J. W. Semple, J. E. Italiano, . Jr, and J. Freedman, Platelets and the immune continuum, Nature Reviews Immunology, vol.25, issue.4, pp.264-274, 2011.
DOI : 10.1182/blood-2009-09-244772

D. Cox, S. W. Kerrigan, and S. P. Watson, Platelets and the innate immune system: mechanisms of bacterial-induced platelet activation, Journal of Thrombosis and Haemostasis, vol.7, issue.6, pp.1097-1107, 2011.
DOI : 10.1111/j.1538-7836.2008.03211.x

O. Garraud and F. Cognasse, Are Platelets Cells? And if Yes, are They Immune Cells? Front Immunol 6, p.70, 2015.
DOI : 10.3389/fimmu.2015.00070

URL : http://journal.frontiersin.org/article/10.3389/fimmu.2015.00070/pdf

A. Chabert, Human platelets and their capacity of binding viruses: meaning and challenges?, BMC Immunology, vol.69, issue.5, 2015.
DOI : 10.1111/j.1365-2141.1989.tb04321.x

O. Garraud, H. Hamzeh-cognasse, B. Pozzetto, J. M. Cavaillon, and F. Cognasse, Bench-to-bedside review: Platelets and active immune functions - new clues for immunopathology?, Critical Care, vol.17, issue.4, pp.10-1186, 2013.
DOI : 10.1371/journal.pone.0019654

H. Hamzeh-cognasse, Platelets and Infections ???????? Complex Interactions with Bacteria, Frontiers in Immunology, vol.14, issue.10????????12, p.82, 2015.
DOI : 10.1038/ni.2631

URL : http://journal.frontiersin.org/article/10.3389/fimmu.2015.00082/pdf

B. D. Elzey, T. L. Ratliff, J. M. Sowa, and S. A. Crist, Platelet CD40L at the interface of adaptive immunity, Thrombosis Research, vol.127, issue.3, pp.180-183, 2011.
DOI : 10.1016/j.thromres.2010.10.011

P. Andre, L. Nannizzi-alaimo, S. K. Prasad, and D. R. Phillips, Platelet-Derived CD40L: The Switch-Hitting Player of Cardiovascular Disease, Circulation, vol.106, issue.8, pp.896-899, 2002.
DOI : 10.1161/01.CIR.0000028962.04520.01

L. Moing and V. , Staphylococcus aureus Bloodstream Infection and Endocarditis - A Prospective Cohort Study, PLOS ONE, vol.30, issue.5, p.127385, 2015.
DOI : 10.1371/journal.pone.0127385.t005

URL : https://hal.archives-ouvertes.fr/hal-01299980

J. Paulsen, Epidemiology and outcome of Staphylococcus aureus bloodstream infection and sepsis in a Norwegian county 1996???2011: an observational study, BMC Infectious Diseases, vol.42, issue.4, pp.10-1186, 2015.
DOI : 10.1007/s15010-014-0633-1

J. L. Vincent, Sepsis in European intensive care units: Results of the SOAP study*, Critical Care Medicine, vol.34, issue.2, pp.344-35300003246, 2006.
DOI : 10.1097/01.CCM.0000194725.48928.3A

M. M. Dinges, P. M. Orwin, and P. M. Schlievert, Exotoxins of Staphylococcus aureus, Clinical Microbiology Reviews, vol.13, issue.1, pp.16-34, 2000.
DOI : 10.1128/CMR.13.1.16-34.2000

N. Malachowa, S. D. Kobayashi, B. Freedman, D. W. Dorward, and F. Deleo, Staphylococcus aureus Leukotoxin GH Promotes Formation of Neutrophil Extracellular Traps, The Journal of Immunology, vol.191, issue.12, pp.6022-602910, 2013.
DOI : 10.4049/jimmunol.1301821

V. Thammavongsa, D. M. Missiakas, and O. Schneewind, Staphylococcus aureus Degrades Neutrophil Extracellular Traps to Promote Immune Cell Death, Science, vol.36, issue.2, pp.863-8661242255, 2013.
DOI : 10.1016/0092-8674(92)90101-H

URL : http://europepmc.org/articles/pmc4026193?pdf=render

O. W. Zurek, K. B. Pallister, and J. M. Voyich, Staphylococcus aureus Inhibits Neutrophil-derived IL-8 to Promote Cell Death, J Infect Dis, p.124, 2015.
DOI : 10.1093/infdis/jiv124

URL : https://academic.oup.com/jid/article-pdf/212/6/934/13806395/jiv124.pdf

T. Parimon, Staphylococcus aureus ??-Hemolysin Promotes Platelet-Neutrophil Aggregate Formation, The Journal of Infectious Diseases, vol.67, issue.5, pp.761-770, 2013.
DOI : 10.1016/0049-3848(92)90143-X

S. Schubert, Staphylococcus aureus alpha-toxin triggers the synthesis of B-cell lymphoma 3 by human platelets, Toxins (Basel), vol.33390, pp.120-13310, 2011.

T. Vanassche, Fibrin formation by staphylothrombin facilitates Staphylococcus aureus-induced platelet aggregation, Thromb Haemost, vol.107, pp.1107-1121, 2012.

A. Loughman, Roles for fibrinogen, immunoglobulin and complement in platelet activation promoted by Staphylococcus aureus clumping factor A, Molecular Microbiology, vol.432, issue.3, pp.804-818, 2005.
DOI : 10.1111/j.1365-2672.1993.tb05195.x

A. K. Waller, Staphylococcus aureus Lipoteichoic Acid Inhibits Platelet Activation and Thrombus Formation via the Paf Receptor, The Journal of Infectious Diseases, vol.13, issue.12, pp.2046-2057, 2013.
DOI : 10.1038/nm1565

M. W. Nijsten, Blunted rise in platelet count in critically ill patients is associated with worse outcome, Critical Care Medicine, vol.28, issue.12, pp.3843-3846, 2000.
DOI : 10.1097/00003246-200012000-00017

A. Gafter-gvili, Thrombocytopenia in Staphylococcus aureus Bacteremia: Risk Factors and Prognostic Importance, Mayo Clinic Proceedings, vol.86, issue.5, pp.389-3960705, 2010.
DOI : 10.4065/mcp.2010.0705

D. M. Vandijck, Thrombocytopenia and outcome in critically ill patients with bloodstream infection, Heart & Lung: The Journal of Acute and Critical Care, vol.39, issue.1, pp.21-26005, 2010.
DOI : 10.1016/j.hrtlng.2009.07.005

S. F. De-stoppelaar, C. Van-'t-veer, and T. Van-der-poll, The role of platelets in sepsis, Thromb Haemost, vol.112, pp.666-677, 2014.

R. M. Thushara, Therapeutic drug-induced platelet apoptosis: an overlooked issue in pharmacotoxicology, Archives of Toxicology, vol.24, issue.8, pp.185-19810, 2014.
DOI : 10.3109/09537104.2012.754417

K. A. Nguyen, Role of Siglec-7 in Apoptosis in Human Platelets, PLoS ONE, vol.44, issue.9, 2014.
DOI : 10.1371/journal.pone.0106239.s001

K. Grundler, Platelet mitochondrial membrane depolarization reflects disease severity in patients with sepsis and correlates with clinical outcome, Critical Care, vol.18, issue.1, pp.10-1186, 2014.
DOI : 10.1007/s10495-012-0718-1

K. Yamakawa, Platelet mitochondrial membrane potential correlates with severity in patients with systemic inflammatory response syndrome, Journal of Trauma and Acute Care Surgery, vol.74, issue.2, pp.411-417, 2013.
DOI : 10.1097/TA.0b013e31827a34cf

B. F. Kraemer, Bacteria differentially induce degradation of Bcl-xL, a survival protein, by human platelets, Blood, vol.120, issue.25, pp.5014-502010, 2012.
DOI : 10.1182/blood-2012-04-420661

A. Deshpande, V. Pasupuleti, and M. B. Rothberg, Statin Therapy and Mortality from Sepsis: A Meta-analysis of Randomized Trials, The American Journal of Medicine, vol.128, issue.4, pp.410-417, 2015.
DOI : 10.1016/j.amjmed.2014.10.057

D. P. Eisen, D. Reid, and E. S. Mcbryde, Acetyl salicylic acid usage and mortality in critically ill patients with the systemic inflammatory response syndrome and sepsis, Critical Care Medicine, vol.40, issue.6, pp.1761-176710, 2012.
DOI : 10.1097/CCM.0b013e318246b9df

M. Sossdorf, G. P. Otto, J. Boettel, J. Winning, and W. Losche, Benefit of low-dose aspirin and non-steroidal anti-inflammatory drugs in septic patients, Critical Care, vol.17, issue.1, pp.10-1186, 2013.
DOI : 10.1056/NEJM199703273361303

L. E. Lopez-cortes, Effect of Statin Therapy in the Outcome of Bloodstream Infections Due to Staphylococcus aureus: A Prospective Cohort Study, PLoS ONE, vol.333, issue.12, 2013.
DOI : 10.1371/journal.pone.0082958.t003

L. I. Kupferwasser, Acetylsalicylic Acid Reduces Vegetation Bacterial Density, Hematogenous Bacterial Dissemination, and Frequency of Embolic Events in Experimental Staphylococcus aureus Endocarditis Through Antiplatelet and Antibacterial Effects, Circulation, vol.99, issue.21, pp.2791-2797, 1999.
DOI : 10.1161/01.CIR.99.21.2791

L. Zhao, Aspirin Induces platelet apoptosis, Platelets, vol.79, issue.8, pp.637-642754417, 2013.
DOI : 10.1172/JCI113020

M. K. Nayak, A. Dash, N. Singh, and D. Dash, Aspirin Delimits Platelet Life Span by Proteasomal Inhibition, PLoS ONE, vol.379, issue.8, 2014.
DOI : 10.1371/journal.pone.0105049.s001

URL : https://doi.org/10.1371/journal.pone.0105049

W. Chen, Prehospital Aspirin Use Is Associated With Reduced Risk of Acute Respiratory Distress Syndrome in Critically Ill Patients, Critical Care Medicine, vol.43, issue.4, pp.801-807, 2015.
DOI : 10.1097/CCM.0000000000000789

K. Akinosoglou and D. Alexopoulos, Use of antiplatelet agents in sepsis: A glimpse into the future, Thrombosis Research, vol.133, issue.2, pp.131-138002, 2014.
DOI : 10.1016/j.thromres.2013.07.002

Y. Misawa, A. Yoshida, S. Okugawa, and K. Moriya, First reported case of Staphylococcus condimenti infection associated with catheter-related bacteraemia, New Microbes and New Infections, vol.3, pp.18-20, 2015.
DOI : 10.1016/j.nmni.2014.10.002

M. R. Yeaman, Platelets in defense against bacterial pathogens, Cellular and Molecular Life Sciences, vol.113, issue.Suppl 6B, pp.525-544, 2010.
DOI : 10.1093/infdis/168.4.910

V. L. Serebruany, Effect of Statins on Platelet PAR-1 Thrombin Receptor in Patients With the Metabolic Syndrome (From the PAR-1 Inhibition by Statins [PARIS] Study), The American Journal of Cardiology, vol.97, issue.9, pp.1332-1336, 2006.
DOI : 10.1016/j.amjcard.2005.11.058

V. M. Hua, Necrotic platelets provide a procoagulant surface during thrombosis, Blood, vol.126, issue.26, pp.2852-286210, 2015.
DOI : 10.1182/blood-2015-08-663005

N. V. Cavalcanti, Chemokine Patterns in Children with Acute Bacterial Infections, Scandinavian Journal of Immunology, vol.61, issue.6, pp.338-34310, 2016.
DOI : 10.1203/01.pdr.0000250207.95723.96

S. Mcnicholas, Cytokine responses to Staphylococcus aureus bloodstream infection differ between patient cohorts that have different clinical courses of infection, BMC Infect Dis, vol.14, issue.580, pp.10-1186, 2014.

C. L. Vermont, J. A. Hazelzet, E. D. De-kleijn, G. P. Van-den-dobbelsteen, and R. De-groot, CC and CXC chemokine levels in children with meningococcal sepsis accurately predict mortality and disease severity, Crit Care, vol.10, pp.10-1186, 2006.

J. Grommes, Disruption of Platelet-derived Chemokine Heteromers Prevents Neutrophil Extravasation in Acute Lung Injury, American Journal of Respiratory and Critical Care Medicine, vol.156, issue.6, pp.628-63610, 2012.
DOI : 10.1189/jlb.0305141

R. Hwaiz, M. Rahman, I. Syk, E. Zhang, and H. Thorlacius, Rac1-dependent secretion of platelet-derived CCL5 regulates neutrophil recruitment via activation of alveolar macrophages in septic lung injury, Journal of Leukocyte Biology, vol.151, issue.5, pp.975-98410, 2015.
DOI : 10.2353/ajpath.2007.051213

M. W. Usman, F. Luo, H. Cheng, J. J. Zhao, and P. Liu, Chemopreventive effects of aspirin at a glance, Biochimica et Biophysica Acta (BBA) - Reviews on Cancer, vol.1855, issue.2, pp.254-263, 2015.
DOI : 10.1016/j.bbcan.2015.03.007

R. Nieuwland, Cellular origin and procoagulant properties of microparticles in meningococcal sepsis, Blood, vol.95, pp.930-935, 2000.

Y. Zhang, Circulating Microparticles, Blood Cells, and Endothelium Induce Procoagulant Activity in Sepsis Through Phosphatidylserine Exposure, SHOCK, vol.45, issue.3, pp.299-30710, 2016.
DOI : 10.1097/SHK.0000000000000509

E. Boilard, Platelets Amplify Inflammation in Arthritis via Collagen-Dependent Microparticle Production, Science, vol.102, issue.1, pp.580-58310, 2010.
DOI : 10.1182/blood-2002-12-3882

S. Dinkla, Platelet microparticles inhibit IL-17 production by regulatory T cells through P-selectin, Blood, vol.127, issue.16, pp.10-1182, 1976.
DOI : 10.1182/blood-2015-04-640300

A. C. Souza, P. S. Yuen, and R. A. Star, Microparticles: markers and mediators of sepsis-induced microvascular dysfunction, immunosuppression, and AKI, Kidney International, vol.87, issue.6, pp.1100-1108, 2015.
DOI : 10.1038/ki.2015.26

J. Berthet, Human platelets can discriminate between various bacterial LPS isoforms via TLR4 signaling and differential cytokine secretion, Clinical Immunology, vol.145, issue.3, pp.189-200, 2012.
DOI : 10.1016/j.clim.2012.09.004

F. Cognasse, Altered release of regulated upon activation, normal T-cell expressed and secreted protein from human, normal platelets: contribution of distinct HIV-1MN gp41 peptides, AIDS, vol.23, issue.15, pp.2057-205910, 2009.
DOI : 10.1097/QAD.0b013e328330da65

A. Mcnicol, Streptococcus sanguinis-induced cytokine release from platelets, Journal of Thrombosis and Haemostasis, vol.17, issue.Suppl. 1, pp.2038-2049, 2011.
DOI : 10.1111/j.1601-0825.2010.01784.x

S. R. Clark, Platelet TLR4 activates neutrophil extracellular traps to ensnare bacteria in septic blood, Nature Medicine, vol.87, issue.4, pp.463-46910, 2007.
DOI : 10.1161/01.RES.87.12.1141

J. Claes, Adhesion of Staphylococcus aureus to the vessel wall under flow is mediated by von Willebrand factor-binding protein, Blood, vol.124, issue.10, pp.1669-167610, 2014.
DOI : 10.1182/blood-2014-02-558890

L. Svensson, M. Baumgarten, M. Morgelin, and O. Shannon, ABSTRACT, Infection and Immunity, vol.82, issue.10, pp.4307-4314, 2014.
DOI : 10.1128/IAI.02020-14

S. W. Kerrigan, Molecular Basis for Staphylococcus aureus-Mediated Platelet Aggregate Formation Under Arterial Shear In Vitro, Arteriosclerosis, Thrombosis, and Vascular Biology, vol.28, issue.2, pp.335-340, 2008.
DOI : 10.1161/ATVBAHA.107.152058

K. Engstrom, K. Khalaf, H. Kalvegren, H. Bengtsson, and T. , gingipains in platelet activation and innate immune modulation, Molecular Oral Microbiology, vol.14, issue.Suppl 1, pp.62-7310, 2015.
DOI : 10.1186/1471-2164-14-770

H. Kalvegren, Toll-like receptor 2 stimulation of platelets is mediated by purinergic P2X1-dependent Ca 2+ mobilisation, cyclooxygenase and purinergic P2Y1 and P2Y12 receptor activation, Thromb Haemost, vol.103, pp.398-407, 2010.

S. T. Towhid, Stimulation of platelet apoptosis by peptidoglycan from Staphylococcus aureus 113, Apoptosis, vol.2, issue.Suppl 1, pp.998-100810, 2012.
DOI : 10.1111/j.1538-7836.2004.00670.x

D. Johansson, O. Shannon, and M. Rasmussen, Platelet and Neutrophil Responses to Gram Positive Pathogens in Patients with Bacteremic Infection, PLoS ONE, vol.27, issue.11, 2011.
DOI : 10.1371/journal.pone.0026928.s001

A. S. Bayer, Staphylococcus aureus induces platelet aggregation via a fibrinogen-dependent mechanism which is independent of principal platelet glycoprotein IIb/IIIa fibrinogen-binding domains, Infect Immun, vol.63, pp.3634-3641, 1995.

M. Arman, Amplification of bacteria-induced platelet activation is triggered by Fc??RIIA, integrin ??IIb??3, and platelet factor 4, Blood, vol.123, issue.20, pp.3166-317410, 2014.
DOI : 10.1182/blood-2013-11-540526

G. Zhang, Lipopolysaccharide Stimulates Platelet Secretion and Potentiates Platelet Aggregation via TLR4/MyD88 and the cGMP-Dependent Protein Kinase Pathway, The Journal of Immunology, vol.182, issue.12, pp.7997-800410, 2009.
DOI : 10.4049/jimmunol.0802884

J. R. Ward, Agonists of toll-like receptor (TLR)2 and TLR4 are unable to modulate platelet activation by adenosine diphosphate and platelet activating factor, Thrombosis and Haemostasis, vol.94, pp.831-838, 2005.
DOI : 10.1160/TH05-01-0009

M. E. Powers, R. E. Becker, A. Sailer, J. R. Turner, and J. Bubeck-wardenburg, Synergistic Action of Staphylococcus aureus ??-Toxin on Platelets and Myeloid Lineage Cells Contributes to Lethal Sepsis, Cell Host & Microbe, vol.17, issue.6, pp.775-787011, 2015.
DOI : 10.1016/j.chom.2015.05.011

M. W. Merx, Statin Treatment After Onset of Sepsis in a Murine Model Improves Survival, Circulation, vol.112, issue.1, pp.117-124502195, 2005.
DOI : 10.1161/CIRCULATIONAHA.104.502195

A. Giacomazzi, M. Degan, S. Calabria, A. Meneguzzi, and P. Minuz, Antiplatelet Agents Inhibit the Generation of Platelet-Derived Microparticles, Frontiers in Pharmacology, vol.110, issue.1, 2016.
DOI : 10.1160/TH12-11-0853

N. Haramaki, Fluvastatin Alters Platelet Aggregability in Patients With Hypercholesterolemia: Possible Improvement of Intraplatelet Redox Imbalance via HMG-CoA Reductase, Arteriosclerosis, Thrombosis, and Vascular Biology, vol.27, issue.6, pp.1471-147710, 2007.
DOI : 10.1161/ATVBAHA.106.128793

L. A. Moraes, Antithrombotic actions of statins involve PECAM-1 signaling, Blood, vol.122, issue.18, pp.3188-319610, 2013.
DOI : 10.1182/blood-2013-04-491845

H. Osamah, R. Mira, S. Sorina, K. Shlomo, and A. Michael, Reduced platelet aggregation after fluvastatin therapy is associated with altered platelet lipid composition and drug binding to the platelets, British Journal of Clinical Pharmacology, vol.44, issue.1, pp.77-83, 1997.
DOI : 10.1046/j.1365-2125.1997.00625.x

T. C. Chou, Y. F. Lin, W. C. Wu, and K. M. Chu, Enhanced nitric oxide and cyclic GMP formation plays a role in the anti-platelet activity of simvastatin, British Journal of Pharmacology, vol.44, issue.6, pp.1281-128719, 2008.
DOI : 10.1007/978-1-4615-2994-1_20

B. G. Yipp and P. Kubes, NETosis: how vital is it?, Blood, vol.122, issue.16, pp.2784-279410, 2013.
DOI : 10.1182/blood-2013-04-457671

URL : http://www.bloodjournal.org/content/bloodjournal/122/16/2784.full.pdf

K. Martinod and D. D. Wagner, Thrombosis: tangled up in NETs, Blood, vol.123, issue.18, pp.2768-277610, 2014.
DOI : 10.1182/blood-2013-10-463646

D. F. Noubouossie, In vitro activation of coagulation by human neutrophil DNA and histone proteins but not neutrophil extracellular traps, Blood, vol.129, issue.8, pp.1021-102910, 2017.
DOI : 10.1182/blood-2016-06-722298

P. Toner, D. F. Mcauley, and M. Shyamsundar, Aspirin as a potential treatment in sepsis or acute respiratory distress syndrome, Critical Care, vol.24, issue.2 Suppl, pp.10-1186, 2015.
DOI : 10.3109/09537104.2012.724482

M. J. Tsai, Association of prior antiplatelet agents with mortality in sepsis patients: a nationwide population-based cohort study, Intensive Care Medicine, vol.370, issue.5, pp.806-81310, 2015.
DOI : 10.1056/NEJMoa1401602

B. Xiang, Platelets protect from septic shock by inhibiting macrophage-dependent inflammation via the cyclooxygenase 1 signalling pathway, Nature Communications, vol.290, pp.10-1038, 2013.
DOI : 10.1074/jbc.M111.239608

J. Berthet, Toll-like receptor 4 signal transduction in platelets: novel pathways, British Journal of Haematology, vol.25, issue.1, pp.89-92, 2010.
DOI : 10.1111/j.1365-2141.2010.08292.x

C. J. Jung, Platelets Enhance Biofilm Formation and Resistance of Endocarditis-Inducing Streptococci on the Injured Heart Valve, The Journal of Infectious Diseases, vol.8, issue.7, pp.1066-1075, 2012.
DOI : 10.1186/1477-9560-8-13

S. Robert, High-Sensitivity Flow Cytometry Provides Access to Standardized Measurement of Small-Size Microparticles--Brief Report, Arteriosclerosis, Thrombosis, and Vascular Biology, vol.32, issue.4, pp.1054-1058, 2012.
DOI : 10.1161/ATVBAHA.111.244616

S. Aymanns, S. Mauerer, G. Van-zandbergen, C. Wolz, and B. Spellerberg, High-Level Fluorescence Labeling of Gram-Positive Pathogens, PLoS ONE, vol.63, issue.Pt 6, 2011.
DOI : 10.1371/journal.pone.0019822.t002

I. R. Monk, I. M. Shah, M. Xu, M. W. Tan, and T. J. Foster, Transforming the Untransformable: Application of Direct Transformation To Manipulate Genetically Staphylococcus aureus and Staphylococcus epidermidis, mBio, vol.3, issue.2, pp.10-112800277, 2012.
DOI : 10.1128/mBio.00277-11