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A FAMILY OF RANDOM SUP-MEASURES
WITH LONG-RANGE DEPENDENCE

OLIVIER DURIEU AND YIZAO WANG

ABSTRACT. A family of self-similar and translation-invariant random sup-measures with
long-range dependence are investigated. They are shown to arise as the limit of the
empirical random sup-measure of a stationary heavy-tailed process, inspired by an in-
finite urn scheme, where same values are repeated at several random locations. The
random sup-measure reflects the long-range dependence nature of the original process,
and in particular characterizes how locations of extremes appear as long-range clusters
represented by random closed sets. A limit theorem for the corresponding point-process
convergence is established.

1. INTRODUCTION

There is a recently renewed interest in limit theorems for extreme values of stationary
processes in the presence of long-range dependence [1, 27, 31]. Let {X,, }nen be a stationary
process. In extreme value theory, it is by now a classical problem to investigate the limit
of the partial maxima {max;—y _ |n:| Xi}te[o,1) s a process of t € [0, 1], after appropriate
normalization, as n — oo. It is further understood that such functional limit theorems are
better illustrated in terms of convergence of point processes, in particular in the case when
the dependence of the extremes of {X,,}nen is weak. For a simple and yet representative
example, take {X, }nen to be ii.d. heavy-tailed random variables such that P(X; > x) ~
x~* as x — oo with tail index a € (0,00). It is well known that

(1.1) D0 misaigm = D Spia g,
i=1 =1

where {(I'y,U¢) }een is a measurable enumeration of points from a Poisson point process
on Ry x [0,1] with intensity dzdu. Such a point-process convergence provides a detailed
description of the asymptotic behavior of extremes, by which we mean broadly the top
order statistics instead of the largest one alone: the top order statistics normalized by n!/®
converge weakly to Fl_l/ “ Ty 1/ ® ..., and their locations are asymptotically independent
and uniformly distributed over [0,1] [22]. Such a picture is representative for the general
situation where { X, }en have weak dependence. Classical references now include [7, 21, 29],
among others.

The recent advances along this line, however, focus on the case when the stationary pro-
cess { X, }nen has long-range dependence in the literature. The long-range dependence here,
roughly speaking, means that with the same marginal law, the normalization of maxima is
of a different order from n'/® so that a non-degenerate limit arises [30, 31]. In the seminal
work of O’Brien et al. [25], summarizing a series of developments in the 80s, it has been
pointed out that all possible non-degenerate limits of extremes of a stationary sequence can
be fit into the framework of convergence of random sup-measures. The framework could be
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viewed as a counterpart of the Lamperti’s theorem [19] for extremes, in the sense that the
limit random sup-measures are necessarily shift-invariant and self-similar. This framework
of course includes the case (1.1), and the corresponding limit random sup-measure on [0, 1]
can be represented as

1

(1.2) Ma(") =sup Wl{we-}?
or more generally as a random sup-measure on R in the same notation with {(Ty, Us)}ren
a Poisson point process on R x R with intensity dzdu. In this case, furthermore, the
limit random sup-measure is independently scattered (a.k.a. completely random) and a-
Fréchet, that is, its values over disjoint sets are independent and for every bounded open
set A, My (A) is a-Fréchet distributed with P(M,(A4) < z) = exp(—Leb(A)z™%), = >
0. Independently scattered random sup-measures are fundamental in stochastic extremal
integral representations of max-stable processes [34]. In general, the random sup-measure
arising from a stationary sequence may not be independently scattered, or even Fréchet [32].

However, within the general framework of convergence of random sup-measures, to the
best of our knowledge it is only very recently that other concrete non-trivial examples have
been completely worked out. In a series of papers [18, 26, 32], the extremes of a well-known
challenging example of heavy-tailed stationary processes with long-range dependence have
been completely characterized in terms of limit theorems for random sup-measures. For this
example, the limit random sup-measure obtained by Lacaux and Samorodnitsky [18] takes
the form

. 1

(1.3) apl) = 21615 Wl{ﬁgﬂ)ﬁ_?ﬁ@}a

where {T's}ren are as before, {ﬁéﬁ)}geN are i.i.d. random closed sets of [0, 1], each consisting
of a randomly shifted (1 — 3)-stable regenerative set (a stable regenerative set is the closure
of a stable subordinator; see Example 6.1 below for a complete description of ]?ZI(ZB )), and
the two sequences are independent. We refer to this family of random sup-measures as
stable-regenerative random sup-measures in this paper. More precisely, Mg ; arises in limit
theorems for a discrete model with parameters o > 0, 8 € (1/2,1) [18], and it can be
naturally extended to all 8 € (0,1) (for the original problem in [18] with 8 € (0,1/2), a
more complicated random sup-measure of non-Fréchet type is shown to arise in the limit in
[32]; note also that a different parameterization 8 =1 — 8 was used in [32]).

One could draw a comparison between (1.2) and (1.3) by viewing each uniform random
variable U; in (1.2) as a random closed set consisting of a singleton point. From this point
of view, for the stable-regenerative random sup-measures, the random closed sets {EEB )}KN
represent the limit law of positions of extremes, and in this case they reveal a much more
intriguing structure: for example, each égﬁ )7 as randomly shifted (1 — §)-stable regenerative
set, is uncountably infinite and with Hausdorff dimension 1 — 8 almost surely. They reflect
the picture that each top order statistic shows up at infinitely many different locations,
even unbounded if MY 5 is viewed as a random sup-measure on R, in a sharp contrast to
the situation of independently scattered random sup-measure (1.2) where each top order
statistic occurs at a unique random location.

We refer to the phenomena that each top order statistic may show up at multiple and
possibly infinitely many locations by long-range clustering. Clustering of extremes have been
studied before, but in most examples clusters are local in the sense that, roughly speaking,
each top order statistic is replaced by a cluster consisting of several correlated values at
the same time point, due to certain local dependence structure of the original model (see
e.g. [14, 21)).
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In this paper, by examining another model of heavy-tailed stationary processes, we prove
the convergence of empirical random sup-measures to a family of random sup-measures,
exhibiting long-range clustering. We refer to this family as the Karlin random sup-measures,
denoted by M, g with a > 0, 8 € (0,1) (see (3.5)). These random sup-measures are also

in the form of (1.3): now each random closed set EEB ) is replaced by a new one consisting
of a random number of independent uniform random variables, and hence its complexity
is between the independently scattered random sup-measures (1.2) and stable-regenerative
random sup-measures (1.3). In the literature, the Karlin random sup-measures have been
considered recently by Molchanov and Strokorb [24], from the aspect of extremal capacity
functionals.

The Karlin random sup-measures arise in our investigation on the so-called heavy-tailed
Karlin model, a variation of an infinite urn scheme investigated by Karlin [17]. The model
is a stationary heavy-tailed process where each top order statistic shows up at possibly mul-
tiple locations. It has been known to have long-range dependence, and functional central
limit theorems for related partial sums have been recently investigated in [10, 11]. Here,
for the extremes, we establish a limit theorem (Theorem 4.1) of point-process convergence
encoding the values and corresponding locations of the stationary process as in (1.1), with
now locations represented by random closed sets. In particular, the joint convergence de-
scribes the long-range clustering of the corresponding order statistics of the Karlin model,
and as an immediate consequence the convergence of the empirical random sup-measure to
the Karlin random sup-measure in the form of (1.3) follows (Theorem 4.2).

Another way to distinguish the Karlin random sup-measures from independently scat-
tered and stable-regenerative random sup-measures is by noticing that they all have different
ergodic properties. This can be understood by comparing the ergodic properties of the in-
duced maz-increment processes of each class. Each max-increment process of a max-stable
random sup-measure is a stationary max-stable process. Ergodic properties of stationary
max-stable processes have been recently investigated in the literature [9, 15, 16, 33]. In
particular, it is known that the max-increment processes of independently scattered random
sup-measures are mixing, those of stable-regenerative random sup-measures are ergodic but
not mixing, and here we show that those of Karlin random sup-measures are not ergodic.

We also notice that the Karlin random sup-measures and stable-regenerative random
sup-measures both have the same extremal process as a time-changed standard a-Fréchet
extremal process, and this holds in a much greater generality. It is easy to see that the ex-
tremal process contains much less information than the corresponding random sup-measure.
Here we elaborate the relation of the two by showing that for all self-similar Choquet ran-
dom sup-measures (defined in Section 2), the associated extremal processes are time-changed
standard extremal processes (Proposition A.l in the appendix).

The paper is organized as follow. A general class of random sup-measures, the so-called
Choquet random sup-measures, is presented in Section 2. In Section 3, we introduce the
Karlin random sup-measures. In Section 4, we introduce the heavy-tailed Karlin model,
and state our main results. The proofs are provided in Section 5. In Section 6 we discuss
related random sup-measures having the same extremal process. The appendix is devoted
to a general result concerning the relation between Choquet random sup-measures and
their extremal processes. Some related background on random closed sets and random
sup-measures are provided below.

Preliminary background. We start with spaces of closed sets. Our main reference is
[23]. We shall consider the space of all closed subsets of a given metric space E, denoted
by F(E), with only E = [0,1], R or R} := [0,00) in this paper. The space F = F(F) is
equipped with the Fell topology. That is, letting G = G(F) and K = K(E) denote the open
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and compact subsets of F, respectively, the topology generated by the base of sets
Fo:={FeF:FNG#0}, Geg

and

FE ={KeK:FNK=10}, Keck.
The Fell topology is also known as the hit-and-miss topology. With our choice of E (and
more generally when it is locally compact and Hausdorff second countable), the Fell topology
on F(F) is metrizable. Hence we define random closed sets as random elements in a metric
space [3]. The law of a random closed set R is uniquely determined by

o(K)=P(RNK #0), KeK(E),

where KC(E) is the collection of all compact subsets of E, and ¢ is known as the capacity
functional of R. Let {R, }nen and R be a collection of random closed sets in F. A practical
sufficient condition for the weak convergence R,, = R in F(F) as n — oo is that

lim P(R, N A#0)=P(RNAH0D),

for all A C E which is a finite union of bounded open intervals such that P(RN A # (}) =
P(RN A # () where A is the closure set of A [23, Corollary 1.6.9].

Next, we review basics on sup-measures on a metric space E. Our main references are
[25, 35]. A sup-measure m on E is defined as a set function from G = G(F) to R4 (in general
the sup-measure could take negative values, but not in the framework of this paper), and
it can be uniquely extended to a set function from all subsets of £ to Ry. We start by
recalling the definition of a sup-measure on G. A set function m : G — R is a sup-measure,

if m(0) =0 and
m (U Ga> = sgpm(Ga)

for all arbitrary collection of {G}o C G. Let SM(E) denote the space of sup-measures from
G — R4. The canonical extension of m : G — R, to a sup-measure on all subsets of E is
given by

m(A) : inf  m(G) forall AC E,A#0.

- GeG,ACG
The sup-vague topology on SM(E) is defined such that for {my},en and m elements of
SM(E), m,, — m as n — oo if the following two conditions hold
lim sup m, (K) < m(K), for all K € K(E),

n—oo

lim inf m,, (G) > m(G), for all G € G(E).
n— oo

This choice of topology makes SM(F) compact and metrizable. We then define random
sup-measures again as random elements in a metric space. In particular, M : Q — SM(E)
is a random sup-measure, if and only if M(A) is a Ry-valued random variable for all open
bounded intervals A or all compact intervals A, with rational end points. Examples of
particular importance for us include scaled indicator random sup-measures in the form of

Cl{rn. 20}
where ( is a positive random variable and R a random closed set, the two not necessarily
independent, and the maximum of a finite number of such scaled-indicators. A practical

sufficient condition for weak convergence in SM(FE) is the following. Let {M,,}nen and M
be random sup-measures on E. We have M,, = M in SM(E), if

(Mn(Al)a e 7Mn(Ad)) = (M(A1)7 o ‘7M(Ad))7

for all bounded open intervals Ay, ..., A4 of E such that M(A;) = M(A;) with probability
one [25, Theorem 3.2].
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Of particular importance among random sup-measures are Fréchet (maz-stable) random
sup-measures, which are random sup-measures with Fréchet finite-dimensional distributions.
Recall that a random variable Z has an a-Fréchet distribution if P(Z < z) = exp(—oz~%),
z > 0, for some constants o > 0, « > 0. A random vector (Z1,...,Z) has an a-Fréchet
distribution if all its max-linear combinations max;—1,. . qa;Z;, for ai,...,aq > 0, have a-
Fréchet distributions. Now, a random sup-measure is a-Fréchet if its joint law on finite sets
is a-Fréchet. Equivalently, an a-Fréchet random sup-measure on E can be viewed as a set-
indexed a-Fréchet max-stable process {M(A)} ack, that is, a stochastic process of which
every finite-dimensional distribution is a-Fréchet. Fréchet random variables and Fréchet
processes are fundamental objects in extreme value theory, as they arise in limit theorems
for extremes of heavy-tailed models [6, 15, 29].

2. CHOQUET RANDOM SUP-MEASURES

A special family of Fréchet random sup-measures is the so-called Choquet random sup-
measures, recently introduced by Molchanov and Strokorb [24]. It is known that every
a-Fréchet random sup-measure M has the expression

(2.1) P(M(K) < 2) = exp (9(;5)) , K eK(E),

where 0(K) is referred to as the extremal coefficient functional of M. In general, different
Fréchet random sup-measures may have the same extremal coefficient functional. Given an
extremal coefficient functional 8, the so-called Choquet random sup-measure was introduced
and investigated in [24], in the form of

d 1
(2.2) M() = 325@1{Rm-7ﬁ0}~

Here {(T'¢, R¢)}sen is a measurable enumeration of points from a Poisson point process on
(0,00) x F(F) with intensity dzdv, where v is a locally finite measure on F(E) uniquely
determined by

V(Fr)=v({F e F(BE) : FNK #0}) = 0(K), K € K(E).

The so-defined M in (2.2) turns out to be an a-Fréchet random sup-measure with extremal
coeflicient functional 8, and furthermore its law is uniquely determined by 6. It was demon-
strated in [24] that this family of random sup-measures plays a crucial role among all Fréchet
random sup-measures from several aspects, and the Choquet theorem plays a fundamental
role in this framework, which explains the name.

In view of limit theorems, Choquet random sup-measures arise naturally in the inves-
tigation of extremes of a stationary sequence, including the independently scattered and
stable-regenerative random sup-measures (see (1.2) and (1.3) respectively). In extreme
value theory, many limit theorems are established in terms of extremal processes rather
than random sup-measures. Given a general random sup-measure M, let M(¢) := M([0, ¢]),
t > 0, denote its associated extremal process. It is well known that M contains much less in-
formation than M in general. This is particularly the case in the framework of self-similar
Choquet random sup-measures, as their extremal processes are necessarily time-changed
versions of a standard a-Fréchet extremal process. Recall that a random sup-measure M is
H-self similar for some H > 0 if

(2.3) M) E N M), for all A > 0.

By standard a-Fréchet extremal process, we mean the extremal process determined by the
independently scattered random sup-measure M., M, (t) := M4 ([0,t]). That is, using the
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same {(I'y,Us) }een as in (1.2),

1
— - >
(2.4) Ma(t) : 22}5 Fé/a Lw<ty, t20.
Proposition 2.1. For any H-self-similar Choquet a-Fréchet random sup-measure M with
H > 0, the corresponding extremal process M satisﬁes

0([0,1]) {M()},50 = {Ma(t*)} ., -

To the best of our knowledge, this fact has not been noticed in the literature before. This
proposition actually follows from a more general result on Choquet random sup-measures
and the corresponding extremal processes, which is of independent interest and established
in Proposition A.1 in the appendix. In the upcoming setting, this provides another justifi-
cation that it is important to work with random sup-measures in the presence of long-range
dependence, as the corresponding extremal processes capture much less information of the
dependence. See also the discussion in Section 6.

3. KARLIN RANDOM SUP-MEASURES

In this section we provide two representations of Karlin random sup-measures. They
are Choquet random sup-measures with a-Fréchet marginals and they depend on a second
parameter 8 € (0,1).

Let us denote by zA, for x > 0 and A C R, the scaled set {zy : y € A}. The Karlin
random sup-measure M, 3 on R is defined by the following representation
(3.1) Ma,p(4) 1= sup %1{%%#0}7 AcG(R),

eNT,
where {(F@,Z‘g,M)}geN is an enumeration of the points from a Poisson point process on
R, x R, x 9, (R) with intensity measure dy x I'(1 — 8) 1Bz~ 1dx x dP. Here M (R)
is the space of Radon point measures on R and P is the probability measure on it induced
by a standard Poisson random measure (with intensity dx). Equivalently, the Poisson point
process {(T'y, xg,j\/g)}geN can be viewed as the Poisson point process {(Ty, xz)}geN on R, x
R, with intensity dy x I'(1 — 8)~'Bz~"~'dz and i.i.d. marks {./\[g}geN with law P.

To see that M, g is a Choquet random sup-measure, we introduce the random closed set
ﬁg induced by /\N/g as

Ry = {t eR: N, ({t}) = 1} :

and then write {Ny(z,A) # 0} = {(R¢/x¢) N A # 0}. So (3.1) now becomes
1
Map(4) = sup 7z P17 H{(Refee)naso}s A€G(R),

as in (2.2), and then it can be extended to all A C R by the canonical extension of sup-
measures.

Viewing {M,.3(A)}acr as a set-indexed a-Fréchet max-stable process, we have the
following joint distribution:

(3.2) P(MQ,B(Al) < Z2,... ,./\/la”@(Ad) < Zd)

oo d 1y
= exp (—F(l — ,8)71/0 Bxiﬁ*l]ﬁ (\/ W) dx) ,
i=1 i

for all d € N, z1,...,25 > 0, where E is the expectation with respect to P. See [24, 34]
for more details. It suffices to consider A, ..., A4 as open (or compact) intervals in R (not
necessarily disjoint) above to determine the law of M, g.



KARLIN RANDOM SUP-MEASURES 7

From the above presentation, in particular we compute for d = 1 and a compact set
K CR,

P(Ma5(K) < z) = exp (—F(l _B)! /oo Bz=A-1P (J\~/'(xK) v 0) d;vz_o‘> .
0
Let Leb denote the Lebesgue measure on R. We have
0 b1 [ _ oo 51 B B
(3.3) /0 Bx P (N(xK) # O) dx /0 Bx (1 — exp(—zLeb(K))) dx

— Leb(K) / " 27 exp(—zLeb(K))dz
0

=TI'(1 — B)Leb(K)”.
Therefore we arrive at, for all z > 0,

0s(K
P(Mas(K) < z) = exp (—’Bz(a)) with  05(K) := Leb(K)”.
The function 6g is the extremal coefficient functional of the random sup-measure M g.
It is clear from the definition (3.2) that M, g is 8/a-self-similar in the sense of (2.3) and

translation-invariant
Ma,(+) < My g(z+-), for all z € R.

It is also remarkable that it is symmetric (or rearrangement invariant [24, Sect. 9]) in the
sense that its law only depends on the Lebesgue measures of the sets. More precisely, for two
collections of disjoint open intervals {A;,...,Aq} and {Bi,..., B4} such that Leb(4;) =
Leb(B;),t =1,...,d, we have

(Mas(A1), ..., Mas(A2) £ (Mas(Bi),..., Mas(Ba)).

This is a stronger notion than the translation invariance, which has been known to hold
true for all random sup-measures arising from stationary sequences [25].

By self-similarity essentially all properties of M, g can be investigated by restricting to
a bounded interval, in which case M, s has a more convenient representation. We consider
its restriction to [0, 1] here. In this case, 65 determines the law of a random closed set R(%)
in [0,1] by

0s(K
(3.4) P(RP NK #0) = 0;(3[(01)}) = Leb(K)?, for all K C [0,1] compact.
Now, restricting to [0, 1], it follows that
d 1
3.5 M s() L sup ——1 0,1],
(3.5) () 3161113 /e {(Rff”ﬂ-)ﬂ)} on [0,1]

¢

where {T';}sen is the sequence of arrival times of a standard Poisson point process on R,
{Réﬁ )}geN are i.i.d. copies of R and the two sequences are independent. The fact that
M, g in (3.1) has the same presentation (in law) as in (3.5) when restricted to [0, 1], follows
from either a straightforward computation of finite-dimensional distributions of random sup-
measures based on (3.5), or from a more general property of Choquet random sup-measures
[24, Corollary 4.5].

In addition, we have the following probabilistic representation of R,

Lemma 3.1. Suppose 3 € (0,1). Let Qg be an N-valued random variable with probability
mass function
B =B -1 _. )

P(Qp =Fk) = o
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with (a)py =ala+1)---(a+n—1),n €N, a € R. Let {Up}nen be i.i.d. random variables
uniformly distributed over (0,1), independent from Qg. Then,

Qp

RO L | J{U;}.

i=1

Proof. It suffices to prove that Uffl{Ui} has the same capacity functional as R(®) in (3.4).
We have, by first conditioning on Qg,

Qs
Pl | nK#0| =E[1—(1—Leb(K))?].

i=1

One can show that the prescribed distribution of Qg satisfies the property, for all z € (0,1),
1—zB:IE[(1—z)Qﬁ].

See for example [28, Eq. (3.42)]. In view of (3.4), this completes the proof. O

Remark 3.2. The law of ()3 has been known to be related to the Karlin model defined
in Section 4, and hence it is not a coincidence that it shows up in the limit random sup-
measure. In fact, Qg is a size-biased sampling from the asymptotic frequency {pg(k)}ren
of blocks of size k of an infinite exchangeable random partition with g-diversity. See [28,
Section 3.3] for more details and Remark 4.3 below.

Remark 3.3. The first representation of M, g has been already considered by Molchanov
and Strokorb [24]. Their description starts with and focuses on the extremal coefficient
functional 63 whereas we start from the underlying Poisson point process directly. This
is suggested in [24, Remark 9.8], while more detailed discussions can be found in the first
arXiv online version of the same paper. In particular, Example 9.5 therein provides the
same representation as in (3.1). The interpretation of the set R?) in our Lemma 3.1 seems
to be new.

The Karlin random sup-measures also interpolate between the independently scattered
random sup-measures M, and the completely dependent one, defined as Mg, (-) = Z1;. .9y
for a standard a-Fréchet random variable Z (the random sup-measure taking the same value
Z on any non-empty set).

Proposition 3.4. For every a >0, My 3= M, as BT 1, and My g = M as 5] 0.

Proof. Tt suffices to notice that by the capacity functional in (3.4), R%®) = U as g 11
where U is the random closed set induced by the uniform random variable on (0,1), and
RP) = [0, 1], a deterministic set, as 8 | 0. O

We conclude this section by examining the ergodic properties of M, g. Every self-similar
and translation invariant random sup-measure M naturally induces a stationary process,
the so-called maz-increment process defined as

(3.6) Ct) = M((t-1,t), teR.
Proposition 3.5. The maz-increment process {Ca,p(t) }er of Ma g is not ergodic.
Proof. Introduce, for z > 0, t € R,

7= (t) :=log P(Ca,5(0) < 2,Ca,8(t) < 2) — 210g P(Ca,p(0) < 2).

A simple necessary and sufficient condition for ergodicity of a stationary a-Fréchet process
is that

1 (T
lim —/ T.(t)dt = 0 for all z > 0,
T Jo

T—o0
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see Kabluchko and Schlather [16]. Here we have, for ¢ > 1,
—1OgIP’(Caﬁ( ) < 2Cap(t) <2)

- / Ba 0B (N (a(~1,0)) # 0,8 (a(t — 1,1]) #0) do

= —I‘ 1-— / Br=P 1 —e ™) 2dx = (2 - 2Pz~
In addition to (3.3), this implies for all ¢t > 1, z > 0,
m.(t) = [205((—1,0]) — (2 —27)] 27> = 2827,

The desired result hence follows. O

4. A HEAVY-TAILED KARLIN MODEL

In this section, we introduce a discrete stationary process {X, }nen based on a model,
originally studied by Karlin [17], which is essentially an infinite urn scheme. Here, we shall
work with a heavy-tailed randomized version of the original model.

To start with, consider an N-valued random variable Y with P(Y = k) = pg, k € N. We
assume that p; > py > - -+ > 0 and, for technical purpose, encode them into the measure

(4.1) V=Y 81/p
=1

where 0, is the unit point mass at x. The following regular variation assumption is made
on the frequencies:

(4.2) v((0,2]) =max{f € N:1/p, <z} =2’ L(z) with 8 € (0,1),

for some slowly varying function L at infinity.

The randomized Karlin model {X,, },,en is defined through a two-layer construction. We
imagine that there are infinitely many empty boxes indexed by N. First, we independently
associate a heavy-tailed random variable to each box. Second, at each round n, we throw
a ball at random in one of the boxes (according to the law of Y) and we consider the
corresponding heavy-tailed random variable as the value of our process at time n. Namely,
let {e/}sen be i.i.d. random variables with common law such that

(4.3) Ple; > y) ~cqy “asy — oo with a >0, ¢4 € (0,00),

each associated with the box with label ¢ € N. Let {Y,}nen be i.i.d. random variables
with common law as Y described above, independent of {e;}scn. The stationary sequence
{X . }nen is then obtained by setting

Xp =¢y,,neN.

Here, we are interested in the empirical random sup-measure of {X, },en on [0,1] intro-
duced as

M, (-) := max X,
i/ne -

and its limit as n — co. Important quantities relying on the infinite urn scheme are,

Kn,z = Z l{Yizé}’ 0>1, and K, := Z 1{K",H£Q)}7
i=1 _

the number of balls in the box ¢ and the number of non-empty boxes at time n, respectively.
We know from [17] that, under (4.2), K,, ~ T'(1 — 8)n® L(n) almost surely.

For a more detailed description of the model, we shall work within the framework of
point-process convergence generalizing (1.1). For each n € N, introduce, for ¢ > 1,

R,,={ie{l,....n}: Y, =1(}.
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The following point process &, on R x F([0,1]) encode the information of our random
model at time n:

(4.4) Eai = D Oleufbuia/m)s

021, K 070

The first coordinate in the Dirac masses presents the value (normalized by b,,, given below)
attached to the box ¢ and the second coordinate the possible multiple positions among
{1,...,n} (standardized by 1/n) where this box has been chosen.

Our main results are the following. The first is a complete point-process convergence.

Theorem 4.1. For the model above under assumptions (4.2) and (4.3), with
(4.5) by = (cal' (1 = B)n’L(n))"/*,
we have

o
§n = &= ; 6(1‘;1/077%3))7 as n — o0,

in M4 ((0,00) x F([0,1])), where {(Fg,RE,B))}geN have the same law as in (3.5).
The second is the convergence of random sup-measures.

Theorem 4.2. Under the assumption of Theorem 4.1, we have
1
b—Mn = Mgy,3, asn — 0o,
in SM([0, 1]).

Theorem 4.1 is proved by analyzing the top order statistics of the model and their lo-
cations. Theorem 4.2 is a direct corollary of Theorem 4.1. Nevertheless, we will also give
a second proof of it which is straightforward, without any analysis of the other top order
statistics except the largest.

Remark 4.3. In the representation of the law of R in Lemma 3.1, the probability mass
function {pg(k)}ren has an intrinsic connection to the Karlin model: each pg(k) is the
asymptotic frequency of the number of boxes with exactly k balls, namely

1
L é—zl Lk, =k} = Pp(k) as.

This has been known since Karlin [17].

Remark 4.4. For the sake of simplicity, we do not introduce a slowly varying function in
(4.3) as in the common setup for heavy-tailed random variables. Replacing (4.3) by

Ple; > y) ~y “U(y) as y — o0
with a > 0 and ¢ a slowly varying function, the same limit arises while the correct normal-
ization would involve the Bruijn conjugate (e.g. [4, Proposition 1.5.15]).
5. PROOFS

In order to analyze the point process &,, we introduce a description of it through the
extreme values of the Karlin model. For each n € N, we consider the K, random variables

{Ee . Knj 7§ 0}
and their order statistics denoted by

51'7,,1 Z e Z En,Kn-
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When there are no ties, we let ka denote the label of the box corresponding to the k-th
order statistics, so that

Enk = €7 5 for k < K,

and set ZAnyk := 0 for k > K,,. When there are ties among the order statistics, the aforemen-
tioned labeling is no longer unique, and we choose one at random among all possible ones
in a uniform way. This procedure guarantees the independence between the values of the
order statistics and the permutation that classifies them. That is, given K, the variables
Zn’h - ,Zn,Kn are independent of the variables €, 1,...,&n Kk, . Now, introduce the random
closed sets

~

Ry = {i:l,...n:Yi:Z\mk}, k=1,...,.K,,

and }A%nk := 0 if k > K,,. The point processes &, introduced in (4.4) can then be written as

Kn

gn = Z 6(571,k/bnv§n,k‘/n) '

k=1

The key step in our proof is to investigate the following approximations of &,, keeping only
the top order statistics,

(m) . .
gn T Z(S(En,k/bn;Rn,k/n)’ m e N.
k=1

Here and below, we set €, 1 := 0 if k > K,,.

Proposition 5.1. For all m € N, we have
(m) (m) .
€'n, = ¢ = é_zl (S(le/a’Ré[i)), as n — 00,

in M4 ((0,00) x F([0,1])), where {(Fg,Rgﬂ))}geN have the same law as in (3.5).

Proof. There is only a finite number of random points in both ﬁﬁlm) and (™). Hence, it
suffices to prove the joint convergence

(5.1) <Egls’gm R"*l,..., R""") = (F;l/a,...,r;nl/a,Rgﬁ),...,Rg,?)
n n n n

in R x F([0,1])™, as n — oo. Under the heavy-tail assumption (4.3), the convergence

of the first m coordinates, as the normalized m top order statistics of K, i.i.d. random

variables, is well known from [22] if K, is a deterministic sequence increasing to infinity and

the normalization (here b,,) is c:;/ O‘K}L/ “. For the Karlin model, under the regular variation

assumption (4.2), it has been shown that
. K,
lim

A 5T =T(1-p) as.,

see [13, Corollary 21]. Therefore the convergence of the first m coordinates follows. Further,
on the left-hand side of (5.1), the first and last m coordinates are conditionally independent
given the event {K,, > m}. Since P(K,, > m) — 1 as n — oo, it is sufficient to prove the
convergence of the last m coordinates to conclude. The main difficulty in the analysis of the
last m coordinates is due to their dependence. To overcome this difficulty, we first consider a
coupled Poissonized version of the model. Namely, let {N(¢)}¢>0 denote a standard Poisson
process on R independent of {Y, }nen and {&,}nen, and let 0 < 71 < 72 < -+ denote its
consecutive arrival times. We consider the coupled model where we shift the fixed locations
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1,2,...,n of the original model to the random points corresponding to the consecutive
random arrival times of N. The Poissonized process is then { Xy }:>0. In this way, we set

(5.2) f(n,g = Z livi—e, ri<n} and I?n = Z 1{1@,,@#0}'
i=1 (=1

It is important to keep in mind that, for this model, there are K,, different ¢ involved at
time n, instead of K. Note that, thanks to the coupling, K, = Ky,). Thus, the order

statistics of the set {g; : f(n,g # 0} are exactly en(ny > -+ > EN(n), R Now, introduce

£y, such that

€7 = EN(n).k> k=1,...,K,,

and an =0if k > IN(n Again, in case of ties, we choose uniformly a random labeling as
before. Then we define

Ry o= {n Y, :Zn,k} nlo,n), k=1,...,K,.

The key observation on the Poissonization procedure is that given that Zml =01, by =
Ly, with £y, ... £y, >0, Eml, ceey Enym are independent random closed sets; this is a conse-
quence of the thinning property of Poisson processes. Moreover, the law of each Emk is the
conditional law of the set of the arrival times of a Poisson process with intensity py, within
[0,n], given that it is not empty.

We first show that

En,l En,m (B) 8)
(5.3) (n o >:><R1 Rm>

Let Ay,..., A, be m open intervals within (0,1). We first compute

(5.4) P (ﬁ {ifzﬂ,k N Ay # w})
k=1
= Z P(ﬁ {iﬁn,kﬂAk;&@}ﬂ{lZ,k:Ek}> .

Ly,....tm €N k=1

For every choice of ¢1,...,4, € N that are mutually distinct (otherwise the probability
above is zero), let Ny be a Poisson process with parameter py,, k = 1,...,m, and Ry, the
corresponding random closed set induced by its arrival times in [0, n]. Given {K, ¢}sen, the

probability of the event {an =l1,..., by m ="Vln}is

1.- - (K, —m)!
{Kn,e; 70,....Kn e, #0} -[A{—n‘

as each non-empty box has equal probability to be the k-th largest (above j! stands for
the factorial of the non-negative integer j). Therefore by conditioning on the values of

{Zn,k}k:17,,_,m first, and then using the independence of the f(n,g, we have, letting A\, denote
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the Lebesgue measure of Ay,

P(ﬁ{inkmﬁ#@}{nk_&w

=K (R, #0} (ﬁkmnAk#@ékﬂ[()’n]#@)}

_ (Kn . 1 — e wmPey
=E H Ky 0, 70} 1 — e~ "Pey
k=1
(51; ol )|

m

_(erK,(fl’ N4

where

N(‘g a“':gnz) — -
LS = > L&, 20}
£31,08401, b}

We shall prove, in Lemma 5.2 below, that 3, /((Kn,—m)V1) = 1and ®,/(K,+m) — 1in
L™, where ®,, := EK, ~ (1 — ﬂ)nﬁL( ) according to [13, Proposition 17 and Lemma 1].
Using that
1 K(Gretm)) 1

<

= < —
(mA Ko™ = (m+ Km0 (K —m) v ™

we infer that

1
( =2 (2 )) Ni)—in L', uniformly in (¢1,...,4,,), as n — oo.
m+Kn yeestm ! ;Ln

The right-hand side of (5.4) then becomes

I}(Elv---vém)[ m
>. E

—AkNPe,.
(m+K(€1’ 7m)) H(l_e ’ pek)

01yl EN,# k=1
1 m
(5.5) ~ Z H (1 —e M) asn — oo,
— B
(C(L = B)nPLln))™ = s
where in the summation, # indicates that ¢y, ..., ¢, are mutually distinct. If we sum over

all ¢1,..., 4, € N instead, recalling the definition of v in (4.1), we have
(5.6) S I a—e ) = H/ (1 — e /%)y (dx).
1ol €N k=1 k=170

For the Karlin model, it is well known that the regular variation assumption (4.2) on v leads
to, after integration by parts and change of variables,

> _e—)\n/x v(dr) = Oo)‘ine—/\n/wy T T
| a i) = [ (0, 2])d

V((O,n]))\/oOo P2 Mz = v((0,n]))N°T(1 - B).

This gives the asymptotic of (5.6), and also tells that the summations in (5.6) and (5.5) are
asymptotically equivalent. Therefore, we have shown that

) m 1 _ m B
Jm (ﬂ {AFnan 0}) 11

k=1 k=1
This established the claimed weak convergence in (5.3).



14 OLIVIER DURIEU AND YIZAO WANG

To complete the proof, it remains to show that Emk /n and ﬁmk /n can be made close
with arbitrarily high probability by taking n large enough. To make this idea precise, we
consider the Hausdorff metric dy for non-empty compact sets defined as, for two non-empty
compact sets Fy and Fb,

du(Fy, F3) := max { sup d(z, Fy), sup d(m,Fl)} ,
rEF TEF,

where d above is the distance between a point and a set induced in R by Euclidean metric:
d(z,A) := infyca |z — y|. It is known that dy metricizes the Fell topology on F'([0,1]) :=
F([0,1]) \ {0}. See for example [23, Appendix C]. For n large enough, consider the event

B’r(zm) = {Kn, 2m}n {I?n > m},

so that, under B,(Lm)7 ﬁn,k # () and ﬁnk # () for all k = 1,...,m. It is clear that

lim,, 00 P(Bém)) = 1. Therefore, (5.1) and hence the proposition shall follow from (5.3)
and the fact that for all § > 0,

(5.7) lim P ({ max  dy (R”’“Rk) > 5} mB;m>> —0.
n—00 k=1,....m n n

To prove (5.7), we first introduce the event

ET(Lm) — {Zn,l = Z”LJ’ e ,?nvm - Zn m}a

and we shall prove that lim,,_, P(Egm)) = 1. Since the probability of the event
T,Sm) = {no ties in the m + 1 top order statistics of {ey : Ky ¢ # 0 or I?nl #+ O}}
goes to 1 as n — oo, this will follow if one can show that

(5.8) Tim P (E,([”) nB™ n T,(;*U) =1
Assuming B,(lm) and T,S’”), the event E,(Lm) holds if the m top order statistics from the set
{e¢ : Ko # 0or I?n,z # 0} already appear in the subset {e; : K, ¢ # 0 and I?n’( # 0}.
Given K := K, A K,, and K =K,V I~(n, using the fact that the locations (labellings) of
the order statistics among {1,..., K} are uniformly distributed, the desired probability is
the one that, when taking uniformly at random a permutation of K,/ elements, the m first
elements of the permutation belong to a fixed subset of K/ elements. Thus, we infer that

Kp(Kp—1)--(Kp—m+1),
K/ (K = 1) (K —m 1) 87 |

P (Eﬁ[”) nB™ n T,W) —E [

The quotient in the expectation converges to 1 almost surely and it is bounded by 1. There-
fore, by the dominated convergence theorem, we obtain (5.8) and thus lim, IP’(Er(Lm)) =1.
From now on, we assume that the events ES™ and BY™ hold. Let k € {1,...,m} be

fixed and denote £ = Zn,k = ’l”vn’k. Recall our definition of 7;, the i-th arrival time of the
Poisson process N in the Poissonization and set

Pn = max [|i— 1,
= n

the maximal displacement of the positions 1,...,n by the Poissonization. Consider also the
Poisson process Ny derived from N by keeping only the arrival times corresponding to the
box £, (Ng(t) :== > ooy 1¢r,<tyliv,=¢,},t > 0). Thus, Ny is a Poisson process of intensity

(k) (k)

pe, and we denote by 7,7 < 7y’ < --- its consecutive arrival times.



KARLIN RANDOM SUP-MEASURES 15

Consider 7 € ﬁnk and first assume that ¢ is such that 7; < n and hence 7; € Enyk. In this
case we have d(i, Ry ;) < |i — 7| < pp. On the other hand, for i € R, such that 7, > n,
we have

- . k . k
d(i,Rp ) < i — T](\,k)(n)| <l|t—n|A |T](\,k)(n) —nl.
Since in this case N(n) < i < n, we have |[i —n| < |N(n) — n| and hence

, k
(5.9) sup d(i, Rp k) < max {pn, [N (n) —nl, |TJ(Vk)(n) - n\} .
ieﬁn,k
Now, consider 7; € ﬁnk For such 7; with ¢ € {1,...,n}, we have d(7;, ﬁnk) <|ri—i|l < pn,
whereas for 7, € R, with ¢ > n, denoting by j, the maximum of R, ; (non-empty by
assumption), we have

d(7i, Rn k) < |7 — gl < |1 — 7| + 175 — gl < 0= 75| + |75, — Jkl,

where we used that 7;, < 7; < n in the last inequality. Note that 7;, = 7'](\2 )(Tn) and thus,

D k
A Ro) < o+ 110 .
IS Tieﬁn,k

Therefore, above and (5.9) yield

Roj R IN() =l Ty =7 pu TNt — 7
dH n, 7 n, < max , k 7l+ k(Tn

n n n n

n n

It is well known that lim,_, pn/n = 0 and lim, . [N(n) —n|/n = 0 almost surely.
Furthermore,

(k) (k)
T n T (T N
lim 220 gy M) k() = pg,, — = 1 almost surely
n— 00 n n— 00 Nk(n) n De,,

and hence lim,,_,~ 7'](\;1 )(Tn) /m =1 almost surely. This established (5.7) and the proposition.
O

Lemma 5.2. Let {f(n}nzl be the process defined in (5.2) and &Dn = EIN(n, n > 1. For any
real constant ¢, we have

%
(f{'n + C) V1
almost surely and in LP for allp > 1.

— 1, asn — oo,

Proof. We know from [13] that K n ~ én almost surely and thus the almost sure convergence

above follows. Recalling that K, is a sum of independent {0, 1}-valued random variables
and that Var(K,,) = ®g,, — ®,, < ®,,, the Bernstein inequality (see e.g. [5]) gives

Ky
——1

1 $,/2)> _
P >— | <2exp | — (~ / )~ §26xp<3<l>n>.
o 2 2(Var(K,) + ®,/6) 28
Let p > 1 and ¢ > p be fixed. Using the above inequality and the fact that f(n/((f(n +co)V
1) <1V (1—c¢), we have

EL —E L 1% .\ | +E L 1%
(Kn+c)V1 (Kn+c)Vv1 Frzi} (Ko +ovi) {E<i}

<29(1V (1 —¢))? 4 207 exp (—238&%) .

n
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We infer that {®,,/((K, +¢)V 1)}n>1 is bounded in L? and then {[®n/(Kn+c)V P st
is uniformly integrable. The desired LP convergence follows. O

Proof of Theorem 4.1. To prove the convergence of the point processes of interest, we com-
pute their Laplace transform:

Kn
Ve, (f) = Eexp (~6a(f) = Eexp (— > F (en/on; ﬁn,k/n)> :
k=1

for f € C£((0,00) x F([0,1])), the space of non-negative continuous functions with compact

support. Similarly,
Ve(f) - Eexp( Zf( /e R(B)))

is the Laplace transform of £. Recall that the desu”ed convergence follows if and only if
(5.10) lim We, (f) = Te(f), for all f € C((0,00), F([0,1])),

see for example [29, Proposition 3.19].

Now we prove (5.10). When investigating the weak convergence of point processes here,
the topology on (0,00) is such that all compact sets are bounded away from zero and
F([0,1]) is itself a compact metric space. So, for any f € C%((0,00) x F([0,1])), there
exists K = k(f) > 0 so that f(z,F) =0 for all z < k and F € F([0,1]). Given f and thus
k > 0 fixed, for all € > 0, we can pick m = m(k,€) € N large enough, so that

lim P (B<m>) P (F;}/a < n) >1—¢ with BU) = {E’b”" < n}.

n—oo n

Now we express Ve, (f) as

Ve, () = E [exp (~€0(1) 1 pm | +E [exp (—€a(F) L 5om).] -

The second term on the right-hand side above is then bounded by 1 — P(B{""),). The first
term equals

(5.11)

exp ( Zf (en 5 /bns Ry, k/n)) B%)] .

This is the expectation of a function from R7* x F([0,1])™ to [0, 1], continuous everywhere
except at points from the set

(5.12) (@1, Ty Fry o Fr) € R X F([0,1])™ 2 2, = K}

We have seen the convergence (&4, /b, ﬁn’k/n)kzl m = (T 1/ R(B)) _,m in Propo-
sition 5.1, and we can notice that the set of discontinuity points (5.12) above is hit by
(F;l/a ;e Rgﬁ), . ,R,(E)) with probability zero. Therefore, applying the continu-
ous mapping theorem to (5.11), we have that

geeey

. —1/a 15(B)
llﬁsotip Ve (f) < [exp ( Zf( Ry, )) 1{1-\7—”1/04<K} +€
=E lexp (— I (F;l/a,R,(C’B))> I{F;Ll/a<ﬁ} +€
k=1

< Ue(f) +e

Similarly, one can show that

lim inf Ue (f) Z\Ifg(f)—IP’@;l/a ZFE> > Ue(f) — e

n—oo
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Since € > 0 is arbitrary, we have thus proved (5.10) for every test function f, and hence the
desired result. ]

Proof of Theorem 4.2. It suffices to prove, for all open intervals A;,..., Ay in [0,1] and
positive reals z1, ..., zq, that

M,
P, =P 771(141) > 21y, 7Mn(Ad) > 24
by, by,

— P(Mqy5(A1) > 21,...,Mag(Ag) > zq) := P, as n — oo.
This is a direct consequence of Theorem 4.1 since, denoting
Fa, ={FeF(0,1]): FNA; £0}, i=1,...,d,
we have

Pn:P(fn((Zl,OO) X]:/h) > 13-'~7§n((zdaoo) X]:Ad)
— P(g((zlvoo) X‘FAI) > 17"'75((Zd700) XJ:Ad,)

Our proof of Theorem 4.2 is based on the presentation (3.5) of M, g, which we have shown
at the beginning can be derived from the presentation (3.2). We conclude this section by
giving a direct proof of Theorem 4.2 using the presentation (3.2) and also without using
Proposition 5.1.

Second proof of Theorem 4.2. Fix d € N, open intervals A;,...,A; in [0,1] and positive
reals z1,...,24. We shall prove that

M, (A
P(nb(k)ﬁzk, k::l,...,d> = P(Map(Ar) <zp, k=1,....d),

as n — oo. For every £ € N and every n € N, we record whether Y; = /¢ for some
i € nAy, for each k = 1,...,d, and count different types of boxes. More precisely, introduce
§=(81,...,64) € Ay :={0,1}9\ {0,...,0}, and consider

o0
Ta(n) :Z H Lisiena, vi=e} H liviena,, vizey-
d

0=1k=1,..., K'=1,....d
Sp=1 5,1 =0

For example, Ti"'”’l(n) is the number of box ¢ that has been sampled in some round i; €

nAi,is € nAs, ..., iq € nAg, and T}Q’O’“"O(n) is the number of box ¢ that has been sampled

in some round i; € nAj, but never in any round in nds,...,nAy. So all boxes that have

been sampled during the first n rounds are divided into disjoint groups indexed by § € Ag,.
Now we need the following limit theorem for 74 (n):

') oo
; Tan) s _ —B-1% N _ _
(5.13) HILH;OTLBL(TL) =73 .—/O Bx P(l{N(xAk);éo}_5k7k_17""d> dx
in probability. This follows from [10, Theorem 2] (which was also established by the Pois-
sonization technique): the above identity therein was established for the corresponding
Poisson random measures being even or odd, and we obtain the desired result here by
applying the identity

P (N(4)#0) = %1@3 (W(24) oda)
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Then, conditioning on {Y;, },en, we can write

P(qu,kﬂ,...,d)

n

3 (n)
II%( 1ﬁ%m%)

decAy

_ 5 o (€0 :
= Eexp{ Z Ta(n)log [1 Py (bn > oy R zk)] } ,

dcAy

where €q, defined on another probability space (29, Fo,Po), has the same distribution as ;.
By (5.13) and heavy-tail assumption (4.3) on &’s distribution,

P <H%P%(%>h¢%%4%ﬂ
€N,

=Tr1-p"" Z 5 (k_l min ) zk> in probability.

Sy =
5chq k

This last sum can be written as

E(Y max H
k=1,...,d,0,= 12 {I{N(wAk);so}:‘sk}

ey

E LR @an#0}
]E max ———=7721
<5€Ad k=1,....d ZI? {l{ﬁ(mAk)#0}_6k’k_1,u.}d})

~ 15
_i ( ax {N(acAk)séO}) _
k=1,....d 2y

Summing up, we have thus shown that

lim IP’(ZMnb(Ak)gzk, k::l,...,d)

n—oo n

:exp< / Bz A~ 1IE( max W)dm),
“k

which is the desired finite-dimensional distribution as in (3.2). O

6. RANDOM SUP-MEASURES AND ASSOCIATED EXTREMAL PROCESSES

The extremal process associated to the Karlin random sup-measure M, g appears to be
a time-changed version of a standard a-Fréchet extremal process M,,, precisely

(6.1) {Ma(t7) }t>0

As noticed in Section 2, this is a consequence of the more general fact that the extremal
process of any Choquet a-Fréchet random sup-measure is determined by the extremal co-
efficient functional evaluated on sets {[0,¢]};>0 only. This is proved in Proposition A.l in
the appendix. The Karlin random sup-measure is of course not the only Choquet random
sup-measure corresponding to the same extremal process (6.1). Another such family that
arises naturally from limit theorems with long-range dependence are the stable-regenerative
random sup-measures [18] recalled below.
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Example 6.1. We recall the definition of stable-regenerative random sup-measures:

. 1
(6.2) a,8() =sup — =17/ ) )
’ ten T,/ {(vi?+R)n 20}

where {(Ty, Ve(ﬁ), Réﬁ))}geN is a Poisson point process on Ry x Ry x F(R;) with intensity

dzBv~(=Advd P, _ 5 where P;_g is the law of (1— 3)-stable regenerative set (i.e., the closure

of a (1 — B)-stable subordinator [2]) on R, and ﬁy) in (1.3) is Vg(ﬁ) + Réﬁ) here. It was
shown [18, 26] that

{ME (10, )} 109 = {Malt?)} 15y -

(Strictly speaking only 8 € (1/2,1) was considered in [18], although the extension to 8 €
(0,1) is straightforward.)

We now give an example of random sup-measure that is self-similar, non-stationary, and
yet also has the same extremal process.

Example 6.2. For 5 > 0, let T3 be the mapping between subsets of R induced by ¢ — 8.
Then, M, o T is B/a-self-similar, but non-stationary, and the corresponding extremal
process also has the form {M,, (t)};>0.

In the special case 8 € (0,1), we provide another equivalent representation of M, o T,
which can also be connected to a variation of the Karlin model investigated in Section 4.
Let N be a Poisson random measure on R, , and view it as a Poisson process by letting

N(t) = N(]0,t]) € Ny := {0} UN denote the counting number of the Poisson process. We
write

NA] = {/\~/(t) te A} C No, for A C R,.

We then introduce

. 1
(6.3) wp() = ilelg WI{NWM 1} OB Ry,

with {(F[,/\?@,LE@)}@E]\] defined as in (3.1). When restricted to [0, 1],

. d 1
R TR e

with R(®* £ min R (recall (3.4)). In fact, one could define M, 5 and M, ;5 based on
the same Poisson point process such that with probability one, M, g(-) > Mzﬁ()

Proposition 6.3. Let M, be defined as in (1.2) and T be the mapping between subsets of
R induced by t — t°? for some B € (0,1), then

(6.4) s T My oTp

as random sup-measures on R .

Proof. To show (6.4), by self-similarity it suffices to restrict to [0, 1] and compare the capacity
functionals of the random closed sets in the Poisson point process presentation (6.3) and
(1.2). We start by computing the extremal coefficient functional corresponding to (6.3): for
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an interval A = (a,b),
ra— gyt [ BB (N eA) 5 1) d
=7 [ B (K fed) 3 1) da

-1 /OO Bx— PP (N(:ca) =0, N (ab) > 0) dx
0
71/0 Bz—B-1 [[[D (/\/ 0) P (/\7(xb) = 0)} dx

This implies that the capacity functional for R(P* is

:(bB—

0(la.t)P (R 1 [a,8] #0) = b — ” = Leb(Ty([a,1])),

whence

* d 1
Ma () = sup g r Lw,ers()y
with {Up,}nen being ii.d. uniform random variables on [0,1]. The desired result hence

follows. 0

The above representation of M, 0Tz was discovered during our investigation on the limit
of empirical random sup-measures for the following variation of the Karlin model

X} = EY'VL]'{Kn,Yn:l}’ n €N,

with {Y,, }nen, {en}nen and K, ¢, as in Section 4. In this variation, if a box ¢ is sampled
(Y, = ), then X = &, only if this is the first time for the box ¢, and X = 0 otherwise. For
this model, one could establish a limit theorem for the empirical random sup-measure, and
the limit is exactly the random sup-measure M, 5- The sequence {X}nen is not stationary,
a drastically difference from {X, },en considered in Section 4. Nevertheless, we see that
partial maxima of both sequences are equal, explaining the equality of the corresponding
extremal processes in the limit.

We conclude this section by the following remark comparing the aforementioned random
sup-measures.

Remark 6.4. In summary, for 8 € (0,1),
Ma,ﬁv M:::ﬁa and M, o T,B

all have the same extremal process as {M,(t®)};>0. The independently scattered ran-
dom sup-measure M,, the stable-regenerative random sup-measure M®" o) and the Karlin
random sup-measure M, g are all self-similar and shift-invariant. However for the corre-
sponding max-increment processes (3.6), M, is mixing, MZ&B is ergodic but not mixing,
and M, g is not ergodic. The random sup-measure M, o T is self-similar but not shift-
invariant.

APPENDIX A. EXTREMAL PROCESSES OF CHOQUET RANDOM SUP-MEASURES

As before, given a random sup-measure M, we let M(t) := M([0,¢]), ¢ > 0, denote its
associated extremal process. We denote by M, the standard a-Fréchet extremal process
defined in (2.4). In the literature, M, was originally named the extremal process [12, 20].
The notion has become however more and more common to refer to various limits of partial-
maxima processes. The same notion was also used for random sup-measures in [25].

Recall the definition Choquet random sup-measures (2.2) in Section 2. Proposition 2.1
therein is a special case of the following result.
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Proposition A.1. Let M be a Choquet a-Fréchet random sup-measure with extremal co-
efficient functional 6, and M its extremal process.
(i) Ford e N0 <t; <--- <ty and x1,...,x4 € Ry,

d
(A.1) P (M(ty) < zp,k=1,..., ( Z Otk>

with ) )
ay = — k=1,...,d-1,

d d
/\j:k Zj /\j:k+1 Zj

and aq = 1/xzq4.
(i) If in addition M is H-self-similar with H > 0, then,

0([0, 1)) {M()},50 = {Ma ()}, -

Proof. We start by computing the finite-dimensional distribution of the associated extremal
process. We write

P(M(ty) < o,k =1,...,d) = P (M([0,tx]) < 2k =1,...,d)

VIR
=P / \/ ——dM <1
R

+ k=1 jkIJ

See [34] for background on stochastic extremal integrals [ v fdM. We then express the
integrand as

() = \/ Lpo,4,(t) ) (¢ Zakl 0 (t

k=1 /\J ELi k=1
In this way, we see that f is an upper-semi-continuous function expressed as the sum of
d comonotonic functions. Let 6 denote the extremal coefficient functional of M. From
[24], we know that P(fv gdM < t) = exp(—£(g)/t), t > 0, where here and below, £(g) :=
J 9df (understood as a Choquet integral for upper-semi-continuous function g) is the tal
dependence functional of M, and (1) = 0(K). In particular we have

(A.2) P(M(ty) < ap, k=1,...,d) =P (/v faM < 1) = exp (—€(f))

d
= exp <— Zakﬁ([oatk})> :
k=1

and in the last step we applied the comonotonic additivity of the tail dependence function ¢
for Choquet random sup-measures (i.e., for comonotonic functions g, k, [ g+hdf = [ gdf +
J hdf [8, 24]). We have proved the first part of the proposition.

We also know that for an H-self-similar a-Fréchet random sup-measure, the extremal
coefficient functional necessarily has the scaling property (A[0,t]) = A*H76([0,t]) for all
A > 0 (see (2.1)). So for such a random sup-measure the conclusion of the first part
becomes

‘
P (M(tg) < zx,k=1,...,n) =exp (—9([0, 1]) ZaktgH> .
k=1
Recall that for the independently scattered random sup-measure M., extremal coefficient
functional is the Lebesgue measure. The second part of the proposition then follows. O

Remark A.2. We thank an anonymous referee for pointing out to us the following conse-
quence: for a general Fréchet random sup-measure not of Choquet type, the statement (A.1)
holds with ‘=’ replaced by ‘>’. This is due to the stochastic dominance property of Choquet
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random sup-measures. Indeed, a general Fréchet random sup-measure M can be coupled
with a Choquet random sup-measure M with the same extremal coefficient functional 6.
Let M M and E { be the extremal processes and the tail dependence functionals of the two
random sup-measures, respectively. It is shown in [24, Corollary 5.4] that ¢ < ¢. Now,
the aforementioned statement follows from the fact that the law of the extremal process is
uniquely determined by the tail dependence functional (A.2).
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