C. Adjih, E. Baccelli, E. Fleury, G. Harter, N. Mitton et al., FIT IoT-LAB: A large scale open experimental IoT testbed, 2015 IEEE 2nd World Forum on Internet of Things (WF-IoT), pp.459-464, 2015.
DOI : 10.1109/WF-IoT.2015.7389098

URL : https://hal.archives-ouvertes.fr/hal-01213938

G. Anastasi, M. Conti, M. D. Francesco, and A. Passarella, Energy conservation in wireless sensor networks: A survey, Ad hoc networks, pp.537-568, 2009.
DOI : 10.1016/j.adhoc.2008.06.003

S. Bhandari, N. Bergmann, R. Jurdak, and B. Kusy, Time Series Data Analysis of Wireless Sensor Network Measurements of Temperature, Sensors, vol.57, issue.6, p.1221, 2017.
DOI : 10.1080/10618600.1996.10474713

D. Bismor, K. Czyz, and Z. Ogonowski, Review and Comparison of Variable Step-Size LMS Algorithms, The International Journal of Acoustics and Vibration, vol.21, issue.1, pp.24-39, 2016.
DOI : 10.20855/ijav.2016.21.1392

URL : https://doi.org/10.20855/ijav.2016.21.1392

H. Butterweck, A steady-state analysis of the LMS adaptive algorithm without use of the independence assumption, 1995 International Conference on Acoustics, Speech, and Signal Processing, pp.1404-1407, 1995.
DOI : 10.1109/ICASSP.1995.480504

J. Dhiman, S. Ahmad, and K. Gulia, Comparison between Adaptive filter Algorithms (LMS, NLMS and RLS), International Journal of Science, Engineering and Technology Research (IJSETR), vol.2, pp.5-1100, 2013.

B. Gabriel-martins-dias, S. Bellalta, and . Oechsner, A survey about prediction-based data reduction in wireless sensor networks, ACM Computing Surveys (CSUR), vol.49, issue.3, p.58, 2016.

M. Grabisch, J. Marichal, R. Mesiar, and E. Pap, Aggregation functions: Means, Information Sciences, vol.181, issue.1, pp.1-22, 2011.
DOI : 10.1016/j.ins.2010.08.043

URL : https://hal.archives-ouvertes.fr/hal-00539028

B. Hassibi, H. Ali, T. Sayed, and . Kailath, H/sup ???/ optimality of the LMS algorithm, IEEE Transactions on Signal Processing, vol.44, issue.2, pp.267-280, 1996.
DOI : 10.1109/78.485923

S. S. Haykin, Adaptive Filter Theory, 2002.

S. Haykin and B. Widrow, Least-mean-square adaptive filters, 2003.
DOI : 10.1002/0471461288

D. Jager and A. Andreas, NREL National Wind Technology Center (NWTC): M2 Tower; Boulder, Colorado (Data), National Renewable Energy Lab.(NREL), 1996.

Y. Jiao, Y. Rex, . Cheung, W. Winnie, . Chow et al., A novel gradient adaptive step size LMS algorithm with dual adaptive filters, 2013 35th Annual International Conference of the IEEE. IEEE, pp.4803-4806, 2013.

K. Miranda and V. Ramos, Improving data aggregation in Wireless Sensor Networks with time series estimation, IEEE Latin America Transactions, vol.14, issue.5, pp.2425-2432, 2016.
DOI : 10.1109/TLA.2016.7530441

K. Miranda, T. Razafindralambo, and V. Ramos, Using efficiently autoregressive estimation in wireless sensor networks, 2013 International Conference on Computer, Information and Telecommunication Systems (CITS), pp.1-5, 2013.
DOI : 10.1109/CITS.2013.6705727

URL : https://hal.archives-ouvertes.fr/hal-00806049

J. Nassar, N. Gouvy, and N. Mitton, Towards Multi-instances QoS Efficient RPL for Smart Grids, Proceedings of the 14th ACM Symposium on Performance Evaluation of Wireless Ad Hoc, Sensor, & Ubiquitous Networks , PE-WASUN '17, 2017.
DOI : 10.1145/2642687.2642695

URL : https://hal.archives-ouvertes.fr/hal-01611062

U. Raza, A. Camerra, L. Amy, T. Murphy, G. P. Palpanas et al., What does model-driven data acquisition really achieve in wireless sensor networks?, 2012 IEEE International Conference on Pervasive Computing and Communications, pp.85-94, 2012.
DOI : 10.1109/PerCom.2012.6199853

URL : http://disi.unitn.it/~raza/Papers/percom12.pdf

M. Rekik, Routage géographique multi-chemin basé sur l'intelligence d'essaim pour réseaux de capteurs et d'actionneurs sans fil : application aux Smart Grids, 2016.

S. Santini and K. Romer, An adaptive strategy for quality-based data reduction in wireless sensor networks, Proceedings of the 3rd international conference on networked sensing systems (INSS), pp.29-36, 2006.

B. Stojkoska, D. Solev, and D. Davcev, Data prediction in WSN using variable step size LMS algorithm, Proceedings of the 5th International Conference on Sensor Technologies and Applications, 2011.

P. Wang, M. Pooi-yuen-kam, and . Chia, A novel automatic step-size adjustment approach in the LMS algorithm, Wireless Communication, Vehicular Technology 1st International Conference on, pp.867-871, 2009.