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HOLOMORPHIC RIEMANNIAN METRIC AND FUNDAMENTAL
GROUP

INDRANIL BISWAS AND SORIN DUMITRESCU

Abstract. We prove that compact complex manifolds bearing a holomorphic Riemannian
metric have infinite fundamental group.

1. Introduction

The complex analogue of a (pseudo)-Riemannian metric is a holomorphic Riemannian

metric. Recall that a holomorphic Riemannian metric g on a complex manifold X is a holo-

morphic section of the vector bundle S2(T ∗X) of complex quadratic forms on the holomorphic

tangent bundle TX which is nondegenerate at every point of X (see Definition 2.1).

Given a holomorphic Riemannian metric g on X, there is a unique torsion-free holomorphic

affine connection ∇ on the holomorphic tangent bundle TX such that g is parallel with

respect to ∇, or in other words,

ξ · (g(s, t)) = g(∇ξs, t) + g(s, ∇ξt)

for all locally defined holomorphic vector fields ξ, s and t; this ∇ is known as the Levi-Civita

connection for g. The curvature tensor of ∇ vanishes identically if and only if g is locally

isomorphic to the standard flat model dz21 + . . .+dz2n on Cn, where n = dimX. More details

on the geometry of holomorphic Riemannian metrics can be found in [Le, Du3, DZ].

Compact complex manifolds X bearing holomorphic Riemannian metrics are rather spe-

cial. First notice that g produces a holomorphic isomorphism between TX and its dual T ∗X.

In particular, the canonical bundle and the anticanonical bundle of X are isomorphic, which

implies that the canonical bundle is of order two (the canonical line bundle of a certain

unramified double cover of X is trivial). Moreover, if X is Kähler, the classical Chern–

Weil theory shows that the Chern classes with rational coefficients ci(X,Q) must vanish

[At, pp. 192–193, Theorem 4]. It now follows, using Yau’s theorem proving Calabi’s conjec-

ture [Ya] (see also [Be] and [IKO]), that X admits a flat Kähler metric, and consequently,

X admits a finite unramified cover which is a complex torus. Note that any holomorphic

Riemannian metric on a complex torus is necessarily translation invariant and, consequently,

flat.

An interesting family of compact complex non-Kähler manifolds which generalizes complex

tori consists of those manifolds whose holomorphic tangent bundle is holomorphically trivial.
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These, so called parallelizable manifolds, are biholomorphic to the quotient of a complex Lie

group G by a co-compact lattice Γ in G [Wa]. A parallelizable manifold G/Γ is Kähler if and

only if G is abelian [Wa]. Any nondegenerate complex quadratic form on the Lie algebra of

G uniquely defines a right invariant holomorphic Riemannian metric on G which descends

to the quotient G/Γ of G by a lattice Γ. In particular, the Killing quadratic form on the Lie

algebra of a complex semi-simple Lie group G, being nondegenerate and invariant under the

adjoint representation, furnishes a bi-invariant holomorphic Riemannian metric on G and a

G-invariant holomorphic Riemannian metric on any quotient G/Γ by a lattice.

When G is SL(2,C), exotic deformations of parallelizable manifolds SL(2,C)/Γ bearing

holomorphic Riemannian metrics were constructed by Ghys in [Gh]. Let us briefly recall

Ghys’ construction. Choose a uniform lattice Γ in SL(2,C) as well as a group homomorphism

u : Γ −→ SL(2,C), and consider the embedding

Γ −→ SL(2,C)× SL(2,C) , γ 7−→ (u(γ), γ) .

Using this homomorphism, Γ acts on SL(2,C) via the left and right translations of SL(2,C).

More precisely, the action is given by:

(γ, x) 7−→ u(γ−1)xγ ∈ SL(2,C)

for all (γ, x) ∈ Γ× SL(2,C). It is proved in [Gh] that for u close enough to the trivial ho-

momorphism, the group Γ acts properly and freely on SL(2,C) such that the corresponding

quotient M(u,Γ) is a compact complex manifold (covered by SL(2,C)). For a generic homo-

morphism u, these examples do not admit a parallelizable manifold as a finite cover. Since

the Killing quadratic form is invariant by the adjoint representation, the induced holomor-

phic Riemannian metric is bi-invariant on SL(2,C) and hence it descends to the quotients

M(u,Γ). Notice that g is locally isomorphic to the complexification of the spherical metric

on S3 and it has constant non-zero sectional curvature.

The general case of a compact complex threefold X bearing a holomorphic Riemannian

metric g shares many features of the previous construction of Ghys. In this direction, it was

proved in [Du3, DZ] that g is necessarily locally homogeneous (see Section 2), and X admits

a finite unramified cover bearing a holomorphic Riemannian metric of constant sectional

curvature. In view of this we make the following:

Conjecture 1.1. Any holomorphic Riemannian metric on a compact complex manifold X

is locally homogeneous.

Conjecture 1.1 implies that X must have infinite fundamental group (see Section 4).

The main result proved here is the following (see Theorem 4.2):

Compact complex manifolds bearing holomorphic Riemannian metrics have infinite funda-

mental group.

This generalizes Corollary 4.5 and Theorem 4.6 in [BD], where the same result was proved

under the stronger hypothesis that the algebraic dimension of X is either zero or one.
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Some parts of the method of proof of Theorem 4.2 generalize to the broader framework of

rigid geometric structures in Gromov’s sense [DG, Gr] and give the following (see Theorem

4.3):

Let X be a compact complex manifold with trivial canonical bundle and algebraic dimension

one. If X admits a holomorphic rigid geometric structure, then the fundamental group of X

is infinite.

Theorem 4.3 was proved in [BD] under the hypothesis that X is of algebraic dimension

zero. It may be mentioned that for general rigid geometric structures, some hypothesis on

the algebraic dimension is needed. Indeed, projective embeddings of a compact projective

Calabi–Yau manifold in some complex projective space are holomorphic rigid geometric

structures that are not locally homogeneous [DG, Gr].

Nevertheless, we make the following general conjecture which encapsulates the case of

holomorphic Riemannian metrics:

Conjecture 1.2. Any holomorphic geometric structure of affine type φ on a compact complex

manifold with trivial canonical bundle X is locally homogeneous. Consequently, if φ is rigid,

then the fundamental group of X is infinite.

Conjecture 1.2 was proved to be true in the contexts of Kähler (so Calabi–Yau) manifolds

[Du2], and also when the holomorphic tangent bundle of the manifold is polystable with

respect to some Gauduchon metric on it [BD].

2. Geometric structures and Killing fields

Let X be a complex manifold of complex dimension n.

Definition 2.1. A holomorphic Riemannian metric on X is a holomorphic section

g ∈ H0(X, S2((TX)∗))

such that for every point x ∈ X the quadratic form g(x) on TxX is nondegenerate.

Holomorphic Riemannian metrics and holomorphic affine connections are rigid geometric

structures in Gromov’s sense [DG]. Let us briefly recall the definition of rigidity in the

holomorphic category.

For any integer k ≥ 1, we associate the principal bundle of k-frames Rk(X) −→ X,

which is the bundle of k-jets of local holomorphic coordinates on X. The corresponding

structural group Dk is the group of k-jets of local biholomorphisms of Cn fixing the origin.

This Dk is known to be a complex algebraic group.

Definition 2.2. A holomorphic geometric structure φ of order k on X is a holomorphic Dk-

equivariant map from Rk(X) to a complex algebraic manifold Z endowed with an algebraic

action of Dk. The geometric structure φ is said to be of affine type if Z is a complex affine

variety.
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Holomorphic tensors are holomorphic geometric structures of affine type of order one, and

holomorphic affine connections are holomorphic geometric structures of affine type of order

two. Holomorphic embeddings in projective spaces, holomorphic foliations and holomorphic

projective connections are holomorphic geometric structure of non–affine type [DG, Gr].

A (local) biholomorphism f between two open subsets of X is a (local) isometry (auto-

morphism) for a geometric structure φ if the canonical lift of f to Rk(X) preserves the fibers

of φ.

The associated notion of a (local) infinitesimal symmetry is the following:

Definition 2.3. A (local) holomorphic vector field on Y is a (local) Killing field of a holo-

morphic geometric structure φ : Rk(X) −→ Z if its canonical lift to Rk(X) preserves the

fibers of φ.

In other words, Y is a Killing field of φ if and only if its (local) flow preserves φ. The

Killing vector fields form a Lie algebra with respect to the Lie bracket of vector fields.

A classical result in Riemannian geometry shows that Y is a Killing field of a holomorphic

Riemannian metric g on X if and only if v 7−→ ∇vY is a skew-symmetric section of End(TX)

with respect to g, where ∇ is the Levi-Civita connection of g [Ko].

A holomorphic geometric structure φ is rigid of order l in Gromov’s sense if any local

automorphism of φ is completely determined by its l-jet in any given point (see [DG, Gr]).

Holomorphic affine connections are rigid of order one in Gromov’s sense. The rigidity arises

from the fact that the local biholomorphisms fixing a point and preserving a connection

actually linearize in exponential coordinates, so they are completely determined by their

differential at the fixed point. Holomorphic Riemannian metrics, holomorphic projective

connections and holomorphic conformal structures for dimension at least three are rigid

holomorphic geometric structures. On the other hand, holomorphic symplectic structures

and holomorphic foliations are not rigid [DG].

Local Killing fields of a holomorphic rigid geometric structure φ form a locally constant

sheaf of Lie algebras [DG, Gr]. The typical fiber is a finite dimensional Lie algebra called the

Killing algebra of φ. The geometric structure φ is called locally homogeneous if its Killing

algebra acts transitively on X.

The standard facts about smooth actions of Lie groups preserving an analytic rigid geo-

metric structure and a finite volume are adapted to our holomorphic set-up (compare with

[Gr, Section 3.5]).

Lemma 2.4. Let X be a compact complex manifold endowed with a holomorphic rigid geo-

metric structure g. Assume that the automorphism group G of (X, g) preserves a smooth

volume on X and is noncompact. Then at a general point x ∈ X there exists at least one

local Killing field Y of g such that Y (x) = 0.

Proof. Let φ : Rk(X) −→ Z be a holomorphic rigid geometric structure of order k. Then

there exists l ∈ N large enough such that the l-jet φ(l) : Rk+l −→ Z(l) of φ satisfies the
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condition that the orbits of the local automorphisms of φ are the projections on X of the

inverse images, through φ(l), of the Dk+l-orbits in Z(l) [DG, Gr]. Recall that the map φ(l) is

Dk+l-equivariant.

Since the automorphism group G preserves the finite smooth measure, by Poincaré recur-

rence theorem, for any generic point x ∈ X there exists an unbounded sequence of elements

gj ∈ G, j ≥ 1 (meaning sequence leaving every compact subset in G) such that gj · x
converges to x. We lift the G-action in the bundle Rk+l and we consider the orbit gj · x̂ of a

lift of x in Rk+l. There exists a sequence {pj}∞j=1 in Dk+l such that gj(x̂) · p−1j converges to

x̂. Notice that {pj}∞j=1 is an unbounded sequence in Dk+l, since the lifted G-action on Rk+l

is proper. Using the equivariance property of φ(l) we get that pj ·φ(l)(x̂) converges to φ(l)(x̂).

The action of the algebraic group Dk+l on Z(l) is algebraic. This implies that the Dk+l-

orbits in Z(l) are locally closed [Ro]. In particular, this also stands for the orbit O of φ(l)(x̂).

Let us denote by I the stabilizer of φ(l)(x̂) in Dk+l. The orbit O with the induced topology

coming from Z(l) is homeomorphic to the quotient Dk+l/I. The above observation that

pj · φ(l)(x̂) converges to φ(l)(x̂) is equivalent to the existence of a sequence (ηj) in Dk+l

converging to identity such that ηj · pj ∈ I. Since I contains an unbounded sequence in

Dk+l and it is an algebraic group — hence having only finitely many connected components

— it follows that its connected component of identity I0 is a connected complex algebraic

subgroup in Dk+l of complex dimension at least one. Any one parameter subgroup in I0

integrates a local Killing field Y vanishing at x (see Corollary 1.6 C in [Gr]). �

Given a holomorphic Riemannian metric g, there is a holomorphic volume form ωg associ-

ated to it, and hence there is an associated volume form given by ωg∧ωg. The automorphism

group for g preserves the smooth measure associated to ωg ∧ ωg.
It was noted that the automorphism group in Lemma 2.4 has finitely many connected

components [Gr, Section 3.5]. Therefore, this automorphism group is compact if and only if

its connected component of the identity is compact.

3. Algebraic reduction and orbits of Killing fields

Recall that the algebraic dimension of a compact complex manifold X is the transcendence

degree of the field of meromorphic functionsM(X) on X over the field of complex numbers.

The algebraic dimension of a projective manifold coincides with its complex dimension. In

general, the algebraic dimension of a compact complex manifold X of complex dimension n

may be less than n and in fact takes all integral value between 0 and n. Compact complex

manifolds of maximal algebraic dimension n are called Moishezon. They are known to be

bi-meromorphic to projective manifolds [Mo]. More generally we have the following classical

result called the algebraic reduction theorem (see [Ue]):

Theorem 3.1 ([Ue]). Let X be a compact connected complex manifold of algebraic dimension

a(X) = d. There exists a bi-meromorphic modification

Ψ : X̃ −→ X
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and a holomorphic map

t : X̃ −→ V

with connected fibers onto a d-dimensional algebraic manifold V such that t∗(M(V )) =

Ψ∗(M(X)).

Let π : X −→ V be the meromorphic map given by t ◦ Ψ−1; it is called the algebraic

reduction of X.

Theorem 3.2. Let X be a compact, connected and simply connected complex manifold of

complex dimension n and of algebraic dimension d. Suppose that X admits a holomorphic

rigid geometric structure g. Then H0(X, TX) admits an abelian subalgebra A acting on X

preserving g and satisfying the condition that the generic orbits of the algebraic reduction of

X lie in the orbits of A (hence the dimension of A is at least n− d). Moreover, A is the Lie

algebra of the connected component of the identity of the automorphism group of the rigid

geometric structure g′ which is a juxtaposition of g with a maximal family of commuting

Killing fields of g.

Proof. By the main theorem in [Du1] (see also [Du2]) the Lie algebra of local holomorphic

vector fields on X preserving g acts on X with generic orbits containing the orbits of the

algebraic reduction π of X.

SinceX is simply connected, by a result due to Nomizu [No] generalized first by Amores [Am]

and then by Gromov [DG, p. 73, 5.15], local vector fields preserving g extend to all of X.

Thus we get a finite dimensional complex Lie algebra G, formed by holomorphic vector fields

Xi preserving g, which acts on X with orbits containing the generic fibers of π.

Now put together g and a family of global holomorphic vector fields Xi spanning G, to

form another rigid holomorphic geometric structure g′ = (g,Xi); see [DG] (Section 3.5.2 A)

for details about the fact that the juxtaposition of a rigid geometric structure with another

geometric structure is still a rigid geometric structure in Gromov’s sense. Considering g′

instead of g and repeating the same argument as before, the complex Lie algebra A of those

holomorphic vector fields preserving g′ acts on X with generic orbits containing the fibers of

π. But preserving g′ means preserving g and commuting with the vector fields Xi. Hence A

coincides with the center of G. In particular, A is a complex abelian Lie algebra acting on X

preserving g and with orbits containing the generic fibers of the algebraic reduction π. �

3.1. Maximal algebraic dimension. Assume that X is a Moishezon manifold, so the

algebraic dimension of X is n = dimCX.

Proposition 3.3. If TX admits a holomorphic connection, then X admits a finite unrami-

fied covering by a compact complex torus.

The first step of the proof of Proposition 3.3 is the following:

Lemma 3.4. Let X be a complex manifold endowed with an affine holomorphic connection.

Then there is no nonconstant holomorphic map from CP1 to X.
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Proof. Let ∇ be a holomorphic connection on X. Let

f : CP1 −→ X

be a holomorphic map. Consider the pulled back connection f ∗∇ on f ∗TX. Since dimC CP1 =

1, the connection f ∗∇ is flat. Moreover, CP1 being simply connected, f ∗∇ has trivial mon-

odromy, implying that the holomorphic vector bundle f ∗TX is trivial.

Now consider the differential of f

df : TCP1 −→ f ∗TX .

There is no nonzero holomorphic homomorphism from TCP1 to the trivial holomorphic line

bundle, because degree(TCP1) > degree(OCP1) = 0. This implies that df = 0. Therefore,

f is a constant map. �

Proof of Proposition 3.3. Since the Moishezon manifold X does not admit any nonconstant

holomorphic map from CP1, it is a complex projective manifold [Ca, p. 307, Theorem 3.1].

As TX admits a holomorphic connection, ci(X,Q) = 0 for all i > 0 [At, p. 192–193,

Theorem 4], where ci(X,Q) denotes the i–th Chern class of TX with rational coefficients.

Therefore, X being complex projective, from Yau’s theorem proving Calabi’s conjecture,

[Ya], it follows that X admits a finite unramified covering by a compact complex torus (see

also [Be, p. 759, Theorem 1] and [IKO]). �

4. Rigid geometric structures and fundamental group

In this section we prove the two main results mentioned in the introduction.

Let us first address the easy case where the geometric structure is supposed to be locally

homogeneous.

Proposition 4.1. Let X be a compact complex manifold with trivial canonical bundle. If

X is endowed with a locally homogeneous holomorphic rigid geometric structure g, then the

fundamental group of X is infinite.

Proof. Assume, by contradiction, that the fundamental group of X is finite. So replacing

X by its universal cover we may assume that X is simply connected. Since g is locally

homogeneous, and local Killing fields extend to all of X by Nomizu’s theorem [No, Am, Gr],

it follows that TX is generically spanned by globally defined holomorphic Killing vector

fields. Let {X1, · · · , Xn} a family of linearly independent holomorphic vector fields on X

which span TX at the generic point. Consider a nontrivial holomorphic section vol of the

canonical line bundle, and evaluate it on X1∧· · ·∧Xn to get a holomorphic function vol(X1∧
· · · ∧ Xn). This holomorphic function on X is constant and nonzero at the generic point.

This immediately implies that {X1, . . . , Xn} span TX at every point in X. Consequently,

TX admits a holomorphic trivialization and, by Wang’s theorem [Wa], X is a quotient of a

connected complex Lie group by a lattice in it. In particular, the fundamental group of X

is infinite: a contradiction. �
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Theorem 4.2. Let X be a compact complex manifold admitting a holomorphic Riemannian

metric g. Then the fundamental group of X is infinite.

Proof. Assume, by contradiction, that X is endowed with a holomorphic Riemannian metric

g and has finite fundamental group. Replacing X by its universal cover we can assume that

X is simply connected. Denote also by g the symmetric bilinear form associated to the

quadratic form g. The holomorphic tangent bundle TX is endowed with the (holomorphic)

Levi-Civita connection of g. If X is Moishezon, Proposition 3.3 shows that X admits a finite

unramified cover which is a complex torus: a contradiction (for X supposed Moishezon).

Therefore, the algebraic dimension d of M is strictly less than the complex dimension n

of M . Consequently the algebraic reduction of M admits fibers of positive dimension n− d.

By Theorem 3.2, there exists a finite dimensional abelian Lie algebra A lying inside the

Lie algebra of global holomorphic vector fields on X which preserves g and acts transitively

on the generic orbits of the algebraic reduction, meaning the generic fibers of the algebraic

reduction are contained in the leaves of the foliation generated by A. Let X1, X2, . . . , Xk ∈
H0(X, TX) be a basis of A, with k ≥ n− d > 0.

For all i, j ∈ {1, · · · , k}, the functions g(Xi, Xj) on X are holomorphic and hence

constant.

Assume first that there exists Xi ∈ A as above such that the dual one-form ωi defined

by ωi(v) := g(Xi, v) vanishes on A (equivalently, g(Xi, Xj) = 0, for all j ∈ {1, · · · , k}).
This implies that ωi vanishes on the generic fibers of the algebraic reduction π : X −→ V .

Since Ψ∗(ωi) (see Theorem 3.1 for Ψ) vanishes on the generic fibers of t (and hence on all

fibers), which are compact and connected, this implies that Ψ∗(ωi) is the pull-back t∗(ω̃i)

of a holomorphic one-form ω̃i defined on the complex algebraic manifold V . Notice that

singular fibers give no problem by Lemma 3.3 in [En]. Since holomorphic forms on algebraic

manifolds are closed, it follows that dΨ∗(ωi) = dω̃i = 0. Consequently, we have dωi = 0.

Since X is simply connected, ωi must be exact. This implies ωi vanishes identically, and

hence Xi vanishes identically: a contradiction.

Thus we are left with the case where g restricted to A is nondegenerate. In particular,

vector fields in A do not vanish on X. Consequently, the foliation generated by A is nonsin-

gular and is of complex dimension k. Lemma 2.4 implies that the corresponding connected

Lie group G, meaning the connected component of the automorphism group of the holomor-

phic rigid geometric structure g′ = (g,X1, . . . , Xk), is compact. It must be isomorphic to a

compact complex torus T of dimension n− d.

The action of G = T on X is locally free. We show that this action must be free. Indeed,

assume that an element f ∈ G fixes x0 ∈ X. Since G is abelian, the differential df(x0) at

x0 acts trivially on A. It must preserve its orthogonal part A⊥. Moreover, since f preserves

each orbit of G, the action of df(x0) must also be trivial on A⊥. Recall that g restricted to

A is nondegenerate, which implies that A ⊕ A⊥ = TX. It now follows that df(x0) is the

identity map, and so f must be trivial: it is the identity element in G.
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The action of G being free, X is a holomorphic G-principal bundle over some compact

complex manifold N . Since X is simply connected and G is connected, N must be sim-

ply connected. Since the G-action preserves A and g, the restriction of g to A⊥ defines a

transverse holomorphic Riemannian metric to the foliation defined by the G-action. This

transverse holomorphic Riemannian metric descends to a holomorphic Riemannian metric

on N . But the complex dimension of N is strictly less then the complex dimension of X. We

conclude by induction on the complex dimension of X (the only Riemann surfaces admit-

ting holomorphic Riemannian metrics are elliptic curves and they have infinite fundamental

group). �

Recall that it was proved in [BD, Proposition 4.4] that compact complex manifolds with

trivial canonical bundle and algebraic dimension zero admitting holomorphic rigid geometric

structures have infinite fundamental group.

We prove here the following:

Theorem 4.3. Let X be a compact complex manifold with trivial canonical bundle and

algebraic dimension one. If X admits a holomorphic rigid geometric structure, then the

fundamental group of X is infinite.

Proof. Let X be a compact complex manifold bearing a holomorphic rigid geometric struc-

ture g. Assume, by contradiction, that the fundamental group of X is finite. Replacing X

by its universal cover we assume that X is simply connected.

We now use Theorem 3.2 to get an abelian subalgebra A of H0(X, TX) which acts on X

preserving g and satisfying the condition that the generic orbits of the algebraic reduction

of X lie in the A-orbits (hence the dimension of A is at least n − 1). Choose elements

X1, · · · , Xn−1 of A which span, at the generic point x ∈ X, the tangent space of the fiber

π−1(π(x)) of the algebraic reduction of X.

Consider vol a nontrivial holomorphic section of the canonical bundle of X. Then the

holomorphic one-form ω on X defined by v 7−→ vol(X1 ∧ . . . ∧ Xn−1 ∧ v) vanishes on

the fibers of the algebraic reduction. As in the proof of Theorem 4.2, the form Ψ∗(ω) (see

Theorem 3.1 for Ψ) descend to the projective manifold V , the basis of the algebraic reduction

(once again, singular fibers give no problem by Lemma 3.3 in [En]). In particular, ω is closed.

This implies that the fundamental group of X is infinite. �
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