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The spreading of evaporating drops without a pinned contact line is studied experimen-
tally and theoretically, measuring the radius R(t) of completely wetting alkane drops
of different volatility on glass. Initially the drop spreads (R increases), then owing to
evaporation reverses direction and recedes with an almost constant non-zero contact angle
θ ∝ β1/3, where β measures the rate of evaporation; eventually the drop vanishes at a
finite-time singularity. Our theory, based on a first-principles hydrodynamic description,
well reproduces the dynamics of R and the value of θ during retraction.
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1. Introduction

The evaporation of liquid drops, in the form of dew, rain, or mist generated by breaking
waves, must be accounted for accurately in the heat and mass balance of climate models.
Evaporation is also important for industrial processes such as spray drying or ink jet
printing. As a result, the evaporation of drop has attracted a great deal of attention over
the past few years (for recent reviews see Cazabat & Guena 2010; Erbil 2012; Larson
2014).
The two situations most studied are (i) the “coffee-stain” problem in which a drop

is deposited on a rough substrate to which its contact line remains anchored during
evaporation (Deegan et al. 1997, 2000) and (ii) drop of completely wetting liquids
deposited on a perfectly smooth surface (Cachile et al. 2002a,b; Poulard et al. 2005;
Shahidzadeh-Bonn et al. 2006). The latter problem, studied here, has attracted a great
deal of attention since it is unclear why a completely wetting liquid exhibits a non-zero
contact angle during evaporation (Elbaum et al. 1995; Bonn & Meunier 1997). This
problem is difficult because it involves diverging viscous stresses and evaporation rates,
which need to be regularized to predict the motion (Bonn et al. 2009; Eggers & Pismen
2010). In doing so, the shape of the drop is a priori unknown and has to be calculated;
however this requires the prediction of the speed of the moving contact line, which is due
to a complicated interplay between pinning, thermal activation and viscous dissipation
(Snoeijer & Andreotti 2013; Perrin et al. 2016). In addition, numerous secondary effects
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Figure 1. Top (a)-(b) and side (c)-(d) view of evaporating and spreading drops on clean
glass surfaces. (a) Pentane drop, scale bar 5 mm, dt = 6 s. (b) Heptane drop, scale bar 2 mm,
dt = 10 s. (c) Peptane drop, R = 1.4 mm. (d) Heptane drop, R = 2.6 mm, the images include
the drop’s reflection on the solid surface, the red line is a spherical cap fit.

can arise from evaporation such as buoyant convection (Shahidzadeh-Bonn et al. 2006),
Kelvin effects: curvature dependence of the equilibrium vapour pressure (Rednikov &
Colinet 2013; Janeček et al. 2013), or non-uniform temperatures. The latter may lead to
Marangoni flows: surface flows driven by surface tension gradients (Hu & Larson 2006).

Here we study the relative effect of evaporation and spreading systematically by
placing completely wetting drops of alkanes (pentane (C5H12) to nonane (C9H20)), whose
volatility varies by two orders of magnitude, on a clean glass surface (see figure 1 (a)(b)).
The perfectly circular drop shape indicates that contact line pinning is not important.
Our drops are sufficiently small, so that convection in the gas phase is negligible, and the
evaporation rate is limited by vapour diffusion into the surrounding gas phase. Moreover,
our drops are very thin, which limits temperature gradients, especially for alkanes that
do not evaporate too fast.

Previous studies have found that the contact angle of such a completely wetting but
evaporating drop can be non-zero (Bourges-Monnier & Shanahan 1995; Cachile et al.

2002a,b; Poulard et al. 2005; Shahidzadeh-Bonn et al. 2006; Lee et al. 2008). The
interpretation of such a non-zero contact angle for a completely wetting liquid, which we
denote by θev, is difficult, since it represents a fundamentally non-equilibrium situation.
The presence of stress and evaporative singularities at the contact line, which need to
be regularized on a microscopic scale, make the problem inherently multi-scale. A crude
regularization as proposed by Poulard et al. (2005) allows to understand the formation of
such an angle but its exact expression has remained a subject of debate (Eggers & Pismen
2010; Morris 2014). The recent paper by Saxton et al. (2016) only considers partially
wetting liquids (while ignoring pinning of the contact line). The time dependence of the
drop radius is also intriguing. Since the fluid is wetting it starts to spread, but at some
point, the evaporation starts to dominate, the drop retracts and R eventually vanishes
at a time t0.

In this article, using the framework proposed by Eggers & Pismen (2010), later
developed by Morris (2014) we propose a simple parameter free model to describe the
spreading dynamics and contact angle of evaporating drops of completely wetting liquids
and make a direct comparison with experiments.
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Figure 2. Mass of the drop vs. radius cubed; straight lines indicate a constant contact angle.
Pentane (C5): green diamonds; hexane (C6): black squares; heptane (C7): blue circles; octane
(C8): red triangles.

2. Experimental set-up

Experiments were performed at room temperature T ≈ 21◦C by gently depositing a
drop on a float glass surface using a microsyringe, and recording either its weight or
shape using a precision balance and a drop shape analyser (Kruss Easydrop, see figure 1
(c)(d)). The alkanes used were ultra pure, from Sigma-Aldrich, the substrate were glass
microscope slides (Menzel Gläser, 1 mm thick), cleaned with either sulfochromic acid
or piranha solution. The equilibrium vapour pressure Psat of the different alkanes varies
over two orders of magnitude, while keeping almost the same density ρ, surface tension γ
and viscosity η. The volume of the drops was about 1 µL. The largest Bond number was
Bo = ρghR/γ ≈ 0.2 so gravity could be neglected (h is the drop height). The drop profile
being well fitted by a spherical cap (figure 1 (c)(d)) the drop volume V , and apparent
contact angle θ are calculated from the drop height h and radius R assuming a spherical
cap profile.

3. Result and discussion

Figure 2 shows the mass m of various alkane drops as a function of their radius cubed
as they evaporate, giving a straight line. For a thin drop, θ = 4m/(πρR3), so that
the slope in figure 2 directly corresponds to the contact angle, which is seen to depend
strongly on the chain length of the alkane, despite their similar interfacial properties.
The macroscopic contact angle is thus controlled by evaporation rather than the wetting
properties; due to their low surface tension in equilibrium the contact angle of all alkanes
on the substrate is zero.
Turning to the drop dynamics, the simplest assumption is that to leading order the

drop dynamics are unaffected by evaporation, which enters through the total mass
balance only. Thus drop motion is described by Tanner’s law (Bonn et al. 2009): R ∼
V 3/10(γt/η)1/10, but the total mass flux is proportional to the drop radius (Deegan et al.

2000):

V̇ = −4βR. (3.1)

Here β is the evaporation parameter which can be approximated as β = D (ρsat − ρ∞) /ρ
for thin drops (Cazabat & Guena 2010) with ρsat the saturation vapour density, ρ∞ the
vapour density far from the drop (ρ∞ = 0 for alkanes) and D the vapour diffusion
coefficient. Solving the resulting differential equation for V , and substituting back into
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Figure 3. Spreading and evaporation of a 0.32 µL heptane drop with a best fit of (3.2) as the
dot-dashed line (prefactor= 0.36, t0 = 22.6), and our model as the red solid curve. (inset) Same
data on a linear scale.

Tanner’s law to find R, we find

R ∝
[

t
11/10
0

− t11/10
]3/7

t1/10. (3.2)

Figure 3 shows (3.2) as the dot-dashed line, with both a prefactor and t0 as adjustable
parameters. Clearly, this simple theory is unable to describe the drop dynamics satis-
factorily, demonstrating that evaporation must be included into the description of the
contact line dynamics itself, rather than including it phenomenologically.
To do better, one needs to solve the viscous flow problem in the drop coupled to the

evaporation which is limited by the diffusion of vapour. For thin isothermal drops, the flow
is simplified through the lubrication approximation and the flow profile is parabolic. The
evolution of the drop shape is given by mass conservation (in axisymmetric coordinates),

∂h

∂t
+

1

r

∂

∂r

(

h3r

3η

∂p

∂r

)

= −jev, jev = −D

ρ

∂ρv
∂z

, (3.3)

p is the pressure driving the flow and jev the local volume flux induced by the diffusion
limited evaporation (ρv is the vapour density).
At the macroscopic scale, the pressure is simply the Laplace pressure and the vapour

concentration is given by Laplace’s equation∇2ρv = 0 with boundary condition ρv = ρsat
at the drop surface and ρv = ρ∞ far from the drop. Approximating the thin drop as a
disc allows to compute the vapour field ρv and the volume flux jev = 2β/

(

π

√
R2 − r2

)

(Jackson 1975). However, this macroscopic description suffers from the usual viscous
stress divergence at the contact line, also present without evaporation (Bonn et al. 2009;
Eggers & Fontelos 2015). In addition, jev is also singular at r = R (the divergence persists
for spherical caps with low contact angle (Deegan et al. 2000)). To deal with the problem
one has to introduce microscopic effects to regularize the singularities.
A first attempt was made by Poulard et al. (2005) using scaling arguments. They

introduce the distance from the contact line where van der Waals forces balance capillary
forces and assume that the evaporation rate saturates below this scale. The resulting
model being based on scaling arguments, Poulard et al. (2005) did not perform a direct
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comparison with experiments. Nonetheless, their model predicts power laws for R(t)
during the retraction stage that agree with the ones observed experimentally.
More recently, Eggers & Pismen (2010) introduced van der Waals forces self-

consistently in the coupled problem through a disjoining pressure term Π = A/
(

6πh3
)

=
γa2/h3 (A is the Hamaker constant, and a is a microscopic length). A consequence is
that far from the drop, (attractive) van der Waals interactions compete with evaporation
to condensate a microscopic prewetting film whose thickness hf is given by a balance of
evaporative to disjoining pressure h3

f = γa2/ (ρRsT ln (ρ∞/ρsat)) with Rs the specific
gas constant. In addition, Eggers & Pismen (2010) included the Kelvin effect which
takes the local curvature of the drop into account. They showed that taking these effects
into account regularizes the evaporative singularity as it inhibits evaporation. Equation
(3.3) then becomes:

∂h

∂t
+

γ

ηr

∂

∂r

[

h3r

3

∂

∂r

(

∂2h

∂r2
+

1

r

∂h

∂r
+

a2

h3

)]

= −jev,

jev =
β

r

∂

∂r

[

∫

∞

0

K(r, r′)
∂

∂r′

(

hf

h

)3

dr′

]

.

(3.4)

The kernel is given by

K(r, r′) =
2

π

{

r [K(r′/r)− E(r′/r)] , r′ < r
r′ [K(r/r′)− E(r/r′)] , r′ > r

(3.5)

where K and E are the complete elliptic integrals.
In the quasi-static limit, which means that when considering evaporation, the time

derivative in (3.4) is neglected, Morris (2014) shows that the contact region can be
described analytically in the case of vanishing L . This allows for the exact computation
of the cut-off length introduced by hand by Poulard et al. (2005) and the determination
of the evaporative angle (Morris 2014, see appendix B for the derivation of the closed
form solution presented below). The result is

θev = k

(

ηβ

γa1/2R1/2

)1/3

, (3.6)

where k can be assumed constant and is given by

k = 1.47758
21/6

π
1/3

W

(

4

L 3/2

)1/6

,

L =
22/3ρ

4/3
sat (ηβ)

16/9

π
4/9a26/9R2/9γ4/9 (RsTρ (ρsat − ρ∞))

4/3
,

(3.7)

were W denotes the Lambert W function (see appendix B and table 2 for values of L

and k).
Motion is such that the apparent contact angle θ is driven toward θev according to the

Cox-Voinov law (Eggers & Fontelos 2015):

Ṙ =
γ

9Bη

[

(

4V

πR3

)3

− θ3ev

]

, (3.8)

where B is the usual logarithmic molecular cut-off also present without evaporation (see
appendix B).
The equations (3.1),(3.6),(3.8) derived here are the same as the scaling analysis
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Figure 4. Dimensionless radius as a function of the dimensionless time for an evaporating drop,
with β = 5 10−3, a = 10−3 and hf = 10−4. The solid line is the simulation and the dashed line
is theory (B ≈ 2.1 with these parameters).

proposed in (Poulard et al. 2005); however because of the nature of their analysis, they
were unable to calculate the prefactors and the discussion remained qualitative. Here we
have done the full analysis; the evaporative cut-off is calculated by including the effect
of disjoining pressure self consistently (Morris 2014).
We have simulated the complete equations of motion (3.4),(3.5) with parameters that

lie in the quasi-static regime, and compared it to the model (3.1),(3.6),(3.8) in figure 4
(lengths are rescaled with the initial drop radius R0 and time with R0η/γ). The model
shows a very good agreement with the simulation with a fitted value k = 1.9 close to the
one predicted by equation (3.7): k = 1.69.
Now, comparing the model to experimental data, we measure the evaporation param-

eter β using (3.1) and estimate a ≈ 4 Å using Lifshitz theory (Israelachvili 2011); B
in (3.8) is calculated from (B 7) and varies between 5.38 and 6.03 (table 2). The range
being narrow we use the mean value 5.6 for all our experimental comparisons. Similarly
we calculate the parameter k in (3.6) from (3.7). It varies between 1.42 and 1.69 (table
2) and we use an intermediate value of 1.62 for all our experiments.
Figures 3 and 5 compare R(t) from the model with the experimental data for various

alkanes. We find excellent agreement for slowly evaporating alkanes: heptane to nonane,
without any free parameters, cf. figure 5 (a). In addition, within the experimental
accuracy, the macroscopic contact angle θ(t) is also well described by these equations,
and approaches a constant steady state value at late times (inset figure 5 (a)). For
pentane and hexane, for which evaporation is very rapid, the drop hardly spreads and the
contact line recedes quickly (figure 5 (b)). During the short spreading time, θ decreases
significantly (inset of figure 5 (b)); this means that ∂h/∂t is not small, and the quasi-
static assumption used in the model is not valid. Moreover, the cooling due to evaporation
increases with the evaporation rate β and neglecting the temperature gradient and
resulting Marangoni flows becomes incorrect (see appendix A for a critical discussion
of the model’s assumptions). As a result, the model is only able to reproduce these
dynamics qualitatively, as it overestimates the spreading motion at short times.
As for the contact angle, the breakdown of the quasi-static and isothermal assumptions

means that the measured angle does not necessarily converge to θev given by (3.6).
Nevertheless, the experimental contact angle θ reaches a steady-state value close to θev.
We plot this value as a function of β for the different alkanes in figure 6. Within the
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Figure 5. Dimensionless radius of spreading and evaporating alkane drops. (inset) Measured
contact angle for the same data set, the uncertainties are not reported here for clarity (see
figure 6). (a) Blue circles: heptane; red triangles: octane; black diamonds: nonane. (b) Pink
open squares: pentane; green open triangles: hexane.
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Figure 6. Contact angle at late times θ as a function of the evaporation parameter β. The
dashed line is equation (3.6), neglecting the small variations in the parameters for alkanes:

θev(rad) = 46.88 β1/3.

experimental uncertainties (that become significant when the drop is very thin) one
retrieves the 1/3rd power law predicted by (3.6) with the correct prefactor.

4. Conclusion

In summary, we studied the dynamics of perfectly wetting, volatile fluids on a solid
substrate for a wide range of evaporation rates. Taking into account both spreading
dynamics as well as using a consistent description of evaporation near the contact line,
we were able to obtain a quantitative agreement between our parameter free model and
experiments during both spreading and retraction phases for slowly evaporating alkanes.
For very volatile liquids, the agreement is only qualitative as temperature gradients and
dynamic effects, neglected in the model, become significant.

This work received a financial grant from the ”French Agence Nationale de la
Recherche”; project ANR-13-BS09-0026.
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Appendix A

In our model we assume the system to be isothermal (and thus without any Marangoni
flows), the drop movement to be quasi-static and the transport of vapour to be purely
diffusive (neglecting convection and kinetic effects). We will now discuss the validity of
these assumptions using the dimensionless groups as proposed in Larson (2014).
Because the experiments are carried out in a box to limit air flows around the drop, the

only source of convection in our experiment is the natural convection due to the buoyancy
of the alkane vapour in the air. The Grashof number Gr, which balances buoyancy with
viscous forces, controls the strength of this natural convection. Assuming the gas to be
ideal and the vapour concentration to be the saturation concentration, we have

Gr =
(ρsat − ρ∞) gR3

ρairν2air
,

where ρair is the air density and νair the air kinematic viscosity.
Kelly-Zion et al. (2011) studied the effect of natural convection in evaporating sessile

drops with pinned contact line. They found the empirical relationship

V̇ = −4βR
(

1 + 0.310Gr0.216
)

, (A 1)

which differs significantly from the purely diffusive case if 0.310Gr0.216 > 1. We show
in table 1 the Grashof number corresponding to our experiments (using R0 for the drop
radius). According to Kelly-Zion et al. (2011), the maximum convective contribution
we can expect (as R decreases after the spreading phase) ranges between 0.5 and 0.9
times the diffusive contribution, which is neither dominant nor negligible. Nonetheless
our V̇ = f(R) data are fairly linear, but with a coefficient β somewhat higher than
Dρsat/ρ, the value expected in the purely diffusive case (see table 1, ρ∞ = 0 for alkanes).
Although this is difficult to quantify given our experimental uncertainties, there might
be a little bit of convection in some of our experiments. Though this is not the reason
why the model fails to describe the dynamics for short alkanes. For hexane and pentane
the discrepancies are small and replacing (3.1) by (A 1) does not improve the model
significantly. Thus we keep the pure diffusion approximation in our model, but we use
the measured β directly instead of using the predicted value Dρsat/ρ.
If the diffusion of the vapour in the ambient gas is very fast, for instance under reduced

pressure or if the ambient gas is pure vapour, then the evaporation can become affected
by kinetic effects: the transfer of molecules from the liquid to the vapour at the interface
(given by the Hertz-Knudsen relation). This effect reduces the concentration of vapour
at the liquid-vapour interface and thus the overall evaporation rate. However, scaling
arguments (Cazabat & Guena 2010; Larson 2014) and numerical simulations (Semenov
et al. 2012) have shown that this effect is negligible for common liquids in ambient
air, except for microscopic droplets. Moreover, pure diffusion predicts our measured
evaporation rate satisfactorily so we neglect interfacial kinetic effects.
The possible temperature gradients come from the heat loss due to latent heat of

evaporation whose average rate is ρV̇ ∆Hvap/πR
2, with ∆Hvap the heat of vaporisation

per unit mass. This flux must be balanced by steady-state heat conduction from the
substrate of the order of kl∆T/h with kl the liquid thermal conductivity. Equating the
two allows to evaluate the temperature gradient

∆T ∼ 4ρβ∆Hvaph

πklR
.

For alkanes ∆Hvap ≈ 3.5105 Jkg−1 and kl ≈ 0.13Wm−1K−1, the temperature gradients
are thus directly proportional to β times the drop aspect ratio h/R. As the drop aspect
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alkane R0 h0 β D ρsat

ρ
Gr ∆T Ma ∂h

∂t

∣

∣

t=0

(mm) (mm) (10−9 m2s−1) (10−9 m2s−1) (K) (mm s−1)

pentane 1.27 0.238 29.9 ± 9.6 27.1 146 12.1 12000 -0.68
hexane 1.68 0.211 9.07 ± 3.2 8.50 120 2.6 1800 -0.34
heptane 2.37 0.128 3.75 ± 1.3 2.67 119 0.5 160 -0.06
octane 2.12 0.120 1.34 ± 0.5 0.79 30 0.2 43 -0.10
nonane 2.12 0.071 0.34 ± 0.2 0.17 8 0.02 3 -0.01

Table 1. Parameters used to asses the validity of our assumptions; the experimental values
corresponds to the experiment presented in figure 5, D values at T = 22◦ come from (Berezhnoi
& Semenov 1997; J. Beverley et al. 1999), Psat values from (Carruth & Kobayashi 1973;
J. Beverley et al. 1999).

ratio is larger for drops which evaporates faster, we immediately see they have the largest
temperature gradient. These temperature gradients can induce Marangoni flows which
appear for values of the Marangoni number

Ma =
dγ

dT

∆TR

αlη

above a critical value Mac ∼ 102. Here αl is the thermal diffusivity of the liquid and is
of the order 10−7 m2 s−1 for alkanes while dγ/dT ≈ 10−4 Nm−1. We evaluate both ∆T
and Ma for our drops in table 1 using the initial values h0, R0 for the drop shape and
our measured value of β. We see that the temperature gradient is very large for pentane
drops and still significant for hexane drops. This produces Marangoni numbers well above
the instability threshold for these drops. Thus our neglect of the Marangoni stress in the
lubrication analysis partly explains the discrepancy between model and experiment for
the spreading dynamics and evaporative angle. For heptane drops Ma ∼ Mac, however,
because the model is able to reproduce the experimental data and the evaluation of Ma
is approximate, we believe these Marangoni effects are still negligible.
To evaluate the quasi-static assumption we calculate characteristic time scales of our

drops and compare them to the evaporation duration t0. The characteristic time for heat
equilibration inside the drop is theat ∼ h2

0
/αl. Because the initial drop height h0 decreases

with the chain length (see table 1), so does theat, which varies between 0.05 . theat (s) .
0.5. The drying time t0, however increases with the chain length 5 . t0 (s) . 200.
Since t0 >> theat, we can neglect the time dependence of the temperature in the drop.
Similarly the characteristic time for the velocity inside the drop to reach a steady state
is tmom ∼ h2

0ρ/η. It also decreases with the chain length of the alkane and varies between
5 10−3 . tmom (s) . 0.2. Again, since the drying time t0 is much larger, the quasi-
static approach is in general valid. However, the most unfavourable cases are pentane
and hexane. For these fast evaporating alkane the spreading motion is very fast, and
the reversal of the contact line occurs at tRmax

∼ 0.5 s. During the spreading motion
the system has not yet had time to reach a steady state. At this early stage ∂h/∂t is
significantly higher for pentane and hexane (see table 1) and cannot be neglected.

Appendix B

With a local analysis of the coupled equations (3.4) in the vicinity of the contact line
and in the quasi-static limit, Morris (2014) predicted the macroscopic contact angle of
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the drop θev in the asymptotic limit L → 0 (equation (6.3) of Morris (2014)) :

θev = 1.47758

(

2
√
2

π

ηβ

γa1/2R1/2

)1/3

ℓ
1/4
1

. (B 1)

Here L is the Laplace parameter, which is a dimensionless surface tension controlling
the coupled problem:

L =
22/3ρ

4/3
sat (ηβ)

16/9

π
4/9a26/9R2/9γ4/9 (RsTρ (ρsat − ρ∞))

4/3
, (B 2)

and {ℓ1, h1} are the dimensionless location and height at which the capillary and
disjoining pressures balance in the wetting film, respectively. These lengths are given
by (see equation (5.10) of Morris (2014)):

L ℓ1h
4

1
= 1 and ℓ1 =

(

3

2
lnh1

)2/3

. (B 3)

Eliminating ℓ1 from (B 3) we arrive at:

4

L 3/2
=

4

L 3/2h6
1

exp

(

4

L 3/2h6
1

)

, (B 4)

which can be solved in terms of the Lambert W function, and we obtain:

h1 =

(

4

L 3/2W
(

4/L 3/2
)

)1/6

, ℓ1 =

(

W
(

4/L 3/2
)

4

)2/3

. (B 5)

Replacing (B 5) in (B 1), we obtain the final closed form equation for the evaporative
contact angle:

θev = k

(

ηβ

γa1/2R1/2

)1/3

with k = 1.47758
21/6

π
1/3

W

(

4

L 3/2

)1/6

. (B 6)

We show in table 2 the values obtained for L and k using (3.7) with the measured value
of β and R0. Since R varies during an experiment, L and thus k are not strictly constant,
yet their variations are small so we neglect them. For instance 1.9 10−3 < L < 3.0 10−3

and 1.60 < k < 1.62 for the octane drop of figure 5 (the minimum recorded drop radius
is 0.3 mm). L ranges between 3 10−4 for nonane and 8 10−2 for pentane, which gives
k ≈ 1.55 (see table 2). To compute k for the simulation we rescale length with R0 and
time with R0η/γ and rewrite (B 2) using dimensionless parameters :

L =
22/3β16/9h4

f

π
4/9a50/9R2/9

.

In doing so we have used the linearised definition of hf as in Eggers & Pismen (2010)
which strictly speaking is not correct when ρ∞ = 0. The resulting prefactor k = 1.69 is
very close to experimental ones despite the very different values of the parameters.
Equation (B 6) predicts the experimental steady state contact angle quantitatively,

except for pentane and hexane (see figure 5 (b)), for which a discrepancy larger than
the uncertainties starts to appear. As discussed above some of the model’s assumption
break down for these drops, the isothermal assumption is incorrect and the quasi-static
assumption becomes doubtful. We can also notice that L is much larger such that the
limit L → 0 might not be reached.
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pentane hexane heptane octane nonane

a (Å) 4.29 3.96 3.95 3.85 3.78
L 8.0 10−2 1.8 10−2 6.5 10−3 2.0 10−3 3.0 10−4

k 1.42 1.51 1.57 1.62 1.69
B 5.38 5.75 5.58 6.03 5.52

Table 2. Parameters deduced from the model for figure 5.

As in all moving contact line problems, the viscous stress in the vicinity of the contact
line must be regularized in order to predict the drop radius as a function of time R(t). This
is usually done by introducing a cut-off length, which results in a logarithmic prefactor
B in the equation of motion in the contact line (de Gennes 1985; Bonn et al. 2009). In
the very beginning of our experiment, spreading is dominant and the drop moves over
a prewetting film. We thus use the cut-off length derived for spreading drops without
evaporation (Bonn et al. 2009; Eggers & Fontelos 2015):

B = ln





R

1.38e2a

(

ηṘ

γ

)2/3


 (B 7)

and consider it constant throughout the experiment for simplicity (although it was not
derived for an evaporating receding contact line). Table 2 shows the values of B we obtain
using the initial values of the experiments.
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