Agglomeration Process of Wet Granular Material: Effects of Size Distribution and Froude Number
Thanh-Trung Vo, Saeid Nezamabadi, Jean-Yves Delenne, Farhang Radjai

To cite this version:

HAL Id: hal-01772410
https://hal.archives-ouvertes.fr/hal-01772410
Submitted on 20 Apr 2018

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Granular material flow & granule growth in the steel making. Such as pellets or granules. Iron ore granulation is an important stage in granulation in a horizontal rotating drum. In this work, we use Molecular Dynamics (MD) method to simulate the agglomeration process during the dense granular flows in the rotary drum. In which particles are distributed by an uniform distribution of particle volume fractions.

OBJECTIVES & METHODOLOGY

We investigate the agglomeration process of solid particles in the presence of a viscous liquid. We are mostly interested in application to iron ore granulation in a horizontal rotating drum. In this work, we use Molecular Dynamics (MD) method to simulate the agglomeration process during the dense granular flows in the rotary drum. In which particles are distributed by an uniform distribution of particle volume fractions.

MOLECULAR DYNAMICS METHOD

\[m \frac{d^2 \mathbf{r}_i}{dt^2} = \sum (f_{ij} + f_{visc}) \mathbf{n}_i + f_i(t) + m_i g \]

- \(f_{ij} \): force between particles \(i \) and \(j \)
- \(f_{visc} \): viscous force
- \(m_i \): mass of particle \(i \) (kg)

CAPILLARY cohesion & viscous force

\[F_{visc} = \frac{3}{2} \rho R^4 \left(\frac{1}{R_i} \right)^{\frac{1}{3}} \frac{dR_i}{dt} \]

- \(R_i \): particle radius
- \(\rho \): density of liquid
- \(\gamma \): surface tension

Diagram of capillary bridge

AGGLOMERATION RESULTS

- Exponential increase of wet & contact coordination numbers (a) and decrease of kinetic energy normalized by potential energy of granule (b), as functions of size ratio \(\alpha \).

Further Researches

- Investigation the agglomeration process of a huge number of particles.
- Comparison between experiment and simulation of agglomeration processes in rotating drum.

References

1. Laboratoire de Mélange et Génie Civil (LMGC), Université de Montpellier, CNRS, Montpellier, France.
2. Bridge and Road Department, Danang Architecture University, 566 Nui Thanh St, Hai Chau Dist, Danang, Vietnam.
3. ATE, UMR1205 IRMA - GIPAD - Université de Montpellier - SupAgro, 34060 Montpellier, France.
4. "MSE", UIE 3446 CNRS-MIT, CEE, MIT, 77 Massachusetts Avenue, Cambridge 02139, USA.