P. R. Amestoy, C. Ashcraft, O. Boiteau, A. Buttari, J. et al., Improving multifrontal methods by means of block low-rank representations, SIAM Journal on Scientific Computing, vol.37, pp.1451-1474, 2015.
URL : https://hal.archives-ouvertes.fr/hal-00776859

P. R. Amestoy, R. Brossier, A. Buttari, J. , T. Mary et al., Fast 3D frequency-domain full waveform inversion with a parallel Block Low-Rank multifrontal direct solver: application to OBC data from the North Sea, Geophysics, vol.81, pp.363-383, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01349119

P. R. Amestoy, A. Buttari, J. , and A. T. Mary, On the complexity of the Block Low-Rank multifrontal factorization, SIAM Journal on Scientific Computing, vol.39, pp.1710-1740, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01672943

P. R. Amestoy, A. Buttari, J. , and A. T. Mary, Performance and Scalability of the Block Low-Rank Multifrontal Factorization on Multicore Architectures, ACM Transactions on Mathematical Software, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01955766

A. Aminfar, S. Ambikasaran, and A. E. Darve, A fast block low-rank dense solver with applications to finite-element matrices, Journal of Computational Physics, vol.304, pp.170-188, 2016.

A. Aminfar-and-e and . Darve, A fast, memory efficient and robust sparse preconditioner based on a multifrontal approach with applications to finite-element matrices, International Journal for Numerical Methods in Engineering, vol.107, pp.520-540, 2016.

E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel et al., , 1995.

C. Ashcraft, R. G. Grimes, J. G. Lewis, B. W. Peyton, and H. D. Simon, Progress in sparse matrix methods for large linear systems on vector computers, Int. Journal of Supercomputer Applications, vol.1, issue.4, pp.10-30, 1987.

M. Bebendorf, Hierarchical Matrices: A Means to Efficiently Solve Elliptic Boundary Value Problems, Lecture Notes in Computational Science and Engineering (LNCSE), vol.63, 2008.

S. Börm, Hierarchical matrix arithmetic with accumulated updates, 2017.

S. Börm, L. Grasedyck, and A. W. Hackbusch, Introduction to hierarchical matrices with applications, Engineering analysis with boundary elements, vol.27, pp.152-154, 2003.

S. Chandrasekaran, M. Gu, and A. T. Pals, A fast ULV decomposition solver for hierarchically semiseparable representations, SIAM Journal on Matrix Analysis and Applications, vol.28, pp.603-622, 2006.

J. W. Demmel, S. C. Eisenstat, J. R. Gilbert, X. S. Li, and J. W. Liu, A supernodal approach to sparse partial pivoting, SIAM Journal on Matrix Analysis and Applications, vol.20, pp.720-755, 1999.

I. S. Duff and J. K. Reid, The multifrontal solution of indefinite sparse symmetric linear systems, ACM Transactions on Mathematical Software, vol.9, pp.302-325, 1983.

J. A. George, Nested dissection of a regular finite-element mesh, SIAM Journal on Numerical Analysis, vol.10, pp.345-363, 1973.

P. Ghysels, X. S. Li, C. Gorman, and F. H. Rouet, A robust parallel preconditioner for indefinite systems using hierarchical matrices and randomized sampling, 2017 IEEE International Parallel and Distributed Processing Symposium (IPDPS), pp.897-906, 2017.

P. Ghysels, X. S. Li, F. Rouet, S. Williams, and A. A. Napov, An efficient multicore implementation of a novel hss-structured multifrontal solver using randomized sampling, SIAM Journal on Scientific Computing, vol.38, pp.358-384, 2016.

A. Gillman, P. Young, and A. Martinsson, A direct solver with O (N) complexity for integral equations on one-dimensional domains, vol.7, pp.217-247, 2012.

L. Grasedyck-and-w and . Hackbusch, Construction and Arithmetics of H -Matrices, Computing, vol.70, pp.295-334, 2003.

W. Hackbusch, A sparse matrix arithmetic based on H -matrices. Part I: introduction to H -matrices, Computing, vol.62, pp.89-108, 1999.

W. Hackbusch, of Springer series in computational mathematics, Hierarchical matrices : algorithms and analysis, vol.49, 2015.

A. Ida, Efficient Low-rank Solver for Integral Equations on Distributed Memory Systems, SIAM Conference on Parallel Processing (SIAM PP18), 2018.

J. W. Liu, The multifrontal method for sparse matrix solution: Theory and Practice, SIAM Review, vol.34, pp.82-109, 1992.

T. Mary and B. Low, Rank multifrontal solvers: complexity, performance, and scalability, 2017.
URL : https://hal.archives-ouvertes.fr/tel-01929478

G. Pichon, E. Darve, M. Faverge, P. Ramet, and A. J. Roman, Sparse Supernodal Solver Using Block Low-Rank Compression, 18th IEEE International Workshop on Parallel and Distributed Scientific and Engineering Computing, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01502215

H. Pouransari, P. Coulier, and A. E. Darve, Fast hierarchical solvers for sparse matrices using low-rank approximation, 2015.

D. Shantsev, P. Jaysaval, S. De, . La, P. R. De-ryhove et al., Large-scale 3D EM modeling with a Block Low-Rank multifrontal direct solver, Geophysical Journal International, vol.209, pp.1558-1571, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01672952

J. Xia, Efficient structured multifrontal factorization for general large sparse matrices, SIAM Journal on Scientific Computing, vol.35, pp.832-860, 2013.

J. Xia, S. Chandrasekaran, M. Gu, and X. S. Li, Superfast multifrontal method for large structured linear systems of equations, SIAM Journal on Matrix Analysis and Applications, vol.31, pp.1382-1411, 2009.

J. Xia, S. Chandrasekaran, M. Gu, and X. S. Li, Fast algorithms for hierarchically semiseparable matrices, Numerical Linear Algebra with Applications, vol.17, pp.953-976, 2010.