Record views