Agglomeration of wet granular materials in rotating drum
Thanh-Trung Vo, Saeid Nezamabadi, Jean-Yves Delenne, Farhang Radjai

To cite this version:
Thanh-Trung Vo, Saeid Nezamabadi, Jean-Yves Delenne, Farhang Radjai. Agglomeration of wet granular materials in rotating drum. Powders & grains 2017, Jul 2017, Montpellier, France. hal-01772261

HAL Id: hal-01772261
https://hal.archives-ouvertes.fr/hal-01772261
Submitted on 20 Apr 2018

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Simulation of the agglomeration process of solid particles in the presence of a viscous liquid. We are mostly interested in application to iron ore granulation in a horizontal rotating drum. In this work, we use Molecular Dynamics (MD) method to simulate the agglomeration process during the dense granular flows in the rotary drum. In which particles are distributed by an uniform distribution of particle volume fractions.

OBJECTIVES & METHODOLOGY

MOLECULAR DYNAMICS METHOD

$$ m_i \frac{d^2\mathbf{s}_i}{dt^2} = \sum_{j \neq i} (f_{ni} + f_{ti} + f_{visc}) \mathbf{n} + f_{visc} \mathbf{t} + m_i \mathbf{g} $$

- \mathbf{s}_i position vector of particle i
- \mathbf{g} vector gravity
- \mathbf{n} normal unit vector
- \mathbf{t} tangential unit vector
- m_i mass of particle i (kg)

CAPILLARY COHESION & VISCOUS FORCE

$$ f_c = \begin{cases} -\kappa R, & \delta_n < 0 \\ -\kappa R \varepsilon^n, & 0 \leq \delta_n \leq \varepsilon^n_{\text{max}} \\ 0, & \delta_n \geq \varepsilon^n_{\text{max}} \end{cases} $$

- $\kappa = 2\pi \gamma_s \cos \theta$
- $\varepsilon^n_{\text{max}} = 3 \pi R^2 \eta_0 \Delta \delta_n / \Delta t$
- $\alpha = R_{\text{max}} / R_{\text{min}}$
- $\lambda = c b(\alpha) (V_{\text{rel}}^1 / R)^{1/3}$

AGGLOMERATION RESULTS

- Exponential increase of wet & contact coordination numbers (a) and decrease of kinetic energy normalized by potential energy of granule (b), as functions of size ratio α.

Conclusions

1. The effect of size ratio on the granule growth is more crucial than that of rotational speed.
2. Granule growth is an exponential function of size ratio and rotational speed of drum.
3. Kinetic energy normalized by potential energy increases proportional to the rotational speed, but inversely proportional to the size ratio.
4. The wet and contact coordination numbers of agglomerates are proportional to size ratio.