M. Suliga, R. Deklerck, and E. Nyssen, Markov random field-based clustering applied to the segmentation of masses in digital mammograms, Computerized Medical Imaging and Graphics, vol.32, issue.6, pp.502-512, 2008.
DOI : 10.1016/j.compmedimag.2008.05.004

S. R. Goubalan, Y. Goussard, and H. Maaref, Unsupervised malignant mammographic breast mass segmentation algorithm based on pickard Markov random field, 2016 IEEE International Conference on Image Processing (ICIP), pp.2653-2657, 2016.
DOI : 10.1109/ICIP.2016.7532840

URL : https://hal.archives-ouvertes.fr/hal-01367675

Y. Goussard, J. Idier, and A. De-cesare, Unsupervised image segmentation using a telegraph parameterization of Pickard random fields, 1997 IEEE International Conference on Acoustics, Speech, and Signal Processing, pp.2777-2780, 1997.
DOI : 10.1109/ICASSP.1997.595365

S. R. Goubalan, Y. Goussard, and H. Maaref, Markovian Approach to Automatic Annotation of Breast Mass Spicules Using an A Contrario Model, IWDM, pp.461-468, 2016.
DOI : 10.1016/S1361-8415(99)80016-4

URL : https://hal.archives-ouvertes.fr/hal-01367634

N. Dhungel, G. Carneiro, and A. P. Bradley, Tree reweighted belief propagation using deep learning potentials for mass segmentation from mammograms, ISBI. IEEE, pp.760-763, 2015.