T. L. Blundell, O. Galkin, P. G. Vekilov, Z. Hammadi, R. Grossier et al., Structure-based drug design Microfluidic Approaches for Protein Crystal Structure Analysis Are Nucleation Kinetics of Protein Crystals Similar to Those of Liquid Droplets Localizing and inducing primary nucleation Recent progress in robot-based systems for crystallography and their contribution to drug discovery Microfluidic crystallization A robust and scalable microfluidic metering method that allows protein crystal growth by free interface diffusion, A microfluidic approach for protein structure determination at room temperature via on-chip anomalous diffraction. Lab on a Chip 2013, pp.23-29, 1996.

K. Dhouib, C. K. Malek, W. Pfleging, B. Gauthier-manuel, R. Duffait et al., Microfluidic chips for the crystallization of biomacromolecules by counter-diffusion and on-chip crystal X-ray analysis Counterdiffusion methods applied to protein crystallization, Progress in Biophysics and Molecular Biology, vol.9, issue.101, pp.1412-14211, 2009.

L. Li and R. F. Ismagilov, Protein Crystallization Using Microfluidic Technologies Based on Valves, Droplets, and SlipChip, Annual Review of Biophysics, vol.39, issue.1, pp.139-58, 2010.
DOI : 10.1146/annurev.biophys.050708.133630

B. Zheng, C. J. Gerdts, and R. F. Ismagilov, Using nanoliter plugs in microfluidics to facilitate and understand protein crystallization, Current Opinion in Structural Biology, vol.15, issue.5, pp.548-555, 2005.
DOI : 10.1016/j.sbi.2005.08.009

L. Li, D. Mustafi, Q. Fu, V. Tereshko, D. L. Chen et al., Nanoliter microfluidic hybrid method for simultaneous screening and optimization validated with crystallization of membrane proteins, Proceedings of the National Academy of Sciences, vol.440, issue.7084, pp.19243-19251, 2006.
DOI : 10.1038/nature04670

C. J. Gerdts, M. Elliott, S. Lovell, M. B. Mixon, A. J. Napuli et al., The plug-based nanovolume Microcapillary Protein Crystallization System (MPCS), Acta Crystallographica Section D Biological Crystallography, vol.64, issue.11, pp.1116-1138, 2008.
DOI : 10.1107/S0907444908028060

URL : http://journals.iucr.org/d/issues/2008/11/00/bw5254/bw5254.pdf

N. Candoni and S. Veesler, Microfluidic platform for optimization of crystallization conditions, Journal of Crystal Growth, vol.2017, issue.472, pp.18-28
URL : https://hal.archives-ouvertes.fr/hal-01392627

K. C. Aune and C. Tanford, Thermodynamics of the denaturation of lysozyme by guanidine hydrochloride. I. Dependence on pH at 25??, Biochemistry, vol.8, issue.11, pp.4579-4585, 1969.
DOI : 10.1021/bi00839a052

E. Gasteiger, A. Gattiker, C. Hoogland, I. Ivanyi, R. D. Appel et al., ExPASy: the proteomics server for in-depth protein knowledge and analysis, Nucleic Acids Research, vol.31, issue.13, pp.31-3784, 2003.
DOI : 10.1093/nar/gkg563

R. Grossier, N. Candoni, and S. Veesler, Crystallization via tubing microfluidics permits both in situ and ex situ X-ray diffraction, Acta Crystallogr F Struct Biol Commun, vol.2017, pp.73-574
URL : https://hal.archives-ouvertes.fr/hal-01493598

B. Calamini, B. D. Santarsiero, J. A. Boutin, and A. D. Mesecar, Kinetic, thermodynamic and Xray structural insights into the interaction of melatonin and analogues with quinone reductase 2

E. Y. Arashiro and N. R. Demarquette, Use of the pendant drop method to measure interfacial tension between molten polymers, Materials Research, vol.14, issue.1, pp.23-32, 1999.
DOI : 10.1080/00218468208074896

R. Seemann, M. Brinkmann, T. Pfohl, and S. Herminghaus, Droplet based microfluidics, Reports on Progress in Physics, vol.75, issue.1, pp.75-016601, 2012.
DOI : 10.1088/0034-4885/75/1/016601

S. Zhang, C. Guivier-curien, S. Veesler, and N. Candoni, Prediction of sizes and frequencies of nanoliter-sized droplets in cylindrical T-junction microfluidics, Chemical Engineering Science, vol.138, pp.128-139, 2015.
DOI : 10.1016/j.ces.2015.07.046

URL : https://hal.archives-ouvertes.fr/hal-01278233

V. Trivedi, A. Doshi, G. K. Kurup, E. Ereifej, P. J. Vandevord et al., A modular approach for the generation, storage, mixing, and detection of droplet libraries for high throughput screening, Lab on a Chip, vol.88, issue.18, pp.10-2433, 2010.
DOI : 10.1039/c004768f

S. Y. Tanaka, M. Ito, K. Hayakawa, and R. , Relation between the phase transition and the crystallization in protein solutions, Physical Review, vol.56, issue.n°1, pp.67-69, 1997.

E. Revalor, P. Punniam, J. B. Salmon, N. Candoni, and S. Veesler, Nucleation and polymorphism explored via an easy-to-use microfluidic tool, Journal of Crystal Growth, issue.1, pp.342-351, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00697511

C. N. Baroud, F. Gallaire, and R. Dangla, Dynamics of microfluidic droplets, Lab on a Chip, vol.9, issue.9, pp.2032-2045, 2010.
DOI : 10.1039/c001191f

URL : https://hal.archives-ouvertes.fr/hal-01020657

P. K. Sharma and K. Hanumantha-rao, Analysis of different approaches for evaluation of surface energy of microbial cells by contact angle goniometry, Advances in Colloid and Interface Science, vol.98, issue.3, pp.98-341, 2002.
DOI : 10.1016/S0001-8686(02)00004-0

S. C. Mande and M. E. Sobhia, Structural characterization of protein???denaturant interactions: crystal structures of hen egg-white lysozyme in complex with DMSO and guanidinium chloride, Protein Engineering, Design and Selection, vol.13, issue.2, pp.13-133, 2000.
DOI : 10.1016/S0022-2836(05)80034-8