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HERVÉ ANDRIEU

L’Universit�e Nantes Angers Le Mans, IFSTTAR Department GER and IRSTV–FR CNRS 2488, Bouguenais, France

BRICE BOUDEVILLAIN AND GUY DELRIEU

Laboratoire d’�etude des Transferts en Hydrologie et Environnement, UMR 5564, UJF-Grenoble 1, CNRS, G-INP, IRD,

Grenoble, France

(Manuscript received 20 August 2012, in final form 20 February 2013)

ABSTRACT

The vertical profile of reflectivity (VPR) must be identified to correct estimations of rainfall rates by radar

for the nonuniform beam filling associated with the vertical variation of radar reflectivity. A method for

identifying VPRs from volumetric radar data is presented that takes into account the radar sampling.

Physically based constraints on the vertical structure of rainfall are introduced with simple VPR models

within a rainfall classification procedure defining more homogeneous precipitation patterns. The model pa-

rameters are identified in the framework of an extended Kalman filter to ensure their temporal consistency.

Themethod is assessed using the dataset from a volume-scanning strategy for radar quantitative precipitation

estimation designed in 2002 for the Boll�ene radar (France). The physical consistency of the retrieved VPR is

evaluated. Positive results are obtained insofar as the physically based identified VPR (i) presents physically

consistent shapes and characteristics considering beam effects, (ii) shows improved robustness in the difficult

radar measurement context of the C�evennes–Vivarais region, and (iii) provides consistent physical insight

into the rain field.

1. Introduction

Reflectivity sampled aloft with ground radars is not

always representative of the surface precipitation.

Reflectivity varies with height because of various micro-

physical processes of melting, aggregation, collision, co-

alescence, evaporation, and breakup. In addition to the

increase in beam elevation with distance, beam widening

degrades the vertical sampling of the vertical structure of

precipitation. This representativeness issue is increased

in complex terrain where ground radars must sample

precipitating systems at higher elevation angles. Vertical

variations of reflectivity are one of the major sources of

error in the measurement of rainfall by weather radar;

they potentially double the estimation error when not

accounted for (Kitchen et al. 1994). The vertical varia-

tions of the radar reflectivity factor in the atmosphere

are usually represented by the vertical profile of re-

flectivity (VPR), defined as the function describing the

average variations over a given geographical domain

with respect to a reference level. Correcting the error

due to the VPR requires its determination, which al-

lows reflectivity measured aloft to be projected onto

the ground before it is converted into a rainfall rate

(Delrieu et al. 2009). The VPR determination remains

an open research subject despite the progress made

during in recent decades. The methods proposed to

identify the VPR can be classified into three categories:

(i) the direct estimation of the VPR from measured

volume reflectivity data (e.g., Germann and Joss 2002),

(ii) the numerical identification of the VPR from the
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comparison of the radar data at different distances and

altitudes to account for sampling effects (Andrieu and

Creutin 1995; Andrieu et al. 1995; Vignal et al. 1999;

Borga et al. 2000; Seo et al. 2000; Kirstetter et al. 2010),

and (iii) the synthesis of the VPR with a few parameters

(Kitchen et al. 1994; Tabary 2007). All these methods

take advantage of volume radar data without which the

VPR identification would not be possible. Yet the

analysis of these radar data has also shown that VPRs

display significant temporal and spatial variations. This

explains part of the discrepancies noticed between radar

and rain gauge at short time steps (Berne et al. 2004).

VPR identification methods are not always able to cope

with these fluctuations and might reach their limits de-

spite the proposed improvements. For example,

Kirstetter et al. (2010) showed the improvement

gained by filtering the beam-sampling effects in theVPR

estimation relative to an apparent VPR directly derived

from measured reflectivity data and differently affected

by the range influence. This method is derived from the

VPR identification algorithm proposed by Vignal et al.

(1999) based on inversion of reflectivity ratios computed

at multiple elevation angles over the distance from the

radar. However, a difficult radar measurement context

(mountainous areas) shows the limits of the VPR iden-

tification used within the Traitements R�egionalis�es et

Adaptatifs de Donn�ees Radar pour l’Hydrologie

(TRADHy) software (Delrieu et al. 2009). A statistical

control is applied on the variations of the VPR compo-

nents about their a priori values. In case of strong or

noisy fluctuations in the observations, the statistical

control of the variations of the VPR components about

their a priori values through a matrix of covariance

(Vignal et al. 1999; Kirstetter et al. 2010) may be not

robust enough to prevent getting physically unrealistic

VPRs. Room for improvement remains regarding the

correction of radar data for the VPR influence (Bellon

et al. 2005, 2007).

Nevertheless, new progress on VPR identification can

be expected by using the new observations provided by

polarimetric radars for a better characterization of hy-

drometeors, especially in the melting zone (a key com-

ponent of the VPR; e.g., Matrosov et al. 2007; Cao et al.

2012) and by modeling the vertical evolution of the

physical properties of the hydrometeors (size distri-

bution, shape, phase, electromagnetic properties, etc.).

As an example Heyraud et al. (2008) suggested in-

troducing a brightband bulk model into a data assimi-

lation scheme. Modeling of the bright band has been

addressed by various research studies, ranging from very

comprehensive models (Willis and Heymsfield 1989;

Klaassen 1988; Szyrmer and Zawadzki 1999; Fabry and

Szyrmer 1999; Zawadzki et al. 2005) to simpler

approaches (Hardaker et al. 1995; Boudevillain and

Andrieu 2003). In sum, microphysical processes contrib-

uting to the VPR properties can help VPR identification.

Our goal is to propose VPR identification based on

a physical parameterization of the VPR variations and

on the modeling of the vertical variations of the equiv-

alent reflectivity factor. The vertical model of the pre-

cipitating column requires a description of hydrometeor

phase, size distribution, ice density, andmorphology and

melting-layer structure at each height level to properly

simulate radar reflectivity. The radar-profiling algorithm

is designed to capture the natural variability of these

properties in as few parameters as possible. The VPR is

identified from the comparison of the radar data at dif-

ferent distances and altitudes to account for sampling

effects. A rain-typing algorithm is used for an a priori

separation of convective and stratiform regions within

the rain field (Delrieu et al. 2009). The VPR inference is

time adjusted in the framework of an extended Kalman

filter. This approach allows assimilating new radar ob-

servations to continuously update theVPRcharacteristics

and ensures the temporal consistency of the parameters

defining theVPR. Themanuscript is organized as follows.

Section 2 describes the model of the vertical variations of

the equivalent reflectivity factor, inspired byBoudevillain

and Andrieu (2003). Section 3 introduces the case study

and details the data. Section 4 formulates the identifi-

cation of the VPR parameters in the framework of

a nonlinear Kalman filter. Section 5 presents the appli-

cation of the VPR identification to the retained case

study and discusses the obtained results. Section 6 closes

the paper.

2. Modeling the vertical variations of reflectivity

This section presents a 1D model for the vertical

variations of the equivalent reflectivity factor controlled

by a limited number of parameters, allowing us to re-

produce the main features of the VPR. The model sim-

ulates a static description of the atmospheric precipitation

column along the line of Boudevillain and Andrieu

(2003), Heyraud et al. (2008), and Ryzhkov et al. (2009).

Kirstetter et al. (2012) proposed a VPR identification

using a unique model with simple microphysics applied

to all rain types. Here two distinct microphysics types

are considered: convective and stratiform. This allows

applying the VPR retrieval to rain domains defined by

preliminary rain typing (convective, stratiform) as de-

scribed in Delrieu et al. (2009) and Kirstetter et al.

(2010).

Microphysical and dynamical processes drive the verti-

cal variability of precipitation (Pruppacher andKlett 1998;

Rogers and Yau 1989). These processes depend on the

1646 JOURNAL OF APPL IED METEOROLOGY AND CL IMATOLOGY VOLUME 52



meteorological environment: temperature, pressure, and

moisture. They control the vertical change of the particle

size distribution (PSD), the phase (liquid and/or solid),

the density, and the dielectric properties of particles. The

equivalent radar reflectivity factor Ze at altitude h is de-

fined by

Ze(h)5
l4

p5jKwj2
ð
V

D

s[D,l,m(h)]N(D,h) dD , (1)

where s (mm2) is the backscattering cross section of

a hydrometeor that depends on the equivalent diameter

D and the complex refractive index m(h); the refractive

index depends on the phase of the hydrometeors and

their temperature and on the radar wavelength [l (mm)].

The term N(D, h) (m21m23) is the number of particles

with diameters between D and D 1 dD (m) per unit di-

ameter range and per unit air volume at altitude h (m);

VD is the raindrop diameter range, assumed to be

VD 5 [0, 1‘[. Finally, jKwj2 5 (m2
w 2 1)/(m2

w 1 2)’ 0:93

is a constant depending on the refractive index of

liquid water mw, generally used in the expression of the

radar constant for the interpretation of measured re-

flectivity (Doviak andZrnic 1993). Equation (1) indicates

that the equivalent radar reflectivity factor profile de-

pends on (i) the phase of the hydrometeors, which drives

their dielectric properties through a given scattering

model (T matrix, Mie, Rayleigh); (ii) the PSD; (iii) the

density and morphology of the frozen particles; and (iv),

implicitly, the vertical profile of temperature that con-

strains, in particular, the altitude of the 08 isotherm and

the melting layer. The radar-profiling algorithm is de-

signed to capture the natural variability of these proper-

ties in a reduced number of parameters (four) to derive

the vertical variations of the equivalent reflectivity fac-

tor. The vertical resolution used is 50m, which is suffi-

cient to resolve the microphysics calculations involved,

especially in the melting layer. The next paragraphs

address the parameterization of these variables.

a. Main assumptions

Three vertical layers are considered for describing the

atmospheric column. The upper layer, denoted the solid

layer, contains frozen particles. In the lowest layer,

denoted the liquid layer, the precipitation particles are

raindrops. The in-between layer is the melting layer in

which particles are composed of amixture of ice, air, and

liquid water. These three layers are defined by their al-

titude boundaries. The top of the precipitating cloud,

provided by the radar echo top, is denoted hT (m). The

altitude of the interface between solid and melting

layers is denoted hM (m); hL (m) is the altitude of the

interface betweenmelting and liquid layers. A reference

level close to the ground denoted h0 (m) is considered

at the bottom of the liquid layer. The temperature is

assumed to decrease with altitude following the satu-

rated adiabat. A standard atmosphere is supposed with

100% relative humidity. In the solid and melting layers

the particle size is defined by the equivalent melted

spherical raindrop diameter.

b. The liquid layer

Hydrometeors are liquid drops whose mass density

rw is constant (rw 5 1000 kgm23). Variability of the

equivalent radar reflectivity factor is mainly driven by

the PSD. The PSD serves to generate all bulk variables

defining precipitation, such as water content, rainfall

rate, or radar reflectivity. We use the gamma distribu-

tion (Uijlenhoet et al. 2003a,b; Yu et al. 2012, manu-

script submitted to J. Appl. Meteor. Climatol.) that

requires the total concentrationNt (m
24), a characteristic

diameter D0 (m), and a dimensionless shape parameter

m. In line with several authors (e.g., Testud et al. 2001),

the characteristic diameter D0 is taken as the mean

volume diameter (ratio of the fourth moment to the

third moment of the PSD). Since we will be using radar

reflectivity measurements, it is convenient to parame-

terize the PSD as a function of Ze through the following

expression (see the appendix for a full derivation):

N(D,Ze)5
l
m17
Z

G(m1 7)
Z
12(m17)b

Z
e Dm exp

 
2

lZ

Z
b
Z

e

D

!
,

(2)

where lZ(m
3bZ21) and bZ (dimensionless) are scaling

distribution parameters (constants) and G is the com-

plete gamma function.

We assume that Ze varies linearly, according to h,

between the value Z0 at h0 and a value Zm at the level

hL. The quantityGl 5 [(Zm 2Z0)/(hL 2 h0)] is the slope

of the VPR in the liquid layer. It is a parameter of the 1D

model. Consistent vertical variations of the PSD are

obtained fromEq. (2) assuming that the PSDparameters

lZ, bZ, and m are constant in the entire liquid layer. The

PSD parameterization used herein is obtained from dis-

drometer measurements at ground level in the C�evennes

region, France (Chapon et al. 2008; Yu et al. 2012, man-

uscript submitted to J. Appl. Meteor. Climatol.).

c. The solid layer

For both stratiform and convective types, the solid

layer is defined between the level hM and the top level hT ,

which are two parameters of the 1D model. In the solid

layer, the hydrometeors are heterogeneous and described

by a mixture of ice and air. Snowflakes are considered to
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occur in the stratiform regime and graupel/hail in the

convective regime. From mass conservation, the size of

frozen particles (snowflakes or graupel particles) Ds is

related to the size of the equivalent melted drop Dw by

Ds5Dw(rw/rs)
1/3 , (3)

where rs and rw are, respectively, the snow bulk density

and the water density. The frozen particle density is

described by a power-law relationship:

rs(Ds)5 gsD
21
s . (4)

Themass–diameter relationship of frozen hydrometeors

is highly variable and has been the topic of many studies.

The choice of the exponent value (21) is based on ex-

perimental studies (Mitchell et al. 1990), aircraft obser-

vations (Brown and Francis 1995; Heymsfield et al. 2002),

and theoretical computations (Westbrook et al. 2004).

The quantity gs is a parameter of the 1D model. The

density of particles is bounded to that of pure solid ice

(917 kgm23).

The density drives the composition of the particles

through the respective air and ice volume fractions of

the total particle volume. For the snowflakemorphology

in a stratiform situation, we use the model 5 from Fabry

and Szyrmer (1999) where the particle is depicted as two

parts: the core and the shell. The inner core is modeled

as air inclusions in an ice matrix while the outer shell is

described as ice inclusions inside an air matrix. The

graupel/hail morphology for the convective situation is

taken fromRasmussen and Heymsfield (1987) assuming

homogeneous and spherical particles composed of air

inclusions in an ice matrix. Fabry and Szyrmer (1999)

detail the dielectric properties of the snowflakes.

Ryzhkov et al. (2011) provide the equivalent for the

graupel/hail.

The PSD of frozen hydrometeors is not yet well

known and seems to be driven by temperature conditions

(Fabry and Zawadzki 1995; Field et al. 2005). The con-

centration number Nt and the diameter D0 are assumed

to increase linearly from the top level hT to the level hM.

This is supported by observations of midlatitude clouds

(Heymsfield 2003, 2007; Field et al. 2007). The values for

Nt andD0 at the level hT are inferred from the equivalent

reflectivity factor fixed at 10 dBZ. The form of the VPR

in the solid layer depends on the PSD defined at the top

of the melting layer hM and on the mass–diameter re-

lationship [Eq. (4)].

d. The melting layer

The melting layer is a transitional zone in which the

backscattering properties of precipitation particles

change rapidly. Its description has been addressed in

depth (Rasmussen and Heymsfield 1987; Klaassen 1988;

Szyrmer and Zawadzki 1999; Fabry and Szyrmer 1999;

Zawadzki et al. 2005): a fast increase in dielectric con-

stants of melting particles compared to those of ice

particles in the beginning of the melting process leads to

higher backscatter cross sections; as melting progresses,

an increase in the fall velocity of melting particles di-

minishes their number concentrations. The possible

enhancement of themeasured reflectivity by the radar in

stratiform rainfall, the bright band, occurs in this zone.

Melting-layer models have two components: one de-

scribes the melting process in terms of microphysics

variables and the other describes the scattering of

melting particles. The melting-layer model for strati-

form type is taken from Szyrmer and Zawadzki (1999)

and Heyraud et al. (2008). The convective melting-layer

model is taken from Rasmussen and Heymsfield (1987)

and Ryzhkov et al. (2009). Both melting-layer models

for snowflakes and graupel assume that collision, co-

alescence, and breakup processes have a small contri-

bution to the total reflectivity and are neglected. One

particle of sizeDs at the top of themelting layer hT melts

into one raindrop of size Dw below the melting layer.

The flux particle number conservation is assumed pre-

served throughout themelting layer under a steady-state

condition. Terminal fall velocities of raindrops and

melting and frozen particles are used to derive the PSD of

melting particles and the PSD of frozen particles at the

level hT from the PSD of raindrops at the level hL; this

ensures continuity between the solid–melting–liquid

layers. The distance fallen by a melting particle until it is

completely turned to a raindrop is dependent on size. Two

populations of particles contribute to the backscattered

power: themelting particles and the raindrops (completely

melted particles). The level hL is determined when rain-

drops contribute to 99% of the flux particle number.

The fall velocities of raindrops as a function of size

were adopted fromSekhon and Srivastava (1971). For the

stratiform rainfall type, the fall speed of melting snow-

flakes, the evolution of the melting fraction with height,

and the particle size separating melting snowflakes and

raindrops are taken from Heyraud et al. (2008) based

on Mitra et al. (1990). The backscattering parameteriza-

tion for melting snowflakes is adopted from Fabry and

Szyrmer (1999); it is a function of the diameter, density,

and melted fraction of the particle. For the convective

type, the fall speed andmelting of graupel/hail are taken

from Rasmussen and Heymsfield (1987). Shedding of

water from the surface of larger melting hail particles is

not considered. The backscattering parameterization

for melting graupel/hail is adopted from Ryzhkov

et al. (2011).
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e. Summary

Practically, the vertical variations of the equivalent

reflectivity factor are computed from altitudes hT , hM,

density parameter gs, and reflectivities Z0 at the level h0
and Zm at an a priori level hL in three steps:

1) The PSD of raindrops is identified at the a priori level

hL from the value Zm using Eq. (2).

2) The PSD of frozen particles is computed at the level

hM from the PSD of raindrops using the flux particle

number conservation and the particles terminal

velocities (e.g., Heyraud et al. 2008). The reflectivity

profile is computed in the melting layer. The level hL
is updated. The slope Gl is computed.

3) The reflectivity profile is computed in the liquid layer

betweenZ0 at the level h0 andZm at the level hL. The

vertical profiles of Nt and D0 are computed in the

solid layer between the PSD at the level hM and

the PSD at the level hT . The reflectivity profile is

computed in the solid layer.

The vertical variations of the equivalent reflectivity

factor Ze with altitude can be represented from Eq. (1)

using a model for the vertical variations of temperature,

composition of hydrometeors, and PSD. These vertical

variations of the equivalent reflectivity factor can finally

be written Ze(Z0,u, h), where u5 (Gl,hT , hM,gs) is the

vector grouping the four parameters of the VPR model.

Table 1 summarizes the parameters for the VPR iden-

tification framework. Reflectivity Z0 is estimated from

radar measurements; u is identified from apparent

VPRs in the Kalman filter framework (section 4b).

The vertical profile of reflectivity, defined as the

equivalent reflectivity factor Ze at altitude h normalized

by its value Z0 at the reference level h0 is expressed as

z(u,h)5Ze(Z0,u, h)/Z0 . (5)

One of the parameters is the gradient of the equivalent

radar reflectivity factor in the liquid layer; two of them

concern altitude levels and the last is related to the

density of frozen particles. Figure 1 illustrates the vari-

ous shapes of VPRs, which can be derived from the

proposed models for convective and stratiform rainfall.

Three types of variation are considered: characteristic

altitudes, reflectivity gradient in the liquid layer, and the

density factor in the upper layers. Both melting-layer

models relate Z0, Gl, and gs to the thickness of the

melting layer. The reflectivity value Zm at the level hL is

linked to the melting layer as shown on Fig. 1a: the

greater the reflectivityZm is, the greater are the peak-to-

rain reflectivity and the melting-layer thickness as

mentioned by Fabry and Zawadzki (1995) and Heyraud

et al. (2008). A higher density increases the terminal

velocity of the particles and consequently, the melting-

layer thickness. As can be seen in Fig. 1b, the increase in

the gs parameter leads to a smaller peak-to-rain re-

flectivity because of the density effect (Zawadzki et al.

2005 for the stratiform case). Table 2 gives variation

intervals of these parameters according to physical

considerations. The top of the precipitation is limited to

15 km, which can be reached in case of strong convective

updrafts. The gs values are bounded between 1 and 400

so that the average bulk density of frozen particles rs
(density weighted by volume) spans various frozen

particle types like snow (rs from 10 to 350 kgm23; i.e.,

gs from 1 to 15), graupel (rs from 50 to 900 kgm23; i.e.,

gs from 5 to 400), and hail (rs . 800kgm23; i.e., gs . 90).

The conditions of the two models for determining the

stratiform and convective VPRs will be presented in

section 4.

3. Case study

Adetailed description of the Boll�ene 2002 experiment

can be found in Delrieu et al. (2009). This experiment

was designed to evaluate the benefits of a radar volume-

scanning strategy for radar quantitative precipitation

estimation (QPE) in mountainous regions and served to

develop the TRADHy system.During the experiment, the

Boll�ene radar performed three plan position indicators

TABLE 1. Parameters for the framework.

Parameter Model Identification

Echo top hT VPR Kalman filter

Upper boundary of the melting layer hM VPR Kalman filter

Density factor gs VPR Kalman filter

Slope of the profile in the liquid layer Gl VPR Kalman filter

Reflectivity at the reference level Z0 VPR Radar measurements

Radar wavelength g VPR Fixed

Radar 3-dB beamwidth u0 Radar sampling Fixed

Radar elevation angles — Radar sampling Fixed

Steady-state system error a, b Kalman filter Fixed

JULY 2013 K IR STETTER ET AL . 1649
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(PPIs) at angles of 0.88, 1.28, and 1.88 at an antenna rotation
rate of 108 s21, complemented by two sets of five PPIs,

alternated every 5min at an antenna rotation rate of

158 s21, allowing an enhanced sampling of the atmo-

sphere at 10-min intervals (Delrieu et al. 2009). The 3-dB

radar beamwidth is 1.288 and the radar range is 120km.

The radar reflectivity data are available for each 13 1km2

Cartesian mesh of each PPI.

During the experiment, an exceptional mesoscale con-

vective system (MCS) was sampled on 8–9 September

2002 (Delrieu et al. 2005; Bonnifait et al. 2009). It was

a particularly catastrophic event in which total rain

amounts reached 700mm in 28 h. Delrieu et al. (2005)

divided the event into three phases: an initial period

(0800–2200 UTC 8 September) during which the MCS

developed and became stationary in the northwest re-

gion of the city of N̂ımes; a second phase (from 2200 UTC

8 September to 0400 UTC 9 September) in which

the mature MCS moved and stayed at the limit of the

C�evennes Mountain Ridge; and a final phase (0400–

1200 UTC 9 September) in which a cold front swept the

MCS out of the region. To illustrate the application con-

ditions of theVPR identification, wewill be using the radar

data collected during this event characterized by a marked

spatial and temporal heterogeneity. Figure 2 shows results

of the rain separation technique fromTRADHy as well as

the variability in 3Dmeasured reflectivity for the example

of 0200 UTC 9 September 2002. The graphs display dif-

ferent quantiles of the probability density functions (PDF)

for reflectivity measured in stratiform and convective

zones as a function of altitude within 70 km of the radar

[see Delrieu et al. (2009) for more details]. The rain

separation leads to distinct median profiles, for example,

median values of 47 and 33dBZ at h 5 2 km for the

convective and stratiform PDF, respectively.

Figure 3 shows the convective and stratiform VPRs

identified within the TRADHy software at 0200 UTC

9 September 2002. The impact of the radar beam effects

is mitigated. Simulated VPRs from the 1D model are

also shown to illustrate the ability of the physically based

model to reproduce the features of typed VPRs. The

reference level h0 is 1000m. The Z0 values are extracted

from Fig. 2 and are equal to 1000mm6m23 (30 dBZ) for

the stratiform case and 50 118mm6m23 (47 dBZ) for the

convective case for the considered time step. Table 3

lists the parameter values serving to define the modeled

VPRs. It also shows themelting-layer thicknesses and the

average bulk density of frozen particles rs. The features

of the modeled VPR are cruder than the identified VPR

within the TRADHy software. Yet the TRADHy strati-

form VPR presents a thicker bright band (2km) than

the modeled VPR. To reproduce the peak-to-rain re-

flectivity, an unusually high value for snowflakes density gs

is needed. A more physical value for gs would have re-

sulted in a greater peak-to-rain reflectivity. Kirstetter et al.

(2010) showed that the beam-smoothing effects decrease

the peak-to-rain reflectivity and increase the thickness

of the bright band for the apparent stratiform VPR.

Even if it has been mitigated in the TRADhy software

so that the identified VPR presents physically more

consistent shapes and better characteristics than the

apparent VPR, correction for residual beam effects still

may be needed using physically based constraints. The

modeled convective VPR does not present oscillations

of the convective VPR in the altitude interval (1–3.5)

km, which is attributed to artifacts of the inversion

technique used in TRADHy (cf. Kirstetter et al. 2010).

4. The VPR identification method

The objective is to determine the parameter values u
and their time variations that will allow reconstitution of

the best vertical variations in reflectivity captured by the

radar observations during a rain event. The first para-

graph presents the data for the VPR identification and

the second one addresses the relationship between the

data and the parameters of the VPR models. The VPR

identification is performed in the framework of an ex-

tended Kalman filter (EKF) described in the third para-

graph, and the fourth paragraph discusses the application

of this technique to the estimation of theVPRparameters.

In the following, though the data are time dependent, the

time t is not explicitly mentioned for the sake of keeping

the formulations concise.

a. The data: Rain-typed apparent VPRs

The radar provides the vertical variations of the equiva-

lent reflectivity factor discretized according to the elevation

angles and smoothed according to the beam characteristics.

For any rainy pixel in the radar detection domain these

observations constitute a vector of n components de-

noted Zem, where n is the number of elevation angles.

We consider two subsets according to the rain separa-

tion typing—convective and stratiform (Delrieu et al.

2009). The VPR to be identified from each subset de-

scribes the average vertical variations of the equivalent

reflectivity factor. The vectorsZem classifiedby rain type are

assumed to be homogeneous and to display the sameVPR.

TABLE 2. Values of the input parameters for the VPR model.

Input parameter Units Domain

Echo top hT km 0–15

Upper boundary of the melting layer hM km 0–10

Density factor gs — 0–400

Slope of the profile in the liquid layer Gl km21 20.5–0.5
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FIG. 2. Results of rain separation for the mesoscale convective system observed at (top left) 0100 UTC and (top right) 0200 UTC 9 Sep

2002: (red, convective rainfall; blue, stratiform rainfall; green, undetermined). (bottom)The 3D variability of themeasured reflectivitywithin

the 70-km radar range between 0100 and 0200UTC9Sep 2002 for (left) convective and (right) stratiform conditions. The curves are the 10%,

20%, 50%, 80%, and 90% quantiles of the statistical distribution of the measured reflectivity as a function of altitude.

1652 JOURNAL OF APPL IED METEOROLOGY AND CL IMATOLOGY VOLUME 52



Within a subset the vectors differ by the measurement

conditions, beam diameter, and beam axis altitudes,

which depend on the range to the radar r for all ele-

vation angles. Assuming the radar sampling conditions

are unchanged within a narrow distance interval

[r2 (Dr/2), r1 (Dr/2)], the vectors Zem are averaged

within this interval. Kirstetter et al. (2010) considered

a moving time window of 1 h to smooth the observa-

tions prior to the VPR identification. In the present

paper only the observations of each 5-min radar vol-

ume scan are considered. The radar observations thus

correspond to a series of vectors Zem(r, n), where r

represents the distance and n is the rain type. These

vectors when combined depict the vertical variations of

the reflectivity smoothed by the radar sampling prop-

erties for each rain type. The final step consists in

normalizing these observations by the equivalent re-

flectivity factor at the reference level, which provides

the apparent VPR zap(r, v):

zap(r, v)5

�
N(r,v,a

i
,a

ref
)

i51

Zem,i(r, v)

�
N(r,v,a

i
,a

ref
)

i51

Zem,ref(r, v)

, (6)

where the values Zem,ref and Zem,i (mm6m23) are mea-

sured equivalent reflectivity factors for any pair of upper

[ai, with i 2 (1, n2 1)] and reference elevation (aref) an-

gles, respectively. Note that estimating the numerator

and denominator of Eq. (6) strictly with the subset of

N(r, v, aref, ai) observations available simultaneously

for the two elevation angles ai and aref is an important

condition to avoid biasing the apparent VPRs. A data

censoring scheme is applied based on the relative stan-

dard deviation of reflectivity ratios (Kirstetter et al. 2010).

The apparent VPR may not sample all the altitude in-

tervals homogeneously given the beam characteristics.

Observational error must be defined for the extended

FIG. 3. Vertical profiles of the (a) stratiform and (b) convective normalized equivalent-reflectivity factor. VPRs identified with the

TRADHy software from the radar observations between 0100 and 0200 UTC 9 Sep 2002: modeled (black lines) and from Kirstetter et al.

(2010) (gray lines).

TABLE 3. Values of the parameters defining the twoVPRs to simulate the observed ones for the 0200UTC9 Sep 2002 case, and values of

the parameters defining the VPR for EKF initialization for both stratiform and convective cases. The melting-layer thickness and average

bulk density of frozen particles rs is indicated.

Input parameter Convective Stratiform EKF initialization

Echo top hT 12 km 10 km 11 km

Upper boundary of the melting layer hM 4.6 km 4.0 km 3.6 km

Density factor gs 250 (907 kgm23) 25 (508 kgm23) 200./15.

Slope of the profile in the liquid layer Gl 5 3 1022 km21 6 3 1022 km21 0

Melting-layer thickness 2700m 950m —

Reference level h0 1 km 1km 1km

Radar reflectivity factor at the reference level h0 Z0 50 118mm6m23 1000mm6m23 —
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Kalman filter. It is computed from the population of

individual apparent VPRs located in the distance in-

terval [r2 (Dr/2), r1 (Dr/2)] for different azimuth an-

gles. A standard deviation associated with the average

value [using Eq. (6)] can be derived that characterizes

the dispersion around the average value. The average

value is the data for the filter and the standard deviation

is accounted for in the data covariance matrix derivation.

Details are provided in Kirstetter et al. (2010, section 4c).

The apparent VPRs obtained for various distances are

finally regrouped in the vector zap.

b. Application of the model for VPR identification

The VPR z(h, v) for the rain typed domain Dv can

be written as z(h, v)5Z(h, v)/Z0(v), where Z(h, v) and

Z0(v) are the mean value of the equivalent reflectivity

over Dv at altitude h and h0, respectively. This VPR is

modeled by the function z(Z0,u, h, v). For the elevation

angle ai, the mean reflectivity factor at distance r from

the radar can be written

Zi(r, v)5

ðH1(u
0
,a

i
)

H2(u
0
,a

i
)

b4(u0, s)Z(s, v) ds , (7)

where b4(u0, s) is the two-way normalized power-gain

function of the radar antenna at altitude h, corre-

sponding to range r and elevation angle ai; u0 is the 3-dB

beamwidth while H2 and H1 denote the lower and

upper limits of the radar beam, respectively. Given Eq.

(5), Eq. (7) may be rewritten as

Zi(r, v)5

ðH1(u
0
,a

i
)

H2(u
0
,a

i
)

b4(u0, s)Z0(v)z[Z0(v),u, s, v] ds .

(8)

Thus the apparent VPR can be modeled as

zap(r, v, aref, ai)5

ðH1(u
0
,a

i
)

H2(u
0
,a

i
)

b4(u0, s)z[Z0(v),u, s, v]dsðH1(u
0
,a

ref
)

H2(u
0
,a

ref
)

b4(u0, s)z[Z0(v),u, s, v]ds

.

(9)

This model, denoted zap 5 g(u), expresses the relation

between a series of apparent VPRs computed over the

domain Dv and the physical parameters u. It results

from the coupling between the physically based VPR

model described in section 2 and the radar sampling

characteristics. The VPR identification consists of re-

trieving the parameters u that best reconstitute the ob-

served apparent VPRs according to g.

The VPR depends on Z(h0, v), mean value of reflec-

tivity factor at the reference level, which is not known and

depends on the identified VPR. This practical problem

can be solved by assuming that Z(h0, v) is correctly es-

timated by the mean value of the radar measurements

over the identification domain at the lowest tilt. A sen-

sitivity study (section 5) shows that the VPR shape as

defined in Eq. (5) is weakly sensitive to the equivalent

reflectivity at the reference level.

c. Application of the extended Kalman filter to the
VPR identification

The use of a Kalman filter is appealing for VPR id-

entification because (i) it identifies the vector state

consistent with observations at any time and (ii) it ac-

counts for the temporal continuity of the process to be

represented. The Kalman filter is a classical estimation

method initially developed for linear systems and fur-

ther extended to nonlinear systems (Gelb 1974). Here

we use the extended Kalman filter, adapted to weakly

nonlinear systems with a limited number of parameters.

The VPR identification can be considered as a nonlinear

finite dimensional discrete time system of the form

uk115 f (uk)1 ek

zap,k 5 g(uk)1vk , (10)

where the state vector of the system at time tk groups

the parameters defining the VPR characteristics

uk 5 (Gl, hT , hM, gs)k with nu 5 4 components; zap,k is

the vector regrouping the nz observations (apparent

VPRs) at time tk; ek is the modeling error; vk is an ob-

servation error (section 4a); and f (defined below) and g

[Eq. (9)] are nonlinear vector functions of the state u. In

addition, it is assumed that ek and vk are Gaussian

random variables with means and covariances Qk and

Rk, respectively, assumed to be zero and independent

from each other.

In that context, the EKF reproduces the system evo-

lution by accounting for the model prediction and the

observations. The estimate of the system state at time

tk11 can be obtained by combining two values: the state

equation at time tk and the observation performed at

time tk11. The EKF proceeds in two steps:

1) The forecasting step at time tk11 knowing the system

state at time tk:

u
f
k115 f (uu

k) and P
f
k115FkP

u
kF

T
k 1Qk , (11)

where uu
k is the vector state at time tk and Pu

k is

its associated error covariance matrix; u
f
k11 is the
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forecast vector state at tk11 and P
f
k11 is its associated

error, and Fk 5 [df (uk)/duk] is the matrix of the

partial derivatives of the state equation at time tk.

2) The system updating at time tk11, which combines

the forecasting and the observation according to their

accuracy:

uu
k115u

f
k111Kk11[zap,k112 g(u

f
k11)] , (12)

and

Kk115P
f
k11G

T
k11(Rk111Gk11P

f
k11G

T
k11)

21

Pu
k115 (I2Kk11Gk11)P

f
k11 , (13)

where uu
k11 is the final ‘‘updated’’ estimate of the

state vector at time tk11,Kk11 is the EKF gain at time

tk11, and Gk 5 [dg(uk)/duk] is the matrix of the

partial derivatives of the observation equation at

time tk11. The partial derivatives of the observation

equation Gk are numerically calculated (and up-

dated) at each cycle of the Kalman filter.

Equation (13) expresses the error reduction due to the

addition of new information into the system from ob-

servations at time tk11. The error decreases as a function

of the accuracy (related to Rk11) and the quantity of

observations available at each analysis cycle. In the case

of a linear system, it can be shown that the state update

uu
k11 is optimal in the least squares sense. For nonlinear

systems, the filter is suboptimal.

The EKF is applied in assuming that the VPR is

constant between two successive time steps. The state

model is reduced to a steady state u
f
k11 5uu

k, which

defines the function f. This assumption means that the

VPR representing a rain type changes slowly during

a time increment. This is a reasonable assumption if the

time increment is short compared to the rain field evo-

lution and if the VPR to determine is representative of

a large area. The forecasting step assumes a constant

VPR between time tk and time tk11 and is corrected by

the updating step based on the radar observations at

time tk11. In that particular case the Kalman filter in-

creases the stability of the VPR identification by ac-

counting for the memory of the VPR evolution. We are

aware that the steady-state equation, convenient for

short time increments, is not fully satisfying and might

be enriched by different ways. Future studies will ad-

dress this specific point.

The error covariance matrices control the confidence

granted to the forecasting and updating processes. They

play an important role in this application of the method.

We consider the errors between the data (the compo-

nents of the apparent VPRs) to be independent, which

means that the observation error covariancematrixRk is

diagonal. A sensitivity analysis on the covariance matrix

of error of the data (not shown here) confirmed the

findings from Vignal et al. (1999) that both horizontal

and vertical covariance on data errors exert a negligible

influence on the Kalman filter. This can be explained by

the good continuity of apparent VPRs, both in distance

and in altitude. The error covariance between the pa-

rameters is also needed. Because we set up models de-

scribing the maximum of variability in the vertical

structure of convective and stratiform rainfall with as

few parameters as possible, parameters are expected to

be uncorrelated, as is the error of their a priori values. In

the context of the present study, we chose to simplify the

approach by considering the errors on the VPR pa-

rameters to be independent. The covariance matrices Pk

and Qk are therefore diagonal.

We quantify the accuracy of the steady-state as-

sumption, on which the system evolution is based, by

computing the mean relative quadratic error (MRQE)

between the data observed at times tk11 and the simu-

lated relative apparent VPRs associated with u
f
k:

MRQEk 5
1

nz
�
n
z

i51

[zap,i 2 g(u
f
k)]

2 , (14)

where nz is the number of observations. An increase of

MRQE can be analyzed as a degradation of the steady-

state assumption validity. The error of the steady-state

forecasting equation, defined by Qk, is adjusted as fol-

lows:

Qk115 (a3MRQEk11 1b)Pa
k , (15)

where a and b are constant parameters (section 5b).

5. Application of the VPR identification

The proposed VPR identification method is applied

to the case study described in section 3 from 1100 UTC

8 September to 1100 UTC 9 September. The temporal

resolution DT is equal to the volume scan period:

tk 5 tk21 1Dt. The parameters are initialized the same

for both convective and stratiform cases (see Table 3)

except for the density parameter, gs: it is 200 for the

convective regime and 15 for the stratiform regime.

The covariances of parameters are initialized with large

values consistent with our lack of knowledge of the
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initial system state. To determine accurate conditions

for application of the Kalman filter, sensitivity tests are

performed around default parameter values. The in-

fluence of the reflectivity factor at the reference level Z0

on the identified values of the VPR parameters is stud-

ied. The influence of the parameters a and b defining the

forecast error is also tested. Finally, some insight on the

consistency of the identified parameters is provided.

a. Retrievals

The identified VPR distributions for the successive

time steps of the 8–9 September 2002 event are displayed

in Fig. 4. The rain-typed VPR populations (convective

versus stratiform) are naturally very distinct. Qualitative

improvements are noted for the stratiform VPRs when

comparing with the previous method (Kirstetter et al.

2010, Figs. 5 and 6) where the radar beam-smoothing

effects cause the bright band to be high (1200m) relative

to values mentioned in the literature (700m or lower)

from vertically pointing radar observations (e.g., Fabry

and Zawadzki 1995). The VPRs present a finer bright

band consistent with the physical constraints introduced

by a stratiformmelting-layer model extensively validated

against vertical pointer data (e.g., Zawadzki et al. 2005;

FIG. 4. (top) Stratiform and (bottom) convective VPRs (gray curves) for the three phases of the 8–9 Sep 2002 rainfall event. The 10%,

50%, and 90% quantiles of the VPR distribution are displayed with dashed, solid, and dashed black lines, respectively.
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Heyraud et al. 2008). The proposed approach signifi-

cantly mitigates the radar beam-smoothing effects.

Much less variability is noted from these VPR distri-

butions than with the previous method (Kirstetter et al.

2010). Aggregating data from several successive (1 h)

time steps was necessary to stabilize the VPR identifi-

cation. In the present method the radar data are not

smoothed and present more variability, which is more

challenging. This demonstrates that the current method

is more robust than the older one. Another advantage is

that we no longer assume that the VPR remains spatially

homogeneous at an hourly time step inside each type of

rain zone. By ensuring the temporal consistency of the

parameters, the formulation of the VPR identification in

the framework of a Kalman filter insures the continuity

of the VPR from a time step to the next one. It provides

enhanced robustness in dealing with various radar sam-

pling conditions, different rain types, and noisy radar

observations, as well as preventing the temporal insta-

bilities noted in the previous approaches (Kirstetter et al.

2010).As shown in Fig. 5, the temporal variations of VPR

during the rain event are linked to the variations of the

parameters u5 (Gl,hT , hM,gs).

b. Sensitivity analyses

To define accurate conditions for running the Kalman

filter, a sensitivity analysis is performed on the forecast

error, that is, on the parameters a and b [Eq. (15)].

Values of a ranging from 0.01 to 1 are tested while b is

fixed at b 5 0.001. Representative results are shown in

Fig. 6. Small forecast errors are associated with a

smoothed filter’s trajectory showing limited variability.

On the contrary, high forecast errors result in high (and

quite physically unrealistic) temporal variability of pa-

rameters, probably influenced by strong or noisy fluctu-

ations of the observed data. Note as a sign of stability that

the boundaries allowed for parameters (see Table 2) are

not reached during the run of the Kalman filter. For both

convective and stratiform types a balance between

temporal adaptability to the radar measurements and

physical consistency is found with a 5 0.1 (see Fig. 5).

Let us recall that the VPR models account for

reflectivity factor at the reference level Z0. To check the

representativeness of the identified VPR parameters to

the data at each identification cycle, it is important to

assess the influence of Z0. A sensitivity analysis is per-

formed with a5 0.1 and b5 0.001 as accurate values for

the forecast error. According to the observations (Fig. 2)

and the criteria from Steiner et al. (1995) and Sanchez-

Diezma et al. (2000), we consider Z0 values ranging from

20 to 40dBZ for stratiform andZ0 values ranging from 35

to 55 dBZ for convective. The PDFs of VPRs from the

standard run corresponding to Fig. 4 and the runs from

the sensitivity analysis are shown in Fig. 7. They present

much similarity so the VPRs identified within the Kal-

man filter do not significantly diverge from each other.

We therefore may assume the method does not signifi-

cantly depend on Z0.

c. The estimation covariance matrix

The robustness of the identification is assessed with

the estimation variance of the parameters. Table 4 pro-

vides the mean of the analysis standard deviation, ex-

pressed in percentage of the allowed interval range for

each parameter. The robustness of the identification is

generally good as the standard deviation is generally

lower than 10% of the interval range. The echo top hT
shows lowest scores with standard deviation of at least

20%: this parameter presents the highest estimation

variances. Two reasons could explain this fact: (i) the

VPR model provides a lower accurate description of

upper parts of the VPR as seen by radar or (ii) compared

to other parameters, radar data are not informative

enough to enable a robust identification of hT . As our

objective lies in lower altitudes, we do not consider this

fact to be significant. Nevertheless, we intend to address

this issue in future research. The upper boundary of the

melting layer is for both types associated with the more

robust identification (standard deviation lower than 2%,

i.e., 200m in altitude). It is noteworthy that the identi-

fication is globally more robust in the stratiform case

than in the convective case. In fact, identification of the

VPR features is easier with a bright band that allows

a good identification of the characteristic altitudes and

the melting layer.

d. Physical consistency of the VPR parameters
identification

The global consistency of the identification is first

analyzed in terms of differences between convective and

stratiform (Fig. 5). Despite an identical initialization, the

identified altitudes for both rain types rapidly reach

distinct values within 10 cycles of the Kalman filter and

present relative physical consistency. The top of the pre-

cipitating cloud is higher in the convective case (mean

value around 11500m) than in the stratiform case (starting

from 8000m and increasing slowly up to 11 000 km

during the event). This is consistent with Adler and

Mack (1984) who connect the ground intensity (bound

with Z0 by a Z–R relationship) and the radar echo top.

The top of melting layer is also higher in the convective

case (mean value around 4200m) than in the stratiform

case (mean value lower than 3600m). This is consistent

with the impact of updrafts in the convection. For the

stratiform case, this parameter may be compared to the

Interim European Centre for Medium-Range Weather
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Forecasts (ECMWF) Re-Analysis (ERA-Interim; Dee

et al. 2011). Themean 08C isotherm altitude is computed

in the zone wheremost stratiform rain occurred [domain

defined by longitude (3.608–5.448) and latitude (44.618–
45.758)]. The hM parameter for stratiform part is within

100m of the ERA-Interim reanalysis values (around

3400m) and presents the same temporal variations. The

density factor is coherent with the rain type, with mean

values of 12 (densities rs around 280 kgm23 represen-

tative of snow) for stratiform and 250 (densities rs

FIG. 5. Temporal evolution of the five identified parameters for the (left) stratiform and (right) convective cases during the 8–9 Sep rain

event: (top to bottom) hT , gs, hM , andGl . For the stratiform hM , The large dots are the mean values of the ERA-Interim reanalyses with

the short vertical lines on the dots indicating the interval range.
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around 900 kgm23 representative of graupel/hail) for

convective. One may note the high values for convective

density and see here an indication of the imperfect de-

scription of frozen particles in the convective model. We

intend to address this issue in future research. The slope

of the profile in the liquid phase shows also a clear signal

separating convective and stratiform VPRs. The values

are often positive for the stratiform, a possible indication

of evaporation, which acts to lower the water content and

the number of biggest drops mostly contributing to the

FIG. 6. Sensitivity analysis of the VPR retrieval to the forecast error. The curves show the temporal evolution of the parameters for the

(left) stratiform and (right) convective cases during the 8–9 Sep rain event: (top to bottom) hT , gs, hM, andGl . The curves correspond to

a 5 0.00 (dashed line), 0.10 (solid line), and 1.00 (gray line).
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radar signal in the course of falling hydrometeors. The

values are negative in the convective part, indicating in-

creasingwater content and/or increasing of the number of

biggest drops in the course of falling hydrometeors.

We now analyze the temporal evolution of the pa-

rameters. The three phases of the 8–9 September 2002

rain event are emphasized in Fig. 5. They distinguish by

separated state vector u and corresponding VPRs (see

Fig. 4). The evolution of the convective top of the pre-

cipitating cloud follows the dynamics of the rain event.

Two enhancements are noted during the mature phase

and the passage of the cold front. The evolution of the

top of the melting layer for the stratiform part (freezing

level) shows also temporal consistency. Values around

3400m in the development phase are followed by an

enhancement to 3600m in the phase of active convec-

tion probably because of latent heating release by con-

vection. A final decrease is associated with the passage

of the cold front. This pattern is consistent with the radio-

sounding measurements from N̂ımes and ERA-Interim

analysis. The density parameter of the stratiform case

presents an increase in the last phase, a possible in-

dication of the disorganization of the ‘‘MCS type’’ rain

fieldwith the passage of the cold front. The interpretation

of the other parameters is not so straightforward. We

may note that the slope of the stratiform VPR becomes

positive during the mature phase, which may be a sig-

nature of increasing evaporation in the stratiform area.

The rough consistency of these elements may be seen

as an indication of validity for the description of the

precipitation field of 8–9 September 2002 rain event with

the VPR models.

6. Conclusions

A VPR identification method based on simple VPR

models is presented. It accounts for the radar sampling

and is applied on rain data of homogeneous type. In

FIG. 7. PDFs of (a) stratiform and (b) convective VPRs for the 8–9 Sep 2002 rainfall event: median (0.5 quantile,

thick black line) and the 0.1 and 0.9 quantiles (the two dashed lines). The distribution of VPRs from theZ0 sensitivity

study is shaded, with the dark-gray region representing the area between the 0.25 and 0.75 quantiles and the light-gray

region representing the area between the 0.1 and 0.9 quantiles.

TABLE 4. Mean of the updated standard deviation, expressed in

percentage of the allowed interval range for each parameter (see

Table 2).

Input parameter Convective Stratiform

Echo top hT 48 20

Density factor gs 13 0.4

Upper boundary of the melting layer hM 2 0.4

Slope of the profile in the liquid layer Gl 2 5
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comparison with the original TRADHymethod (Kirstetter

et al. 2010), new physically based constraints are in-

troduced and the number of parameters is considerably

lowered (from 60 to 4). It presents the following ad-

vantages: (i) it is easier to control, (ii) it improves the

physical consistency of the identified VPR, and (iii) it

enables a physical insight into the rainfall field. The

VPR inference is time-adjusted in the framework of an

extended Kalman filter. This approach allows assimi-

lating new radar observations to continuously update

the VPR characteristics and ensures the temporal con-

sistency of the parameters defining the VPR. A first

guess (e.g., range-weighted VPR) is no longer necessary,

nor is any time aggregation of rain data required to

smooth the observations. The new method is therefore

more robust and much less time consuming.

The method enables us to check the physical consis-

tency of the retrieved VPR. Positive results have been

obtained compared to the previous method, insofar as

the physically based identified VPR (i) presents physi-

cally consistent shapes and better characteristics than

the previous VPR considering beam effects, (ii) shows

improved robustness in the difficult radar measurement

context of the C�evennes–Vivarais region, and (iii) pro-

vides consistent physical insight into the rain field.

More detailed physical descriptions of the vertical

structure of rainfall could be introduced in future re-

search. The proposed 1D model for the vertical varia-

tions of the equivalent reflectivity factor is based on

a simplified representation of the melting layer with no

air vertical motion. While this is probably accurate for

the stratiform case, more research is certainly needed to

account for the vertical air motion for the convective

case in future works. From the diagnostic of the pa-

rameter variance (section 5c) there is room for im-

provement in the description of the frozen region. The

Kalman filter is run assuming a steady-state VPR and

the VPR evolution is controlled by the observations. An

interesting improvement would consist in introducing

a modeled VPR evolution provided for instance by

a meteorological model. Moreover, it would be worth-

while to assess the interest of radar polarization tech-

niques in improving determination of the 08C isotherm

altitude and better distinguishing hydrometeors types.

Also, the explicit identification of the various states of

water particles (liquid, solid, and melting) is of interest

for vertically integrated liquid content estimation (VIL;

Boudevillain and Andrieu 2003) and bridging between

radars operating at various wavelengths.

Acknowledgments. This work was funded by the FP6

HYDRATE STREP (GOCE 037024) of the European

Community, a postdoctoral grant from theCentreNational

d’�Etudes Spatiales, and a postdoctoral grant from

the NASA Global Precipitation Measurement mission

GroundValidationManagement. The study documented

in this paper began when the first author was a doctoral

student at the Laboratoire d’�etude des Transferts en

Hydrologie et Environnement, Grenoble, France. The

first author thanks Nicolas Viltard and Yvon Lemâıtre
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APPENDIX

Scaling Formalism of the DSDUsing the Reflectivity
Factor as the Reference Variable

To describe the PSD, the gamma distribution is used

with the following scaled formulation involving the total

concentrationNt (m
24), a characteristic diameterD0 (m),

and a dimensionless parameter m (Uijlenhoet et al.

2003a,b; Yu et al. 2012, manuscript submitted to J. Appl.

Meteor. Climatol.):

N(D)5
Nt

D0

(
(41m)11m

G(m1 1)

�
D

D0

�m

exp

�
2(41m)

D

D0

�)
.

(A1)

The term between curly braces is the gamma PDF of the

scaled diameter D/D0; it involves the complete gamma

function G.
According to the scaling-law formalism to describe

the relationship between the PSD and the radar reflec-

tivity factor in the liquid layer,

N(D,Z)5Za
ZgZ(DZ2b

Z) , (A2)

where N(D,Z)dD (m23) is the mean number of rain-

drops with diameters betweenD andD1 dD present per

unit volume of air as a function of the reflectivity factor

Z (m6m23), aZ and bZ (dimensionless) are scaling ex-

ponents, and gZ(x) is a scaled raindrop size distribution

as a function of the scaled raindrop diameter x5DZ2bZ .

The subscript Z indicates the choice of the reflectivity

factor as the reference variable; for a development of the

scaling formalism with the rain rate see Sempere-Torres

et al. (1994, 1998), Porr�a et al. (1998), Uijlenhoet (1999,

2001), and Uijlenhoet et al. (2003a,b). According to this

formulation gZ(x) has no functional dependence on the

value taken by Z. The self-consistency constraints

guarantee that substitution of the parameterization for

the raindrop size distribution [Eq. (A2)] into the de-

fining expression for the reflectivity factor Z (sixth mo-

ment of the distribution) leads to Z 5 Z:
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Z5

ð
V

D

Za
ZgZ(DZ2b

Z)D6 dD . (A3)

This implies the following relations:

8<
:

aZ 1 7bZ 5 1ð
V

D

x6gZ(x) dx5 1
. (A4)

The quantity gZ(x) must satisfy an integral equation

(which reduces its degrees of freedom by one) and

there is only one free scaling exponent. For a gamma

parameterization, the scaled raindrop size distribution

is

gZ(x)5KZx
m exp(2lZx) . (A5)

The m (dimensionless) is the shape parameter of the

gamma distribution, and KZ (m123bZ) and lZ (m123bZ)

are the scaled distribution parameters. To be an admis-

sible description of the scaled raindrop size distribution,

gZ(x) must satisfy the self-consistency constraints. By

combining Eqs. (A4) and (A5) the last yield a power-law

relationship of KZ in terms of lZ:

8><
>:

aZ 1 7bZ 5 1

KZ 5
lZ

G(71m)

. (A6)

The self-consistency constraints imply a relation be-

tween the scaling exponents and a relation between the

distribution parameters. An expression of the gamma

PSD is obtained through combining Eqs. (A6), (A5),

and (A2):

N(D,Z)5
l
71m
Z

G(71m)
Z12(71m)b

ZDm exp

�
2

lZ
Zb

Z

D

�
.

(A7)

Any PSD bulk variable (written here for the kth-order

moment Mk)

Mk5

ð
V

D

N(D,Z)Dk dD (A8)

may be expressed as a function of the scaling moment Z

and the PSD parameters by combining Eqs. (A8) and

(A7):

Mk 5
G(m1 k1 1)

G(m1 7)
l62k
Z Z12(62k)b

Z . (A9)
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