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Abstract

We propose a new inference strategy for general population mortality ta-

bles based on annual population and death estimates, completed by monthly

birth counts. We rely on a deterministic population dynamics model and es-

tablish formulas that links the death rates to be estimated with the observables

at hand. The inference algorithm takes the form of a recursive and implicit

scheme for computing death rate estimates. This paper demonstrates both

theoretically and numerically the e�ciency of using additional monthly birth

counts for appropriately computing annual mortality tables. As a main re-

sult, the improved mortality estimators show better features, including the

fact that previous anomalies in the form of isolated cohort e�ects disappear,

which con�rms from a mathematical perspective the previous contributions

by Richards (2008), Cairns et al. (2016) and Boumezoued (2016).

Keywords: Mortality tables, general population, statistical inference, population dy-

namics, cohort e�ect.
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1 Introduction

General population mortality tables are crucial inputs for actuarial studies as they

provide estimates of mortality rates for several age classes at several periods in

1Milliman R&D, 14 Avenue de la Grande Armée, 75017 Paris, France.

Email: alexandre.boumezoued@milliman.com
2CEREMADE, CNRS-UMR 7534, Universite Paris Dauphine, Place du maréchal de Lattre de

Tassigny 75016 Paris, France. Email: ho�mann@ceremade.dauphine.fr
3CEREMADE, CNRS-UMR 7534, Universite Paris Dauphine, Place du maréchal de Lattre de

Tassigny 75016 Paris, France. Email: jeunesse@ceremade.dauphine.fr

1

alexandre.boumezoued@milliman.com
hoffmann@ceremade.dauphine.fr
jeunesse@ceremade.dauphine.fr


time. Since the publication of the �rst mortality tables (attributed to John Graunt

in 1662), the mathematical problem of providing consistent statistical estimates of

mortality has fascinated mathematicians - for a brief history the reader is referred

to the well documented dedicated part of the introduction of Daley and Vere-Jones

(2003). Two centuries later, there was a huge development of graphical formaliza-

tions of life trajectories within a population by Lexis (1875) and his contemporaries.

These �rst demographers showed that it is crucial to address simultaneously two

components: (1) Consider the fact that the death rate depends on both age and

time (non-homogeneous setting) and (2) Understand the mortality rate as an aggre-

gate quantity which depends on an underlying population dynamics.

Recently, several papers and publications paid attention to data quality issues

in the way we usually build mortality tables, especially in relation with the 'dis-

crete time' nature of population estimates provided by national censuses. To our

knowledge, the �rst insights have been suggested by Richards (2008); his conjecture

was focused on the 1919 birth cohort for England & Wales, for which he suggested

that errors occurred in the computation of mortality rates due to shocks in the

births series. The ONS methodology has then been studied by Cairns et al. (2016)

in several directions, who con�rmed the conjecture by Richards (2008) and pro-

posed an approach to illustrate and correct mortality tables, applied to the data

for England & Wales; the Convexity Adjustment Ratio introduced in their work has

then been adapted by Boumezoued (2016) who focused on the Human Mortality

Database HMD (2018) - which provides mortality tables for more than 30 countries

and regions worldwide - and showed that these anomalies are universal while us-

ing the 'population dynamics' point of view to properly de�ne mortality estimates.

To build new mortality tables for several countries, a link with the Human Fertility

Database (HFD (2018), the HMD counterpart for fertility) has been made to correct

such errors in a systematic way.

However, all precedent contributions did not succeed to introduce a proper math-

ematical setting for computing mortality rates based on information extracted from

censuses. In this paper, we aim at performing a �rst step in this direction by de-

riving an inference strategy from a deterministic population dynamics model. The

derivation of a consistent theory in the stochastic setting is in parallel provided in

a companion theoretical paper, see Boumezoued et al. (2018).

The main di�culty in establishing a consistent theory to estimate mortality rates

lies in points (1) and (2) mentioned above, which can be summarized as follows:

inferring an age and time dependent mortality rate based on a population dynamics

model. In the literature, we argue that each point is treated separately.

The inference of a time dependent death rate also depending on a time-dependent

covariate (possibly age), which relates to point (1), has been addressed from a non-
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parametric perspective by Beran (1981), Dabrowska (1987), Keiding (1990), McK-

eague and Utikal (1990), Nielsen and Linton (1995), Brunel et al. (2008), Comte et al.

(2011). From Keiding (1990), "One way of understanding the di�culties in establishing

an Aalen theory in the Lexis diagram is that although the diagram is two-dimensional, all

movements are in the same direction (slope 1) and in the fully non-parametric model the

diagram disintegrates into a continuum of life lines of slope 1 with freely varying intensities

across lines. The cumulation trick from Aalen's estimator (generalizing ordinary empirical

distribution functions and Kaplan & Meier's (1958) non-parametric empirical distribution

function from censored data) does not help us here." This explains why data aggrega-

tion and smoothing is required to derive an estimate with two crossing dimensions,

age and time.

On the other side, the inference of an age-dependent death rate in an homoge-

neous birth-death model (or similar) - point (2) - has been addressed by Clémençon

et al. (2008), Doumic et al. (2015), Ho�mann and Olivier (2016). To our knowledge,

no statistical method deals with the usual problem faced by demographers related

to the construction of a mortality table based on population estimates and death

counts.

In this paper, we rely on a deterministic age-structured population model and

derive exact formulas in the so-called Lexis diagram, allowing to build new and

improved mortality estimates. The inference problem is summarized as follows:

• The death rate depends on both age and time and is to be estimated,

• The population evolves as an age-structured and time inhomogeneous birth-

death dynamics,

• The following observables are available in the Lexis diagram:

� The number of individuals in each one-year age-class, assumed to be

recorded at each beginning of year,

� The number of deaths in annual Lexis triangles,

� The number of births, available each month (or more generally at some

intra-year frequency).

Note that the practical availability of annual population estimates as well as

death counts in the Lexis triangle can be achieved according to the Human Mortality

Database, whereas the Human Fertility Database is a public source providing in

particular number of births by months for several countries. Such population, death

and fertility data allows at this date the method proposed in this paper to be applied

to around 10 countries. For other countries, the data (especially number of births

by month) has to be reached by means of national institutes.
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The paper is organized as follows. In Section 2, we present the non-homogeneous

birth-death model and derive the inference strategy - the related interpretations and

link with existing estimators is discussed in Subsection 2.6. In Section 3, we compute

mortality tables according to our method and compare it to those obtained by the

usual formulas. The paper ends with some concluding remarks in Section 4.

2 Model and inference strategy

2.1 Non-homogeneous birth-death dynamics

Let us denote by µ(a, t) the mortality rate at exact age a ∈ R+ = [0,∞) and

exact time t ∈ R+, with an arbitrary time origin - let us also denote by g(a, t) the

population density at (a, t), a non-negative real value. In its core de�nition, the

death rate drives the number of living in a closed population. Formally, consider

g(0, ν) the newborn at (exact) time ν (starting number in the cohort born at time

ν), then the survivors at some age a > 0 in the cohort write

g(a, ν + a) = g(0, ν) exp

(
−
∫ a

0

µ(s, ν + s)ds

)
.

Changing variables to represent g(a, t), and di�erentiating by age and time, leads

to the transport component of the so-called McKendrick-Von Foerster equation (see

McKendrick (1926) and Von Foerster (1959)):

( ∂a + ∂t)g(a, t) = −µ(a, t)g(a, t), (1)

with notation ∂a ≡ ∂/∂a. Clearly, at this stage, the population dynamics of g(a, t) is

not fully speci�ed as the future path of g(a, t) depends on the quantity g(0, t−a). The
McKendrick-Von Foerster speci�es how births are given in the (asexual) population,

based on a birth rate b(a, t), as

for each time ν > 0, g(0, ν) =

∫ ∞
0

g(a, ν)b(a, ν)da.

That is simply, the newborn at each time is given by the total number of birth from

all parents alive at the same time.

2.2 Observables in the Lexis diagram

We work here in the Lexis diagram - that is we study lifelines in the time × age

coordinates. In an ideal demographic world, two kinds of population estimates are

recorded in the one-year age × time square:
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2.2 Observables in the Lexis diagram

• Population at exact time t, with age x at its last birthday:

P (x, t) =

∫ x+1

x

g(a, t)da. (2)

• Individuals who attained exact age x during the year [t, t+ 1):

N(x, t) =

∫ t+1

t

g(x, s)ds.

An illustration of population estimates P (x, t) for the French population ex-

tracted form the Human Mortality Database is given in Figure 1. This can be

analysed in the light of a Lexis diagram in several directions. First, the diagonal

e�ects appear clearly showing that generations (or cohorts) are not equally repre-

sented: as an example, the generations born between around 1915 and 1920 are

less represented (World War I), whereas the generations born after around 1946 are

highly represented (Baby Boom). In this work, the impact of the discrepancy be-

tween birth patterns from one year to the next is of interest, as it introduces some

bias in the classical formulas used in practice for death rate estimation.

Population estimates 1st January (France)

Year

A
ge

40

60

80

1970 1980 1990 2000

0e+00

2e+05

4e+05

6e+05

8e+05

Figure 1: Population estimates for France by year for one-year age classes extracted

from the Human Mortality Database

Also, death counts are provided on the upper and lower triangles of the Lexis

diagram, as de�ned below.

De�nition 1. The upper (U) and lower (L) triangles for each age range x and

observation year t are the age × times sets de�ned by

TU(x, t) = {(a, s) : a ∈ [x, x+ 1) and s ∈ [t, t− x+ a)}, (3)

and

TL(x, t) = {(a, s) : a ∈ [x, x+ 1) and s ∈ [t− x+ a, t+ 1)}. (4)
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2.2 Observables in the Lexis diagram

Based on this de�nition, the number of death in the Lexis triangles can be written

DU(x, t) =

∫∫
TU (x,t)

µ(a, s)g(a, s)dads and DL(x, t) =

∫∫
TL(x,t)

µ(a, s)g(a, s)dads.

(5)

An illustration of death counts in the Lexis triangles (x, t) for the French population

extracted form the Human Mortality Database is represented in Figure 2. Variations

in number of deaths are closely linked to those of the underlying exposure (Figure

1) but also to the death rate itself, to be estimated.

Deaths in lower triangles (France)
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Deaths in upper triangles (France)
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Figure 2: Death counts in Lexis triangles extracted from the Human Mortality

Database

Assuming that the population is closed, the following fundamental relations ap-

ply (which can be proved by integration by parts):

N(x+ 1, t) = P (x, t)−DU(x, t),

P (x, t+ 1) = N(x, t)−DL(x, t).
(6)

The assumption of closed-population is further discussed in Subsection 2.6.

In addition to population estimates and death counts, as analyzed by Cairns

et al. (2016) and Boumezoued (2016), we aim at including birth counts by month in

the inference process - these can be extracted from the Human Fertility Database

for a variety of countries. The dynamics of number of births by month in France is

illustrated in Figure 3. The interpretation of this dynamics can be linked to that

of Figures 1 (population estimates, see (2)) and 2 (death counts in Lexis triangles,

as de�ned in (5)). Indeed, a similar information arises as the number of births

are low in the period 1915-1920, which explains in particular the diagonal e�ect in

Figure 1. Even more importantly, the dynamics at the monthly scale gives insight

on what happens inside each year, then can be used to assess how the population
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2.3 Death rate inference

is distributed inside a given age band. This is of great interest as the population

distribution appears classically in the form of an 'exposure-to-risk', and more pre-

cisely the formulas we exhibit in order to estimate the death rate rely explicitly on

the births distribution - as such, number of births by month are the key inputs for

the inference strategy proposed here as it re�nes standard annual estimates. This

is developed in the following.

1900 1950 2000

30
00

0
50

00
0

70
00

0
90

00
0

Number of births by month (France)

 

 

Figure 3: Number of birth by month extracted from the Human Fertility Database

2.3 Death rate inference

When two time-dependent dimensions are involved (here age and calendar time),

the natural generalization of classical non-parametric estimates of the death rate

is not direct (see again the discussion in Keiding (1990)), therefore smoothing is

required - see e.g. McKeague and Utikal (1990) and Nielsen and Linton (1995) for

the analysis of such two dimensional kernel estimator based on continuous obser-

vation. Unfortunately, for building national mortality tables one does not observe

continuously the living population (only possibly the date of death through death

certi�cates), therefore standard kernel smoothing techniques are neither applicable

here. This leads to de�ne some geometry on which the death rate is assumed to be

piecewise constant, which allows to use aggregate information by year and age-class

to derive (approximate) estimators.
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2.3 Death rate inference

In the classical demographic and actuarial practice, it is considered two versions

of general population mortality tables: period and cohort. We propose here a brief

discussion of these two versions and refer the reader to Boumezoued (2016) for more

details (and a study dedicated to period mortality tables). The two versions are

illustrated in Figure 4.

• The period table provides death rate estimates based on the assumption that

it is piecewise constant on squares in the Lexis diagram; each square (x, t) is

equal to the region TU(x, t)∪TL(x, t), where the Lexis triangles TU and TL have

been de�ned in Equations (3) and (4). The key advantage of period tables is

that they provide an estimate of death rate by using information of a single

year; the related drawback is that two generations (cohorts) are merged for a

given death rate at (x, t): the lifelines crossing the triangle TL(x, t) are born

in year t− x, whereas those crossing TU(x, t) are born in year t− x− 1. This

way, the period tables do not strictly re�ect the mortality of single cohorts.

• The cohort table is based on the assumption that the death rate is constant on

parallelograms TL(x, t) ∪ TU(x, t + 1), with the advantage that a given death

rate at (x, t) relates to lifelines arising from a single cohort: that of people born

in year t − x. However, the information provided by this death rate re�ects

conditions of the two consecutive years t and t+ 1, as illustrated in Figure 4.

Figure 4: Population used (in grey) for the computation of the cohort death rate

(left) and period death rate (right) for age 64 and year 2009.

Overall, period and cohort tables provide complementary information and their

use is driven by the underlying objective. In this paper, we illustrate our method

on the computation of triangle-based mortality tables, which generalize period and

cohort mortality tables in a natural way as the death rate is assumed to be piecewise

constant on Lexis triangles, instead of squares of parallelograms. This will allow us

to draw analyses at a more granular scale compared to the two versions available in

practice.
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2.4 Main result

2.4 Main result

In the derivation of the inference formulas, we assume the death rate to be piecewise

constant on Lexis triangles:

Assumption 1. The death rate is piecewise constant on Lexis triangles, that is for

each integer x and t,

∀(a, s) ∈ TL(x, t), µ(a, s) = µL(x, t),

∀(a, s) ∈ TU(x, t), µ(a, s) = µU(x, t).

From the transport component described in Equation (1), for any upper or lower

triangle which we denote T , and on which the death rate is constant equal to µT , it

follows that:∫∫
T

( ∂a + ∂s)g(a, s)dads = −
∫∫

T

µ(a, s)g(a, s)dads = −µT
∫∫

T

g(a, s)dads.

As the left hand side is the opposite of the number of deaths as introduced

in Equation (5), it follows from the previous equation that the death rate can be

written as the ratio

µL(x, t) =
DL(x, t)

EL(x, t)
and µU(x, t) =

DU(x, t)

EU(x, t)
,

where

EL(x, t) =

∫∫
TL(x,t)

g(a, s)dads and EU(x, t) =

∫∫
TU (x,t)

g(a, s)dads,

are the so-called 'exposures-to-risk' in the lower and upper triangle respectively.

Now, the number of deaths in Lexis triangles being observed (as provided by the

Human Mortality Database), it remains to appropriately compute the exposure-to-

risk. In the literature dedicated to longevity studies, this quantity is approximated

by annual observables, see e.g. Pitacco et al. (2009) Section 2.3.4, as well as the

Version 5 Methods Protocol of the Human Mortality Database, see Wilmoth et al.

(2007). The recent update of the Human Mortality Database methodology allowing

to include monthly birth data is further discussed in Subsection 2.6. The standard

annual approximation can be illustrated for period tables (see Subsection 2.3) for

which the exposure-to-risk writes

E(x, t) =

∫ t+1

t

∫ x+1

x

g(a, s)dads =

∫ t+1

t

P (x, s)ds.

A possible approximation is therefore given by the trapezoid rule as

E(x, t) ≈ 1

2
[P (x, t) + P (x, t+ 1)] .
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2.4 Main result

On the other hand, the exposure-to-risk (period table) can also be written as

E(x, t) =
∫ x+1

x
N(a, t)da and then approximated by 1

2
[N(x, t) +N(x+ 1, t)] =

1
2
[P (x, t) + P (x+ 1, t)]+ 1

2
[DL(x, t)−DU(x, t)], which leads to another possible ap-

proximation. Note that the Version 5 estimates of the Human Mortality Database

rely on a demographic reasoning leading to an approximation in between the two

previous ones - see the analysis in Boumezoued (2016) for more details.

Overall, classical approximations have the advantage of being based on observ-

ables only, leading to a closed-form for the death rate estimate. The counterpart

of this feature is that the validity of the underlying approximation can be put into

question for years in which the population curve s 7→ P (s, x) appears far from linear.

We now detail the recursive and implicit scheme for computing death rate esti-

mates, based on equations linking the death rate with the observables in the Lexis

diagram introduced in Subsection 2.2. Before stating the main result, we introduce

two key quantities: �rst, the Laplace transform of the random variable 'date of birth

in year y', introduced as:

Ly(θ) =

∫ 1

0
g(0, y + v) exp(−θv)dv∫ 1

0
g(0, y + v)dv

,

and second, the cumulative gain in longevity at age x last birthday within the same

cohort born in year t − x (a diagonal in the Lexis diagram), that is between those

born at exact time t − x and those born at the end of the year [t − x, t − x + 1),

de�ned by:

H(x, t) =
x−1∑
y=0

µU(y, t− x+ y + 1)− µL(y, t− x+ y), x ∈ N∗. (7)

The result at the core of the inference strategy is stated below:

Proposition 1. Consider the transport Equation (1). Under Assumption 1, the

following equalities hold:

exp (−µL(x, t))Lt−x
(
H(x, t)− µL(x, t)

)
=

(
1− DL(x, t)

N(x, t)

)
Lt−x

(
H(x, t)

)
, (8)

and

Lt−x−1
(
H(x, t− 1)− µL(x, t− 1)

)
=

(
1 +

DU(x, t)

N(x+ 1, t)

)
Lt−x−1

(
H(x, t− 1)− µL(x, t− 1) + µU(x, t)

)
.

(9)

The proof is detailed in the next part, along with a detailed discussion in Sub-

section 2.6. The resulting algorithm is described in Section 3.
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2.5 Proof of Proposition 1

2.5 Proof of Proposition 1

To prove (8), let us �rst focus on the exposure-to-risk in the lower triangle EL(x, t) =∫ t+1

t

∫ x+s−t
x

g(a, s)dads. According to the transport equation (1), the population

density in the lower triangle can be expressed as

g(a, s) = g(x, s− a+ x) exp

(
−
∫ a

x

µ(u, s− a+ u)du

)
= g(x, s− a+ x) exp (−(a− x)µL(x, t)) .

where the last equality comes from the assumption of a piecewise constant death rate

on Lexis triangles. By the change of variable v ← s− a+x− t, the exposure-to-risk
can then be rewritten as

EL(x, t) =

∫ t+1

t

∫ x+s−t

x

g(x, s− a+ x) exp (−(a− x)µL(x, t)) dads

=

∫ 1

0

∫ t+1

t+v

g(x, t+ v) exp (−(s− v − t)µL(x, t)) dsdv.

By straightforward computation, one �nally gets the following expression for the

exposure-to-risk in the lower triangle:

EL(x, t) =

∫ 1

0

g(x, t+ v)
1− exp ((v − 1)µL(x, t))

µL(x, t)
dv. (10)

Also note thatDL(x, t) = µL(x, t)EL(x, t) =
∫ 1

0
g(x, t+v) (1− exp ((v − 1)µL(x, t))) dv

and N(x, t) =
∫ 1

0
g(x, t+ v)dv so that

N(x, t)−DL(x, t) =

∫ 1

0

g(x, t+ v) exp ((v − 1)µL(x, t)) dv.

Let us now derive the population density at exact age x, for any v ∈ [0, 1),

g(x, t+ v) = g(0, t− x+ v) exp

(
−
∫ x

0

µ(u, t− x+ v + u)du

)
= g(0, t− x+ v) exp

(
−

x−1∑
y=0

∫ y+1

y

µ(u, t− x+ v + u)du

)

= g(0, t− x+ v) exp

(
−

x−1∑
y=0

∫ y+1−v

y

µ(u, t− x+ v + u)du−
x−1∑
y=0

∫ y+1

y+1−v
µ(u, t− x+ v + u)du

)

= g(0, t− x+ v) exp

(
−(1− v)

x−1∑
y=0

µL(y, t− x+ y)− v
x−1∑
y=0

µU(y, t− x+ y + 1)

)
= S(x, t)g(0, t− x+ v) exp (−vH(x, t)) ,

(11)

where S(x, t) = exp
(
−
∑x−1

y=0 µL(y, t− x+ y)
)
is the survival function at age x for

individuals which attained (exact) age x at (exact) time t, and where the cumulative
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2.6 Discussion

death rate di�erential within the cohort H(x, t) has been introduced in Equation

(7). Let us now combine the previous results to get

N(x, t)−DL(x, t) = S(x, t)e−µL(x,t)
∫ 1

0

g(0, t− x+ v)e−v(H(x,t)−µL(x,t))dv,

and �nally, let us apply some renormalization of the right hand side, �rst by N(x, t)

and second by
∫ 1

0
g(0, t − x + v)dv to get the following formula, which reduces to

Equation (8):

1− DL(x, t)

N(x, t)
=
S(x, t)e−µL(x,t)

∫ 1

0
g̃(0, t− x+ v)e−v(H(x,t)−µL(x,t))dv

S(x, t)
∫ 1

0
g̃(0, t− x+ v)e−vH(x,t)dv

.

where g̃(0, t− x+ v) = g(0,t−x+v)∫ 1
0 g(0,t−x+v)dv

.

The proof of (9) follows similarly. Since EU(x, t) =
∫ t+1

t

∫ x+1

x+s−t g(a, s)dads and

g(a, s) = g(x+1, s+x+1−a) exp ((x+ 1− a)µU(x, t)), then by changing variables,

one gets EU(x, t) =
∫ 1

0
g(x+ 1, t+ v) exp(vµU (x,t))−1

µU (x,t)
dv, so that

N(x+ 1, t) +DU(x, t) =

∫ 1

0

g(x+ 1, t+ v) exp (vµU(x, t)) dv.

Then as g(x+1, t+v) = g(0, t−x−1+v)S(x+1, t) exp (−vH(x+ 1, t)), one �nally

obtains(
1 +

DU(x, t)

N(x+ 1, t)

)
Lt−x−1 (H(x+ 1, t)) = Lt−x−1 (H(x+ 1, t)− µU(x, t)) ,

which leads to the result, as the following equality is veri�ed from the de�nition in

Equation (7):

H(x+ 1, t) = H(x, t− 1) + µU(x, t)− µL(x, t− 1).

2.6 Discussion

Exposure-to-risk interpretation. The equality (10) can be interpreted as fol-

lows: for each individual attaining exact age x at time t + v, its contribution to

the exposure-to-risk in the lower triangle is 1−exp((v−1)µL(x,t))
µL(x,t)

, which depends on the

unobserved death rate to be estimated. This contrasts with classical methods which

compute approximations of the exposure-to-risk based on observables. At �rst or-

der, assuming µL(x, t) << 1, one recovers that EL(x, t) ≈
∫ 1

0
g(x, t + v)(1 − v)dv

and the related interpretation that the contribution of any individual which attained

exact age x at time t+ v and living through the lower triangle is simply 1− v as it
can be measured in the Lexis diagram.
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2.6 Discussion

Biased birthday density. The formula derived in (11) shows that the birth-

days density at some age x is exponentially biased through H(x, t) compared to

the initial birthdays distribution (at age zero). This is true in general in the tri-

angle model for the piecewise constant death rate (Assumption 1), as well as in

the period table for which the cumulative death rate di�erence matrix reduces to

H(x, t) =
∑x−1

y=0 µ(y, t− x+ y+1)−µ(y, t− x+ y) where µ(x, t) denotes the period

death rate for the square (x, t). Moreover, as one expects in general some mortality

improvement over the years, age being �xed, one may be interested in interpreting

the case H(x, t) < 0 - in this situation, one sees that the initial birthdays distri-

bution is distorted to the highest birthdays (youngest individuals) in the cohort as

age goes. This demonstrates how even in a discrete time speci�cation, individuals

in the same cohort may experience di�erent death rates over life (more precisely

they pass through the same rates but do not 'spend the same time' in each trian-

gle or square, so that the resulting survival functions are di�erent). However, it

is interesting to note that for the cohort table, which by de�nition assumes that

µ(y, t − x + y + 1) = µ(y, t − x + y), the H matrix vanishes, so that the initial

birthdays distribution perfectly propagates towards highest ages.

Closed population assumption. Due to the renormalization in the �nal result

(8), the death rate relates to the closest annual population estimate; therefore,

the assumption that the population is closed is only local in terms of population

count, as the population estimate N may include population �ow e�ects. Also, the

assumption of a closed population implies here that the birthdays distribution at

some age is obtained as a transformation of the initial birth distribution - to this

extent the assumption applies globally in each cohort.

Link with estimates of the Human Mortality Database. It is worth men-

tioning that at the time of writing, the Human Mortality Database released an

update on February 2018, including in particular a revision of exposure calculation

based on monthly birth counts. We now make the link with both the new Version

6 and the old Version 5 of the HMD Methods Protocol.

From (10), it can be shown by performing a �rst order expansion in µL(x, t) that

EL(x, t) ≈ E
(1)
L (x, t)− µL(x, t)E(2)

L (x, t),

where

E1
L(x, t) := N(x, t)

(
1 +

L′t−x(H(x, t))

Lt−x(H(x, t))

)
,

and

E
(2)
L (x, t) =

1

2
N(x, t)

[
1 +

2L′t−x(H(x, t)) + L′′t−x(H(x, t))

Lt−x(H(x, t))

]
.
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Let us denote by Bt−x the random variable with values in [0, 1] that represents

the time of birth in the year t − x, with mean mt−x := E [Bt−x] and variance

σ2
t−x := Var(Bt−x).

Under the assumption H(x, t) = 0, that is no mortality improvement between

the youngest and oldest individuals within the same cohort, one can write

EL(x, t) ≈ N(x, t) (1−mt−x)−
1

2
µL(x, t)N(x, t)

(
(1−mt−x)

2 + σ2
t−x
)
.

Note again that the assumption H(x, t) = 0 is not consistent with the piecewise con-

stant death rate assumption on Lexis triangles, nor with the framework underlying

the period tables.

Now, if one uses (6) and replaces µL(x, t) =
DL(x,t)
EL(x,t)

by its zero order approxima-

tion

µL(x, t) ≈
DL(x, t)

N(x, t) (1−mt−x)
,

one �nally obtains the formula (51) displayed in the Version 6 in the HMD methods

protocol:

EL(x, t) ≈ P (x, t+ 1) (1−mt−x) +
DL(x, t)

2(1−mt−x)

(
(1−mt−x)

2 − σ2
t−x
)
.

Finally, if one assumes births to be uniformly distributed, then mt−x = 1
2
and

σ2
t−x = 1/12 so that the classical formula in Version 5 methods protocol is recovered

(see Appendix E therein for the original derivation):

EL(x, t) ≈
1

2
P (x, t+ 1) +

1

6
DL(x, t).

3 Numerical results

Based on Proposition 1, one can exhibit a recursive and implicit scheme for com-

puting the death rates, as described below.

Algorithm 1. For age x starting at zero:

(i) Solve Equation (8) to estimate the death rate µL(x, t) for the lower triangles of

any available year t,

(ii) Then based on the previous estimates, solve Equation (9) to infer the death rate

µU(x, t) for the upper triangles of any available year t,

(ii) Compute the value for H(x+1, t) = H(x, t− 1)+µU(x, t)−µL(x, t− 1) for all

possible years t, let x← x+ 1 and go to step (i) .

Remark 1. Note that the method is past dependent - this is natural as any change

in past death rates modify the future birthdays distribution in the cohort. This way,
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any revision of past death or population count at (x, t), which may occur in practice,

requires the re-use of the methodology which will provide an update of the mortality

rates at (y, t+ y − x) for y ≥ x.

In Figures 5 to 8, we depict the death rate estimates obtained with the method

developed in this paper applied to French data sourced from the Human Mortality

Database (annual population estimates, Figure 1 and number of deaths in Lexis

triangles, Figure 2) and the Human Fertility Database (births by months, Figure 3).

The number of births by month are used to approximate the Laplace transform of

the birthdays distribution which is used in the inference process.

The results are compared with estimates as they would be classically computed

based on annual observables (see Wilmoth et al. (2007) and Boumezoued (2016) for

further details):

µ̂L(x, t) =
DL(x, t)

1
2
N(x, t)− 1

3
DL(x, t)

and µ̂U(x, t) =
DU(x, t)

1
2
N(x+ 1, t) + 1

3
DU(x, t)

.

Each �gure includes on the right the ratio between the new and the old estimate,

which helps quantify the di�erences between both. First, the ratio is for several age

classes close to one, which indicates that the new estimate does not di�er much from

the classical one, in other words that the classical approximation is valid. However,

one sees strong deviations for speci�c ages in time, and this translates over time

and ages, so that it appears that the anomalies belong to speci�c generations. As

displayed, relative discrepancies between the two estimates can reach up to around

+/- 20%. To assess this speci�city, we depict in Figure 9 mortality improvement

rates separated between upper and lower triangles as

µL(x, t+ 1)− µL(x, t)
µL(x, t)

and
µU(x, t+ 1)− µU(x, t)

µU(x, t)
.

Clearly, the isolated cohort e�ects disappear in the new mortality tables: mainly the

diagonals around 1915 and 1920, and to a lower extent those born around 1940; note

that this indeed corresponds to the shocks in birth numbers as illustrated in Figure

3, which con�rms from a mathematical perspective the previous contributions by

Richards (2008), Cairns et al. (2016) and Boumezoued (2016).
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Figure 5: Left: death rates estimated based on the new inference method (in black),

and compared to estimates using the standard method based on annual population

records (in red). Right: ratio between new and old estimates. Top: Upper triangle.

Bottom: Lower triangle.
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Figure 6: Left: death rates estimated based on the new inference method (in black),

and compared to estimates using the standard method based on annual population

records (in red). Right: ratio between new and old estimates. Top: Upper triangle.

Bottom: Lower triangle.
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Figure 7: Left: death rates estimated based on the new inference method (in black),

and compared to estimates using the standard method based on annual population

records (in red). Right: ratio between new and old estimates. Top: Upper triangle.

Bottom: Lower triangle.
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Figure 8: Left: death rates estimated based on the new inference method (in black),

and compared to estimates using the standard method based on annual population

records (in red). Right: ratio between new and old estimates. Top: Upper triangle.

Bottom: Lower triangle.
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Figure 9: Left: mortality improvement rates using the standard method based on

annual population records. Right: mortality improvement rates using the new in-

ference method. Top: upper triangles. Bottom: lower triangles.

4 Concluding remarks

In this paper, we proposed an inference strategy for general population mortality

tables based on the derivation of formulas in the Lexis diagram, which relate the

death rate with annual observables and the intra-year distribution of birthdays over

ages. The method therefore uses monthly birth counts to re�ne classical mortality

estimates. The new mortality tables show better features, including the fact that

previous anomalies in the form of isolated cohort e�ects disappear, which con�rms

from a mathematical perspective the previous contributions by Richards (2008),

Cairns et al. (2016) and Boumezoued (2016).

Several topics remain to be addressed to strengthen the methodology. First, it
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REFERENCES

is of interest to account for population �ows which may for several countries deform

the closest population count, as well as distort the birthdays distribution over ages.

Second, we emphasize that it is of importance to derive con�dence intervals for

the prediction, by going beyond the classical Poisson approximation to measure

sampling risk. To this extent a stochastic population dynamics model is required,

as well as a dedicated statistical framework.
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