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Mickaël Abbas1, Alexandre Ern2,3 and Nicolas Pignet1,2,3

August 7, 2018

Abstract

We devise and evaluate numerically a Hybrid High-Order (HHO) method for incremental
associative plasticity with small deformations. The HHO method uses as discrete unknowns
piecewise polynomials of order k ≥ 1 on the mesh skeleton, together with cell-based poly-
nomials that can be eliminated locally by static condensation. The HHO method supports
polyhedral meshes with non-matching interfaces, is free of volumetric locking, and the in-
tegration of the behavior law is performed only at cell-based quadrature nodes. Moreover,
the principle of virtual work is satisfied locally with equilibrated tractions. Various two- and
three-dimensional test cases from the literature are presented including comparison against
known solutions and against results obtained with an industrial software using conforming
and mixed finite elements.

Keywords: Associative Plasticity – Hybrid High-Order methods – Polyhedral meshes

1 Introduction

Hybrid High-Order (HHO) methods have been introduced a few years ago for diffusion problems
in [2121] and for linear elasticity problems in [1919]. Recently, the development of HHO methods
has received a vigorous interest. Examples include in solids mechanics Biot’s problem [99], nonlin-
ear elasticity with small deformations [1010], and hyperelasticity with finite deformations [11], and
in fluid mechanics, the incompressible Stokes equations [2222], the steady incompressible Navier–
Stokes equations [2020], and viscoplatic flows with yield stress [1111]. The discrete unknowns in HHO
methods are face-based unknowns that are piecewise polynomials on the mesh skeleton. Cell-based
unknowns are also introduced. These additional unknowns are instrumental for the stability and
approximation properties of the method and can be locally eliminated by using the well-known
static condensation technique (based on a local Schur complement). For nonlinear problems, this
elimination is performed at each step of the nonlinear iterative solver (typically Newton’s method).

The devising of HHO methods hinges on two key ideas: (i) a local higher-order reconstruction
operator acting on the face and cell unknowns; (ii) a local stabilization operator that weakly en-
forces on each mesh face the consistency between the local face unknowns and the trace of the cell
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unknowns. A somewhat subtle design of the stabilization operator has been proposed in [1919, 2121]
leading to O(hk+1) energy-error estimates for linear model problems with smooth solutions, where
h is the mesh-size and k is the polynomial order of the face unknowns. HHO methods offer several
advantages: (i) the construction is dimension-independent; (ii) general meshes (including fairly
general polyhedral mesh cells and non-matching interfaces) are supported; (iii) a local formulation
using equilibrated fluxes is available, and (iv) computational benefits owing to the static conden-
sation of the cell unknowns and the higher-order convergence rates. In computational mechanics,
another salient feature of HHO methods is the absence of volumetric locking [1919]. Furthermore,
HHO methods have been bridged in [1616] to Hybridizable Discontinuous Galerkin (HDG) methods
[1515] and to nonconforming Virtual Element Methods (ncVEM) [66]. The essential difference with
HDG methods is that the HHO stabilization is different so as to deliver higher-order convergence
rates on general meshes. Concerning ncVEM, the devising viewpoint is different (ncVEM consid-
ers the computable projection of virtual functions instead of a reconstruction operator), and the
stabilization achieves similar convergence rates as HHO but is written differently. An open-source
implementation of HHO methods, the DiSk++ library, is available using generic programming tools
[1414].

In the present work, we devise and evaluate numerically a HHO method for incremental asso-
ciative plasticity with small deformations. Modelling plasticity problems is particularly relevant
in nonlinear solid mechanics since this is one of the main nonlinearities that can be encountered.
Moreover, plasticity can have a major influence on the behavior of a mechanical structure. Plastic
deformations are generally assumed to be incompressible, which can lead to serious volumetric-
locking problems, particularly with a continuous Galerkin (cG) approximation based on (low-
order) H1-conforming finite elements, where only the displacement field is approximated globally
contrary to the plastic deformations and the variables associated with the plastic behavior which
are defined and solved locally in each mesh cell. A way to circumvent volumetric locking is to
consider mixed methods on simplicial or hexahedral meshes, as in [1212, 4545, 4747]. However, mixed
methods need additional global unknowns to impose the condition of plastic incompressibility
that generally increase the cost of building and solving the global system (the variables associ-
ated with the plastic behavior are still solved locally). Moreover, devising mixed methods on
polyhedral meshes with non-matching interfaces is a delicate question. Note that cG methods as
well as mixed methods require to perform the integration of the behavior law only at quadrature
nodes in the mesh cells. Another class of methods free of volumetric locking are discontinuous
Galerkin (dG) methods. We mention in particular [4343, 5050–5252] for hyperelasticity and [4141] for
damage mechanics. Interior penalty dG methods have been developed for classical plasticity with
small [3131, 3737] and finite [3838] deformations, and for gradient plasticity with small [2424, 2525] and finite
[4040] deformations. However, dG methods from the literature generally require to perform the in-
tegration of the behavior law also at additional quadrature nodes located at the mesh faces. Since
the behavior integration can be the most expensive part of the computation during the assembling
step [3232], this additional integration on the mesh faces can lead to a substantial increase in the
computational burden. Moreover, implementing the behavior integration on the mesh faces in an
existing finite element code is not straightforward since the data structure for internal variables
cannot be necessarily re-used. We also mention the lowest-order Virtual Element Method (VEM)
for inelastic problems with small deformations devised in [88] using the maximum norm of the tan-
gent modulus for stabilization (see also [44] for a two-dimensional higher-order extension), whereas
the case of finite deformations is treated in [5353], still in the lowest-order case, with a pseudo-energy
based stabilization.

The HHO method devised in this work uses polynomials of arbitrary order k ≥ 1 on the
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mesh faces, and as in [11, 1010], the local reconstruction operator builds a symmetric gradient in
the tensor-valued polynomial space Pkd(T ;Rd×dsym), where T is a generic mesh cell and d is the
space dimension. The present HHO method offers the above-mentioned benefits of HHO methods
(dimension-independent construction, general meshes, local conservation, static condensation).
In particular, equilibrated tractions satisfying the law of action and reaction while being in local
balance with the external loads and the internal efforts are available. Moreover, in view of the
above discussion on the literature, we observe that the present HHO method (i) hinges on a
displacement-based formulation thus avoiding the need to introduce additional global unknowns;
(ii) is free of volumetric locking; (iii) supports general meshes; and (iv) requires the integration
of the behavior law only at the cell level. Another attractive feature is that the linear system at
each step of Newton’s method is coercive for strain-hardening materials provided the stabilization
parameter is simply positive. We also notice that, to our knowledge, HDG methods have not yet
been devised for plasticity problems (for hyperelasticity problems, we mention [3535, 4242]). Owing to
the close links between HHO and HDG methods, this work can thus be seen as the first HDG-like
method for plasticity problems. Another follow-up of the HHO idea of local reconstruction is to
pave the way for dG methods requiring only a cell-based integration of the behavior law, by using
discrete gradients as in [1818, 3535, 5050]. We also mention the recent study of low-order hybrid dG
method with conforming traces and the hybridizable weakly conforming Galerkin method with
nonconforming traces in [77] in the context of nonlinear solid mechanics.

This paper is organized as follows: in Section 2, we present the incremental associative plastic-
ity problem and the weak formulation of the governing equations. In Section 3, we devise the HHO
method and highlight some of its theoretical aspects. In Section 4, we investigate numerically the
HHO method on two- and three-dimensional test cases from the literature, and we compare our
results to analytical solutions whenever available and to numerical results obtained using estab-
lished cG and mixed methods implemented in the open-source industrial software code_aster
[2727].

2 Plasticity model

In what follows, we write v for scalar-valued fields, v or V for vector-valued fields, V for second-
order tensor-valued fields, and V for fourth-order tensor-valued fields. Contrary to the elastic
model, the elastoplastic model is based on the assumption that the deformations are no longer
reversible. We place ourselves within the framework of generalized standard materials initially
introduced in [2929] and further developed in [3636]. Moreover, we consider the regime of small
deformations and the plasticity model is assumed to be strain-hardening (or perfect) and rate-
independent, i.e., the time and the speed of the deformations have no influence on the solution.
For this reason, only the incremental plasticity problem is considered.

2.1 Helmholtz free energy and yield function

An important hypothesis for the modelling of plasticity under small deformations is that the (sym-
metric) total strain tensor ε, which is equal to the symmetric gradient ∇su of the displacement
field u, can be decomposed into the sum of an elastic part and a plastic part, denoted by εe and
εp respectively, so that ε = εe + εp, which is rewritten as follows:

εe = ε− εp, (1)
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Both tensors, εe and εp, are symmetric, and the plastic deformations are assumed to be incom-
pressible so that

trace(εp) = 0. (2)

Since we consider generalized standard materials, the local material state is described by the
total strain tensor ε ∈ Rd×dsym , the plastic strain tensor εp ∈ Rd×dsym , and a finite collection of
internal variables α := (α1, · · · , αm) ∈ Rm. We assume that there exits a Helmholtz free energy
Ψ : Rd×dsym × Rm → R acting on the pair (εe,α) and satisfying the following hypothesis.

Hypothesis 1 (Helmholtz free energy) Ψ can be decomposed additively into an elastic and a
plastic part as follows:

Ψ(εe,α) =
1

2
εe : C : εe + Ψp(α) (3)

where the function Ψp is strictly convex, and the elastic modulus is C = 2µIs+λI⊗I, with µ > 0,
3λ+ 2µ > 0, (Is)ij,kl = 1

2(δikδjl + δilδjk), and (I ⊗ I)ij,kl = δijδkl.

The elastic modulus C is isotropic, constant, and positive definite with e : C : e = 2µ e :

e+ λtrace(e)2, for all e ∈ Rd×dsym .
As a consequence of the second principle of thermodynamics, the Cauchy stress tensor σ ∈

Rd×dsym and the thermodynamic forces q ∈ Rm are derived from Ψ as follows:

σ = ∂εeΨ = C : εe and q = ∂αΨp. (4)

The criterion to determine whether the deformations become plastic hinges on the scalar yield
function Φ : Rd×dsym × Rm → R, which is a continuous and convex function of the stress tensor
σ and the thermodynamic forces q. The set of stresses and thermodynamic forces that verify
Φ(σ, q) ≤ 0 is the convex set of admissible states (or plasticity admissible domain):

A :=
{

(σ, q) ∈ Rd×dsym × Rm | Φ(σ, q) ≤ 0
}
. (5)

The set of admissible states is partitioned into two disjoint subsets, the elastic domain Ae which
is the interior of the set A and the yield surface ∂A which is the boundary of the set A, so that

Ae :=
{

(σ, q) ∈ A | Φ(σ, q) < 0
}
, ∂A :=

{
(σ, q) ∈ A | Φ(σ, q) = 0

}
. (6)

Hypothesis 2 (Yield function) The yield function Φ : Rd×dsym × Rm → R satisfies the following
properties: (i) Φ is a piecewise analytical function; (ii) the point (0,0) lies in the elastic domain,
i.e., Φ(0,0) < 0; and (iii) Φ is differentiable at all points on the yield surface ∂A.

2.2 Plasticity model problem in incremental form

We are interested in finding the quasi-static evolution in the pseudo-time interval [0, tF ], tF > 0,
of an elastoplastic material body that occupies the domain Ω0 in the reference configuration.
Here, Ω0 ⊂ Rd, d ∈ {2, 3}, is a bounded connected polyhedral domain with Lipschitz boundary
Γ := ∂Ω decomposed in the two relatively open subsets ΓN and ΓD, where a Neumann and a
Dirichlet condition is enforced respectively, and such that ΓN ∪ ΓD = Γ, ΓN ∩ ΓD = ∅, and
ΓD has positive Hausdorff-measure (so as to prevent rigid-body motions). The evolution occurs
under the action of a body force f : Ω0 × [0, tF ] → Rd, a traction force t : ΓN × [0, tF ] → Rd
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on the Neumann boundary ΓN, and a prescribed displacement uD : ΓD × [0, tF ] → Rd on the
Dirichlet boundary ΓD: The pseudo-time interval [0, tF ] is discretized into N subintervals such
that t0 = 0 < t1 < · · · < tN = tF . We denote by V , resp. V0, the set of all kinematically admissible
displacements which satisfy the Dirichlet conditions, resp. homogeneous Dirichlet conditions on
ΓD

VD =
{
v ∈ H1(Ω0;Rd) | v = uD on ΓD

}
, V0 =

{
v ∈ H1(Ω0;Rd) | v = 0 on ΓD

}
. (7)

Moreover, we denote χ := (εp,α) ∈ X the generalized internal variables, where the space of the
generalized internal variables is

X :=
{
χ = (εp,α) ∈ Rd×dsym × Rm | trace(εp) = 0

}
. (8)

Then the problem can be formulated as follows: For all 1 ≤ n ≤ N , given un−1 ∈ VD and
χn−1 ∈ L2(Ω0;X) from the previous pseudo time-step or the initial condition, find un ∈ VD and
χn ∈ L2(Ω0;X) such that∫

Ω0

σn : ε(v) dΩ0 =

∫
Ω0

fn·v dΩ0 +

∫
ΓN

tn·v dΓ for all v ∈ V0, (9a)

and
(χn,σn,Cnep) = PLASTICITY(χn−1, εn−1, εn − εn−1). (9b)

The procedure PLASTICITY allows one to compute the new values of the generalized internal
variables χ, the stress tensor σ and the consistent elastoplastic tangent modulus Cep at each
pseudo time-step. This procedure is detailed in Section 2.32.3 below. The incremental problem (99)
can be reformulated as an incremental variational inequality by introducing a dissipative function,
see for example [2525]. For strain-hardening plasticity, the weak formulation (99) is well-posed, see
[3030, Section 6.4]. For perfect plasticity, under additional hypotheses on the loads, the existence of
a solution to (99) with bounded deformation is studied in [3939].

2.3 Algorithmic aspects

Algorithm 11 presents the incremental associative elastoplasticity problem that has to be solved
in order to find the new value, after incrementation, of the generalized internal variables χnew =

(εp,new,αnew) ∈ X, the stress tensor σnew ∈ Rd×dsym , and the consistent elastoplastic tangent
modulus Cnew

ep , given the generalized internal variables χ ∈ X, the strain tensor ε ∈ Rd×dsym , and
the incremental strain tensor dε ∈ Rd×dsym . Solving this problem is denoted as previously

(χnew,σnew,Cnew
ep ) = PLASTICITY(χ, ε,dε). (10)

The procedure to compute (χnew,σnew,Cnew
ep ) is described in Algorithm 11. First, an elastic trial

state (σtrial, qtrial) is computed. If (σtrial, qtrial) ∈ Ae, then the evolution is elastic, the trial state
is accepted, and the internal variables are not modified. Otherwise, the evolution is plastic and
the normal and flow rules are used to correct the elastic trial state (σtrial, qtrial). Specifically,
we introduce (see line 99 of Algorithm 11) the plastic multiplier (or consistency parameter) which
depends on the yet-unknown pair (σnew, qnew),

Λ(σnew, qnew) =
∂σΦ(σnew, qnew) : C : dε

∂σΦ(σnew, qnew) : C : ∂σΦ(σnew, qnew) +H(σnew, qnew)
≥ 0, (11)
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where H(σnew, qnew) := ∂qΦ(σnew, qnew) : ∂2
α,αΨp(αnew) : ∂qΦ(σnew, qnew) ≥ 0 is the generalized

hardening modulus. For strain-hardening plasticity (resp. perfect plasticity), we have H > 0
(resp. H = 0). The normal and flow rules then state that the pair (σnew, qnew) ∈ A must be
such that dεp = Λ ∂σΦ and dα = −Λ ∂qΦ, where the dependencies in (σnew, qnew) are omitted
for simplicity and where the multiplier Λ verifies in addition the complementary conditions

Λ ≥ 0, Λ Φ = 0, (12)

and the consistency condition

Λ dΦ = 0 if (σnew, qnew) ∈ ∂A. (13)

For strain-hardening plasticity, one can show (see [3333]) that there exists a unique solution to the
constrained nonlinear system considered in lines 77-99 of Algorithm 11.

Algorithm 1 Computation of (χnew,σnew,Cnew
ep )

1: procedure Plasticity(χ, ε,dε)
2: Set σtrial = C : (εe + dε) and qtrial = ∂αΨp(α)

3: if (σtrial, qtrial) ∈ Ae or if (σtrial, qtrial) ∈ ∂A and ∂σΦ(σtrial, qtrial) : C : dε ≤ 0 then
4: dχ = (dεp,dα) = (0,0), σnew = σtrial, Cnew

ep = C
5: else
6: Solve the following constrained nonlinear system in (σnew, qnew, dεp, dα):
7: Φ(σnew, qnew) = 0, ∂σΦ(σnew, qnew) : C : (dε− dεp) ≤ 0
8: σnew = C : (εe + dε− dεp), qnew = ∂αΨp(α+ dα)
9: dεp = Λ(σnew, qnew) ∂σΦ(σnew, qnew), dα = −Λ(σnew, qnew) ∂qΦ(σ, qnew)

10: and set Cnew
ep = C−

(C : ∂σΦ(σnew, qnew))⊗ (C : ∂σΦ(σnew, qnew))

∂σΦ(σnew, qnew) : C : ∂σΦ(σnew, qnew) +H(σnew, qnew)

11: end if
12: χnew = (εp,new,αnew) = χ+ dχ
13: return (χnew,σnew,Cnew

ep )
14: end procedure

Line 88 of Algorithm 11 shows that the increment in the stress tensor is given by dσ = C :
(dε − dεp), and one then introduces the so-called consistent elastoplastic tangent modulus Cnew

ep

such that dσ = Cnew
ep : dε; Cnew

ep is a fourth-order tensor having minor and major symmetries. If
the evolution is elastic, then Cnew

ep = C, and the consistent elastoplastic tangent modulus has two
eigenvalues: 2µ with multiplicity five and 3λ+ 2µ with multiplicity one. Instead, if the evolution
is plastic, then Cnew

ep 6= C, and the eigenvalues of Cnew
ep , which are positive for strain-hardening

plasticity (and non-negative for perfect plasticity) depend on the Helmholtz free energy Ψ and the
yield function Φ (see [4848] for details). For a finite incremental strain, the consistent elastoplastic
tangent modulus generally differs from the so-called continuous elastoplastic tangent modulus
which is obtained by letting the incremental strain tend to zero [4646].

2.4 Example: combined linear isotropic and kinematic hardening with a von
Mises yield criterion

An illustration of the plasticity model defined above is the combined linear isotropic and kinematic
hardening model. The internal variables are α := (εp, p), where p ≥ 0 is the equivalent plastic
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strain. We assume that the plastic part of the free energy is fully decoupled so that

Ψp(α) =
K

2
εp : εp +

H

2
p2. (14)

where H ≥ 0, resp. K ≥ 0, is the isotropic, resp. kinematic, hardening modulus. The associated
thermodynamic forces q := (β, r) are the back-stress tensor β = Kεp and the internal stress
r = Hp. Note that β is a deviatoric tensor since trace(β) = 0. The perfect plastic model is
retrieved by taking H = K = 0. Concerning the yield function, we consider a J2-plasticity model
with a von Mises criterion:

Φ(σ, q) =

√
3

2
‖dev(σ − β)‖`2 − σy,0 − r, (15)

where σy,0 is the initial yield stress, dev(τ ) := τ − 1
dtrace(τ )I is the deviatoric operator, and the

Frobenius norm is defined as ‖τ‖`2 =
√
τ : τ , for all τ ∈ Rd×d. The above model describes with

a reasonable accuracy the behaviour of metals (see [3636]).

3 The Hybrid High-Order method

3.1 Discrete setting

We consider a mesh sequence (Th)h>0, where for each h > 0, the mesh Th is composed of
nonempty disjoint open polyhedra with planar faces such that Ω0 =

⋃
T∈Th T . The mesh-size

is h = maxT∈Th hT , where hT stands for the diameter of the cell T . A closed subset F of Ω0 is
called a mesh face if it is a subset with nonempty relative interior of some affine hyperplane HF

and (i) if either there exist two distinct mesh cells T−, T+ ∈ Th such that F = ∂T− ∩ ∂T+ ∩HF

(and F is called an interface) or (ii) there exists one mesh cell T ∈ Th such that F = ∂T ∩Γ∩HF

(and F is called a boundary face). The mesh faces are collected in the set Fh which is further
partitioned into the subset F i

h which is the collection of the interfaces and the subset Fb
h which is

the collection of the boundary faces. We assume that the mesh is compatible with the partition of
the boundary Γ into ΓD and ΓN, so that we can further split the set Fb

h into the disjoint subsets
Fb,D
h and Fb,N

h with obvious notation. For all T ∈ Th, F∂T is the collection of the mesh faces that
are subsets of ∂T and nT is the unit outward normal to T . We assume that the mesh sequence
(Th)h>0 is shape-regular in the sense specified in [1919], i.e., there is a matching simplicial submesh
of Th that belongs to a shape-regular family of simplicial meshes in the usual sense of Ciarlet [1313]
and such that each mesh cell T ∈ Th (resp., mesh face F ∈ Fh) can be decomposed in a finite
number of sub-cells (resp., sub-faces) which belong to only one mesh cell (resp., to only one mesh
face or to the interior of a mesh cell) with uniformly comparable diameter.

Let k ≥ 1 be a fixed polynomial degree. In each mesh cell T ∈ Th, the local HHO unknowns con-
sist of a pair (vT ,v∂T ), where the cell unknown vT ∈ Pkd(T ;Rd) is a vector-valued d-variate poly-
nomial of degree at most k in the mesh cell T , and v∂T ∈ Pkd−1(F∂T ;Rd) =

Ś

F∈F∂T Pkd−1(F ;Rd)
is a piecewise, vector-valued (d−1)-variate polynomial of degree at most k on each face F ∈ F∂T .
We write more concisely that

(vT ,v∂T ) ∈ Uk
T := Pkd(T ;Rd)× Pkd−1(F∂T ;Rd). (16)

The degrees of freedom are illustrated in Fig. 11, where a dot indicates one degree of freedom
(which is not necessarily computed as a point evaluation). More generally, the polynomial degree
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Figure 1: Face (black) and cell (gray) degrees of freedom in Uk
T for k = 1 and k = 2 in the

two-dimensional case (each dot represents a degree of freedom which is not necessarily a point
evaluation).

k of the face unknowns being fixed, HHO methods can be devised using cell unknowns that are
polynomials of degree l ∈ {k − 1, k, k + 1} ∩ N?, (see [1616]); these variants are briefly investigated
numerically in Appendix A.1A.1. We equip the space Uk

T with the following local discrete strain
semi-norm:

|(vT ,v∂T )|21,T := ‖∇svT ‖2L2(T )
+ ‖γ

1
2
∂T (vT − v∂T )‖2

L2(∂T )
, (17)

with the piecewise constant function γ∂T such that γ∂T |F = h−1
F for all F ∈ F∂T , where hF is the

diameter of F . We notice that |(vT ,v∂T )|1,T = 0 implies that vT is a rigid-body motion and that
v∂T is the trace of vT on ∂T .

3.2 Local symmetric strain reconstruction and stabilization

The first key ingredient in the devising of the HHO method is a local symmetric strain re-
construction in each mesh cell T ∈ Th. This reconstruction is materialized by an operator
Ek
T

: Uk
T → Pkd(T ;Rd×dsym) mapping onto the space composed of symmetric Rd×d-valued poly-

nomials in T . The main reason for reconstructing the symmetric strain tensor in a larger space
than the space ∇sPk+1

d (T ;Rd) originally introduced in [1919] for the linear elasticity problem is
that the reconstructed symmetric gradient of a test function acts against a discrete Cauchy stress
tensor which is not in symmetric gradient form, see [2323, Section 4] for further insight. For all
(vT ,v∂T ) ∈ Uk

T , the reconstructed symmetric strain tensor Ek
T

(vT ,v∂T ) ∈ Pkd(T ;Rd×dsym) is ob-
tained by solving the following local problem: For all τ ∈ Pkd(T ;Rd×dsym),

(Ek
T

(vT ,v∂T ), τ )L2(T ) = (∇svT , τ )L2(T ) + (v∂T − vT |∂T , τ nT )L2(∂T ). (18)

Solving this problem entails choosing a basis of the polynomial space Pkd(T ;Rd×dsym) and inverting
the associated mass matrix. The second key ingredient in the HHO method is a local stabilization
operator that enforces weakly the matching between the faces unknowns and the trace of the cell
unknowns. Following [1919, 2121], the stabilization operator Sk∂T : Pkd−1(F∂T ;Rd) → Pkd−1(F∂T ;Rd)
acts on the difference θ = v∂T−vT |∂T ∈ Pkd−1(F∂T ;Rd) and is such that, for all θ ∈ Pkd−1(F∂T ;Rd),

Sk∂T (θ) = Πk
∂T

(
θ − (I −Πk

T
)Dk+1

T (0,θ)|∂T
)
, (19)

where Πk
T
and Πk

∂T
denote, respectively, the L2-orthogonal projectors onto Pkd(T ;Rd) and Pkd−1(F∂T ;Rd).

Note that the right-hand side of (1919) can be rewritten as Πk
∂T

(v∂T−vT |∂T−(I−Πk
T

)Dk+1
T (vT ,v∂T )|∂T ).

The local displacement reconstruction operator Dk+1
T : Uk

T → Pk+1
d (T ;Rd) is such that, for all
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(vT ,v∂T ) ∈ Uk
T ,D

k+1
T (vT ,v∂T ) ∈ Pk+1

d (T ;Rd) is obtained by solving the following local Neumann
problem: For all w ∈ Pk+1

d (T ;Rd),

(∇sDk+1
T (vT ,v∂T ),∇sw)L2(T ) = (∇svT ,∇sw)L2(T ) + (v∂T − vT |∂T ,∇swnT )L2(∂T ), (20)

together with the mean-value conditions
∫
T D

k+1
T (vT ,v∂T )dT =

∫
T vTdT and

∫
T ∇ssDk+1

T (vT ,v∂T )dT =∫
∂T

1
2(nT ⊗v∂T −v∂T ⊗nT )d∂T , where ∇ss is the skew-symmetric part of the gradient operator.

Comparing with (1818), one readily sees that ∇sDk+1
T (vT ,v∂T ) is the L2-orthogonal projection of

Ek
T

(vT ,v∂T ) onto the subspace ∇sPk+1
d (T ;Rd). Following [1919, Lemma 4], it is straightforward to

establish the following stability and boundedness properties (the proof is omitted for brevity).

Lemma 3 (Boundedness and stability) Let the symmetric strain reconstruction operator be
defined by (1818) and the stabilization operator be defined by (1919). Let γ∂T be defined below (1717).
Then, we have the following properties: (i) Boundedness: there exists α] > 0, uniform w.r.t. h,
so that, for all T ∈ Th and for (vT ,v∂T ) ∈ Uk

T ,(
‖Ek

T
(vT ,v∂T )‖2

L2(T )
+ ‖γ

1
2
∂TS

k
∂T (v∂T − vT |∂T )‖2

L2(∂T )

) 1
2

≤ α]|(vT ,v∂T )|1,T . (21)

(ii) Stability: there exists α[ > 0, uniform w.r.t. h, so that, for all T ∈ Th and all (vT ,v∂T ) ∈ Uk
T ,

α[|(vT ,v∂T )|1,T ≤
(
‖Ek

T
(vT ,v∂T )‖2

L2(T )
+ ‖γ

1
2
∂TS

k
∂T (v∂T − vT |∂T )‖2

L2(∂T )

) 1
2

. (22)

As shown in [1919], the following important commuting property holds true:

Ek
T

(IT,∂T (v)) = Πk
T

(∇sv), ∀v ∈ H1(T ;Rd), (23)

where the reduction operator IT,∂T : H1(T ;Rd)→ Uk
T is defined so that IT,∂T (v) = (Πk

T (v),Πk
∂T (v|∂T )).

Proceeding as in [1919, Thm. 8], one can show that for the linear elasticity problem and smooth
solutions, the energy error converges as hk+1|u|Hk+2(Ω0). Finally, taking the trace in (2323), we infer
that

trace
(
Ek
T

(IT,∂T (v))
)

= Πk
T (∇·v), ∀v ∈ H1(T ;Rd), (24)

which is the key commuting property used in [1919] to prove robustness for quasi-incompressible
linear elasticity. This absence of volumetric locking is confirmed in the numerical experiments
performed in Section 44 in the nonlinear setting of incremental associative plasticity.

3.3 Global discrete problem

Let us now devise the global discrete problem. We set Pkd(Th;Rd) :=
Ś

T∈Th P
k
d(T ;Rd) and

Pkd−1(Fh;Rd) :=
Ś

F∈Fh P
k
d−1(F ;Rd). The global space of discrete HHO unknowns is defined as

Uk
h := Pkd(Th;Rd)× Pkd−1(Fh;Rd). (25)

For an element vh ∈ Uk
h, we use the generic notation vh = (vTh ,vFh). For any mesh cell T ∈ Th,

we denote by (vT ,v∂T ) ∈ Uk
T the local components of vh attached to the mesh cell T and to the

faces composing its boundary ∂T , and for any mesh face F ∈ Fh, we denote by vF the component
of vh attached to the face F . The Dirichlet boundary condition on the displacement field can be
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enforced explicitly on the discrete unknowns attached to the boundary faces in Fb,D
h . Letting Πk

F

denote the L2-orthogonal projector onto Pkd−1(F ;Rd), we set

Uk
h,D :=

{
(vTh ,vFh) ∈ Uk

h | vF = Πk
F

(uD), ∀F ∈ Fb,D
h

}
, (26a)

Uk
h,0 :=

{
(vTh ,vFh) ∈ Uk

h | vF = 0, ∀F ∈ Fb,D
h

}
. (26b)

Note that the map vh 7→ (
∑

T∈Th |(vT ,v∂T )|21,T )
1
2 defines a norm on Uk

h,0 (see [1919, Prop. 5]).
A key feature of the present HHO method is that the discrete generalized internal variables

are computed only at some quadrature points in each mesh cell. We introduce for all T ∈ Th,
the quadrature points ξ

T
= (ξ

T,j
)1≤j≤mQ , with ξT,j ∈ T for all 1 ≤ j ≤ mQ, and the quadrature

weights ωT = (ωT,j)1≤j≤mQ , with ωT,j ∈ R for all 1 ≤ j ≤ mQ. We denote by kQ the order of the
quadrature. Then, the discrete internal variables are sought in the space

X̃ kQ
Th :=

ą

T∈Th

XmQ , (27)

that is, for all T ∈ Th, the internal variables attached to T form a vector χ
T

= (χ
T

(ξ
T,j

))1≤j≤mQ
with χ

T
(ξ
T,j

) ∈X for all 1 ≤ j ≤ mQ.
We can now formulate the global discrete problem. We will use the following notation for two

tensor-valued functions defined on T :

(s, e)L2
Q

(T ) :=

mQ∑
j=1

ωT,j s(ξT,j) : e(ξ
T,j

). (28)

We will also need to consider the case where we know the tensor s̃ only at the Gauss nodes (we
use a tilde to indicate this situation), i.e., we have s̃ = (s̃(ξ

T,j
))1≤j≤mQ ∈ (Rd×d)mQ . In this

case, we slightly abuse the notation by denoting again by (s̃, e)L2
Q

(T ) the quantity equal to the

right-hand side of (2828). The global discrete problem consists in finding for any pseudo time-
step 1 ≤ n ≤ N , the pair of discrete displacements (unTh ,u

n
Fh) ∈ Uk

h,D and the discrete internal

variables χ̃nTh ∈ X̃ kQ
Th such that, for all (δvTh , δvFh) ∈ Uk

h,0,∑
T∈Th

(σ̃n,Ek
T

(δvT , δv∂T ))L2
Q

(T ) +
∑
T∈Th

β(γ∂TS
k
∂T (un∂T − unT |∂T ),Sk∂T (δv∂T − δvT |∂T ))L2(∂T )

=
∑
T∈Th

(fn, δvT )L2(T ) +
∑

F∈Fb,N
h

(tn, δvF )L2(F ), (29)

where for all T ∈ Th and all 1 ≤ j ≤ mQ,

(χ̃n
T

(ξ
T,j

), σ̃n(ξ
T,j

), C̃nep(ξT,j)) =

PLASTICITY(χ̃n−1
T

(ξ
T,j

),Ek
T

(un−1
T ,un−1

∂T )(ξ
T,j

),Ek
T

(unT ,u
n
∂T )(ξ

T,j
)−Ek

T
(un−1

T ,un−1
∂T )(ξ

T,j
)),

(30)

with (un−1
Th ,un−1

Fh ) ∈ Uk
h,D and χ̃n−1

Th
∈ X̃ kQ

Th given either from the previous pseudo time-step or
the initial condition. Moreover, in the second line of (2929), the stabilization employs a weight of
the form β = 2µβ0 with β0 > 0. In the original HHO method for linear elasticity [1919], the choice
β0 = 1 is considered. In the present setting, the choice for β0 is further discussed in Section 3.53.5
and in Appendix A.1A.1.
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Remark 4 (Unstabilized HHO method) An unstabilized HHO (uHHO) method has been con-
sidered in [11] on affine simplicial meshes without hanging nodes for hyperelastic materials in finite
deformations inspired by the stable dG methods without penalty parameters devised in [3434]; a more
comprehensive treatment for HHO methods including polyhedral meshes can be found in [2323]. In the
uHHO method from [11], the symmetric gradient is reconstructed in a larger space than Pkd(T ;Rd×dsym),
typically Pk+1

d (T ;Rd×dsym), to achieve stability as in Lemma 33 with Sk∂T ≡ 0. The price to be paid is
a lower convergence rate for smooth solutions. In the present setting of elastoplasticity with small
deformations, our numerical tests (not shown for brevity) indicate for k = 1 less accurate results
for uHHO than for HHO with stabilization, and for k = 2, the results are of comparable accuracy.
The CPU costs are more or less comparable since the time saved by avoiding the stabilization for
uHHO is compensated by the need to reconstruct the strain in a larger space.

3.4 Discrete principle of virtual work

The discrete problem (2929) expresses the principle of virtual work at the global level, and following
the ideas introduced in [1616] (see also [11, 1010]), it is possible to infer a local principle of virtual work
in terms of face-based discrete tractions that comply with the law of action and reaction.

Let Sk∗∂T : Pkd−1(F∂T ;Rd)→ Pkd−1(F∂T ;Rd) be the adjoint operator of Sk∂T with respect to the
L2(∂T ;Rd)-inner product so that we have (γ∂TS

k
∂T (θ),Sk∂T (ζ))L2(∂T ) = (Sk∗∂T (γ∂TS

k
∂T (θ)), ζ)L2(∂T )

(recall that the weight γ∂T is piecewise constant on ∂T ). Let Πk
Q,T

: (Rd×d)mQ → Pkd(T ;Rd×d) de-
note the L2

Q-orthogonal projector such that for all s̃ ∈ (Rd×d)mQ , (Πk
Q,T

(s̃), e)L2(T ) = (s̃, e)L2
Q

(T )

for all e ∈ Pkd(T ;Rd×d). Finally, for any pseudo time-step 1 ≤ n ≤ N and all T ∈ Th, let us define
the discrete traction:

T nT := Πk
Q,T

(σ̃n
T

)·nT + βSk∗∂T (γ∂TS
k
∂T (un∂T − unT |∂T )) ∈ Pkd−1(F∂T ;Rd), (31)

where σ̃n
T

= (σ̃n
T

(ξ
T,j

))1≤j≤mQ ∈ (Rd×dsym)mQ with σ̃n
T

(ξ
T,j

) = C : (Ek
T

(unT ,u
n
∂T )(ξ

T,j
)− ε̃p,n

T
(ξ
T,j

))

for all 1 ≤ j ≤ mQ.

Lemma 5 (Equilibrated tractions) Assume that kQ ≥ 2k. Then, for any pseudo time-step
1 ≤ n ≤ N , the following local principle of virtual work holds true for all T ∈ Th:

(σ̃n
T
,∇sδvT )L2

Q
(T ) − (T nT , δvT )L2(∂T ) = (fn, δvT )L2(T ), ∀δvT ∈ Pkd(T ;Rd), (32)

where the discrete tractions T nT defined by (3131) satisfy the following law of action and reaction for
all F ∈ F i

h ∪ F
b,N
h :

T nT−|F + T nT+|F = 0, if F ∈ F i
h with F = ∂T− ∩ ∂T+ ∩HF , (33a)

T nT |F = Πk
F

(tn), if F ∈ Fb,N
h with F = ∂T ∩ ΓN ∩HF . (33b)

The proof is postponed to Appendix A.2A.2.

3.5 Nonlinear solver

The nonlinear problem (2929)-(3030) arising at any pseudo time-step 1 ≤ n ≤ N is solved using
a Newton’s method. Given (un−1

Th ,un−1
Fh ) ∈ Uk

h,D and χ̃n−1
Th
∈ X̃ kQ

Th from the previous pseudo

time-step or the initial condition, the Newton’s method is initialized by setting (un,0Th ,u
n,0
Fh ) =
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(un−1
Th ,un−1

Fh ) and χ̃n,0Th = χ̃n−1
Th

. Then, at each Newton’s step i ≥ 0, one computes the incremental

displacement (δun,iTh , δu
n,i
Fh) ∈ Uk

h,0 and updates the discrete displacement as (un,i+1
Th un,i+1

Fh ) =

(un,iTh ,u
n,i
Fh) + (δun,iTh , δu

n,i
Fh). The linear system of equations to be solved is∑

T∈Th

(C̃n,iep : Ek
T

(δun,iT , δun,i∂T ),Ek
T

(δvT , δv∂T ))L2
Q

(T )

+
∑
T∈Th

β(γ∂TS
k
∂T (δun,i∂T − δu

n,i
T |∂T ),Sk∂T (δv∂T − δvT |∂T ))L2(∂T )

= −Rn,ih (δvTh , δvFh), (34)

for all (δvT , δv∂T ) ∈ Uk
h,0, where for all T ∈ Th and all 1 ≤ j ≤ mQ,

(χ̃n,i
T

(ξ
T,j

), σ̃n,i(ξ
T,j

), C̃n,iep (ξ
T,j

)) = PLASTICITY(χn−1
T,j

, en−1
T,j

, en,i
T,j
− en−1

T,j
), (35)

with χn−1
T,j

= χ̃n−1
T

(ξ
T,j

), en,i
T,j

= Ek
T

(un,iT ,un,i∂T )(ξ
T,j

), en−1
T,j

= Ek
T

(un−1
T ,un−1

∂T )(ξ
T,j

), and the
residual term

Rn,ih (δvTh , δvFh) =
∑
T∈Th

(σ̃n,i,Ek
T

(δvT , δv∂T ))L2
Q

(T ) −
∑
T∈Th

(fn, δvT )L2(T ) −
∑

F∈Fb,N
h

(tn, δvF )L2(F )

+
∑
T∈Th

β(γ∂TS
k
∂T (un,i∂T − u

n,i
T |∂T ),Sk∂T (δv∂T − δvT |∂T ))L2(∂T ). (36)

The assembling of the stiffness matrix resulting from the left-hand side of (3434) is local (and thus
fully parallelizable). The discrete internal variables χ̃nTh ∈ X̃ kQ

Th are updated at the end of each
pseudo time-step.

For strain-hardening plasticity, the consistent elastoplastic tangent modulus Cep is symmetric
positive-definite. Let us set θTh,Q := min(T,j)∈Th×{1,...,mQ} θ

min(C̃ep(ξT,j)), where θ
min(M) denotes

the smallest eigenvalue of the symmetric fourth-order tensor M. The following result shows that
the linear system (3434) arising at each Newton’s step is coercive under the simple choice β0 > 0 on
the stabilization parameter for strain-hardening plasticity.

Theorem 6 (Coercivity) Assume that kQ ≥ 2k and that all the quadrature weights are positive.
Moreover, assume that the plastic model is strain-hardening. Then, the linear system (3434) in each
Newton’s step is coercive for all β0 > 0, i.e., there exists Cell > 0, independent of h, such that for
all (vTh ,vFh) ∈ Uk

h,0,∑
T∈Th

(C̃ep : Ek
T

(vT ,v∂T ),Ek
T

(vT ,v∂T ))L2
Q

(T )+
∑
T∈Th

β(γ∂TS
k
∂T (v∂T−vT |∂T ),Sk∂T (v∂T−vT |∂T ))L2(∂T )

≥ Cell min

(
β0,

θTh,Q
2µ

)
2µ
∑
T∈Th

|(vT ,v∂T )|21,T . (37)

The proof is postponed to Appendix A.3A.3.

Remark 7 Theorem 66 remains valid if the assumption on the strain-hardening plasticity model
is replaced by the weaker assumption that θTh,Q > 0 which is verified if the consistent elastoplastic
tangent modulus is symmetric positive-definite.
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A reasonable choice of the stabilization parameter appears to be β0 ≥ max(1,
θTh,Q

2µ ) because β0 = 1

is a natural choice for the linear elasticity problem (see [1919]) and the choice β0 ≥ θTh,Q
2µ allows one

to adjust the stabilization parameter if the evolution is plastic. We investigate numerically the
choice of β0 in Appendix A.1A.1. For the combined linear isotropic and kinematic plasticity model
with a von Mises yield criterion, the suggested choice leads to β0 ≥ 1 since the smallest eigenvalue
θTh,Q is such that θTh,Q

2µ = H
µ+H

< 1 for the continuous elastoplastic tangent modulus.

3.6 Implementation and static condensation

As is classical with HHOmethods [1919, 2121], and more generally with hybrid approximation methods,
the cell unknowns δun,iT in (3434) can be eliminated locally by using a static condensation (or Schur
complement) technique. Indeed, testing (3434) against the function ((δvT δT,T ′)T ′∈Th , (0)F∈Fh) with
Kronecker delta δT,T ′ and δvT arbitrary in Pkd(T ;Rd), one can express, for all T ∈ Th, the cell
unknown δun,iT in terms of the local face unknowns collected in δun,i∂T . As a result, the static
condensation technique allows one to reduce (3434) to a linear system in terms of the face unknowns
only. The reduced system is of size NFh × d

(
k+d−1
d−1

)
, where NFh denotes the number of mesh

faces (Dirichlet boundary faces can be eliminated by enforcing the boundary condition explicitly).
In the reduced system, each mesh face is connected to neighbouring faces that share a mesh cell
with the face in question. Note that static condensation can improve the condition number of the
global stiffness matrix; we refer the reader to [11, Section 4.3] for numerical results in the case of
HHO methods for hyperelastic materials. Since the behavior integration is performed at the cell
level, the same procedure as for cG methods can be used to deal with a large variety of behavior
laws. One salient example is the standard radial return mapping [4444] (see also [55, 4949]) that will
be used in the numerical examples of Section 44 to solve the nonlinear problem in Algorithm 11.

The implementation of HHO methods is realized using the open-source library DiSk++ [1414]
which provides generic programming tools for the implementation of HHOmethods and is available
online11. The data structure requires access to faces and cells as in standard dG or HDG codes. The
reconstruction and stabilization operators are built locally at the cell level using scaled translated
monomials to define the basis functions (see [1414, Section 3.2.1] for more details). If memory is not
a limiting factor, it is computationally effective to compute these operators once and for all in all
the mesh cells, and to re-use them at each Newton’s step. The DiSk++ library employs different
quadratures depending on the type of the mesh cells. On segments, standard Gauss quadrature
is used. On quadrilaterals and hexahedra, the quadrature is obtained by tensorizing the one-
dimensional Gauss quadrature. On triangles and tetrahedra, the Dunavant [2626] and Grundmann–
Moeller [2828] quadratures are used, respectively. Polyhedral cells are split into sub-simplices, and
the integration is performed in each sub-simplex separately. The linear algebra operations are
realized using the Eigen library and the global linear system (involving face unknowns only) is
solved with PardisoLU from the MKL library (alternatively, iterative solvers are also applicable).
Finally, the Dirichlet boundary conditions are enforced strongly on the face unknowns as described
above.

4 Numerical examples

The goal of this section is to evaluate the proposed HHO method on two- and three-dimensional
test cases from the literature: a sphere under internal pressure, a quasi-incompressible Cook’s

1 https://github.com/wareHHOuse/diskpp
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membrane, a perforated strip subjected to uniaxial extension, and a cube under compression. We
compare the results produced by the HHO method to the analytical solution whenever available
or to numerical results obtained using the industrial open-source FEM code code_aster [2727].
In this case, we consider a quadratic cG formulation, refered to as T2 or Q2 depending on the
mesh, and a three-field formulation in which the unknowns are the displacement, the pressure and
the volumetric strain fields referred to as UPG [22]; in the UPG method, the displacement field
is quadratic, whereas both the pressure and the volumetric strain fields are linear. The T2 and
Q2 methods are known to present volumetric locking due to plastic incompressibility, whereas
the UPG method is known to be robust but costly. Numerical results obtained using the UPG
method on a very fine grid are used as a reference solution whenever an analytical solution is
not available. Moreover, we also investigate the behavior of the HHO method on general meshes.
The combined linear isotropic and kinematic plasticity model with a von Mises yield criterion
described in Section 2.42.4 is used for the test cases. Strain-hardening plasticity is considered for
the two-dimensional cases, i.e., the quasi-incompressible Cook’s membrane and the perforated
strip under uniaxial traction, whereas perfect plasticity is considered for the three-dimensional
cases, i.e, the sphere under internal pressure and the cube under compression. Moreover, for the
two-dimensional test cases, we assume additionally a plane strain condition. In the numerical
experiments reported in this section, the stabilization parameter is taken to be β = 2µ (β0 = 1),
and all the quadratures use positive weights. We employ the notation HHO(k) when using face
(and cell) polynomials of order k. All the tests are run sequentially on a 3.4 Ghz Intel Xeon
processor with 16 Gb of RAM

4.1 Sphere under internal pressure

This first benchmark consists of a sphere under internal pressure for which an analytical solution is
known (see [1717, Section 7.5.2]). The sphere has an inner radius Rin = 100 mm and an outer radius
Rout = 200 mm. An internal radial pressure P is imposed. The material parameters adopted are
those of [1717]: a Young modulus E = 210 GPa, a Poisson ratio ν = 0.3, and an initial yield stress
σy,0 = 240 MPa. For symmetry reasons, only one-eighth of the sphere is discretized, and the
mesh is composed of 506 tetrahedra, see Fig. 2a2a. The simulation is performed until the limit
load corresponding to an internal pressure Plim ' 332.71 MPa is reached. Numerically, this limit
load is reached when the Newton solver stops converging. The load-deflection curves are plotted
for HHO methods in Fig. 2b2b showing that both HHO(1) and HHO(2) produce numerical results
in very good agreement with the analytical solution. For this test case, we do not expect that
HHO(2) will deliver much more accurate solutions than HHO(1) since the geometry is discretized
using tetrahedra with planar faces. The computed radial (σrr) and hoop (σθθ) components of the
stress tensor are shown in Fig. 33 at all the quadrature points for P = 300 MPa. For both HHO(1)
and HHO(2), the computed stresses are very close to the analytical solution. The error on the
stresses is slightly larger for HHO(1) than for HHO(2) near the transition between the elastic zone
and the plastic zone (indicated by a dashed line at the radius Rp = 157.56 mm). Finally, the trace
of the stress tensor is compared for HHO, UPG and cG methods in Fig. 44 at all the quadrature
points for the limit load. A sign of locking is the presence of strong oscillations of the trace of
stress tensor. Thus, we notice that the quadratic element T2 locks, whereas HHO and UPG do
not present any sign of locking and produce results that are very close to the analytical solution.
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Figure 2: Sphere under internal pressure: (a) Mesh in the reference configuration composed of
506 tetrahedra. (b) Average radial displacement at the outer surface (mm) vs. applied pressure
(MPa); the dashed line indicates the theoretical limit load.
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Figure 3: Sphere under internal pressure: radial (left) and hoop (right) components of the stress
tensor (MPa) vs. r (mm) for HHO(1) and HHO(2) at all the quadrature points and for P =
300 MPa (the dashed line corresponds to the transition between the plastic zone and the elastic
zone).

15



100 120 140 160 180 200
−1,000

−500

0

500

1,000
Analytical • HHO(1) • HHO(2)

(a)

100 120 140 160 180 200
−1,000

−500

0

500

1,000
Analytical • T2 • UPG

(b)

Figure 4: Sphere under internal pressure: trace of the stress tensor (MPa) vs. r (mm) at all the
quadrature points and for the limit load; (a) HHO(1) and HHO(2), (b) T2 and UPG.

4.2 Quasi-incompressible Cook’s membrane

We consider the quasi-incompressible Cook’s membrane problem which is a well known bending-
dominated test case (see for example [4545, Section 6.2.3] or [1212]). It consists of a tapered panel,
clamped on one side, and subjected to a vertical load Fy = 1.8 N on the opposite side, as shown in
Fig. 5a5a. The material parameters are a Young modulus E = 70 MPa, a Poisson ratio ν = 0.4999,
an initial yield stress σy,0 = 0.243 MPa, an isotropic hardening modulus H = 0.135 MPa and
a kinematic hardening modulus K = 0 MPa. The simulation is performed in twenty uniform
increments of the load and with a sequence of refined quadrangular meshes such that each side
contains 2N edges, 1 ≤ N ≤ 7. The vertical displacement of the point A is plotted in Fig. 5b5b for
HHO(1), HHO(2), cG, and UPG methods. As expected when comparing the number of degrees of
freedom, the quadratic cG formulation Q2 has the slower convergence, HHO(1) converges slightly
faster than UPG, and HHO(2) outperforms all the other methods. Moreover, we show in Fig. 66
the trace of the stress tensor. The cG formulation Q2 presents strong oscillations that confirm
the presence of volumetric locking, contrary to the HHO and UPG methods which deliver similar
and smooth results.

4.3 Perforated strip subjected to uniaxial extension

We consider a strip of width 2L = 200 mm and height 2H = 360 mm. The strip is perforated
in its middle by a circular hole of radius R = 50 mm, and is subjected to a uniaxial extension
δ = 5 mm at its top and bottom ends. For symmetry reasons, only a quarter of the strip is
discretized. The geometry and the boundary conditions are presented in Fig. 7a7a. This problem
is frequently used in the literature, see for example [44, 55, 88, 4949]. The material parameters are a
Young modulus E = 70 MPa, a Poisson ration ν = 0.3, an initial yield stress σy,0 = 0.8 MPa,
an isotropic hardening modulus H = 10 MPa, and a kinematic hardening modulus K = 5 MPa.
The relative displacement errors err = (u − uref)/uref versus the number of degrees of freedom
are plotted for the points A and B, and for different triangular meshes in Fig. 88 (the reference
solution uref is computed with the UPG method and a mesh composed of 37,032 triangles leading
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Figure 5: Quasi-incompressible Cook’s membrane: (a) Geometry and boundary conditions (di-
mensions in mm). (b) Convergence of the vertical displacement of the point A (in mm) vs. the
number of degrees of freedom for Q2, UPG, HHO(1), and HHO(2).
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Figure 6: Quasi-incompressible Cook’s membrane: trace of the stress tensor (MPa) on the refer-
ence configuration for a 64× 64 quadrangular mesh; (a) Q2 (b) UPG (c) HHO(1) (d) HHO(2).
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to 149,206 degrees of freedom). The relative errors are similar for UPG and HHO(1), and the
errors are lower for HHO(2) for the same number of degrees of freedom. Finally, the equivalent
plastic strain p is shown in Fig. 7b7b for UPG and HHO(2) on a triangular mesh. We remark that
the results are similar and that there is no sign of locking.

(a) (b)

Figure 7: Perforated strip: (a) Geometry. (b) Equivalent plastic strain p for a triangular mesh
with UPG (left) and HHO(2) (right); there are 5,542 degrees of freedom for UPG and 9,750 for
HHO(2).

4.4 Compression of a cube

This benchmark comes from [22, Section 5.2]. It consists of a rectangular block of length and width
2L = 20 mm and height H = 10mm. The lateral faces are free and the bottom face is clamped.
Only one quarter is discretized owing to symmetries, see Fig. 9a9a. The material parameters are a
Young modulus E = 200 GPa, a Poisson ratio ν = 0.3, and an initial yield stress σy,0 = 150 MPa.
A vertical pressure P = 350 MPa is applied in 30 uniform increments in the part of the upper
surface indicated in Fig. 9a9a. The trace of the stress tensor is plotted in Fig. 9b9b for UPG and
HHO(1) on a tetrahedral mesh. Both methods do not present oscillations, contrary to the cG
formulation (not shown for brevity).

4.5 Polyhedral meshes

In the previous sections, the proposed HHO method has been tested on simplicial and hexahedral
meshes so as to be able to compare it to the UPG method which only supports these types of
meshes. Our goal now is to illustrate the fact that the HHO method supports general meshes with
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Figure 8: Perforated strip: Relative displacement error at the points A (left) and B (right) vs.
the number of degrees of freedom for UPG, HHO(1) and HHO(2).

(a) (b)

Figure 9: Compression of a cube: (a) Geometry. (b) Trace of the stress tensor on the reference
configuration (MPa) with UPG (left) and HHO(1) (right) on a tetrahedral mesh; there are 25,556
degrees of freedom for UPG and 15,947 for HHO(1).
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possibly non-matching interfaces. For our test cases, the polyhedral meshes are generated from
quadrangular or hexahedral meshes by removing the common face for some pairs of neighbouring
cells and then merging the two cells in question (about 30% of the cells are merged) thereby
producing non-matching interfaces materialized by hanging nodes for a significant portion of the
mesh cells. In two dimensions, a random moving of the internal nodes is additionally applied in
such a way that the cells remain star-shaped with respect to their barycenter. We consider the last
two benchmarks presented above, i.e., the perforated strip (see Section 4.34.3) and the compressed
cube (see Section 4.44.4). Concerning the perforated strip, we show an example of a polyhedral mesh
in Fig. 10a10a and the equivalent plastic strain for HHO(2) on a triangular mesh and the polygonal
mesh in Fig. 10b10b. The results agree very well on the two meshes. For the compression of the cube,

(a) (b)

Figure 10: Perforated strip: (a) Example of a polygonal mesh composed of 536 cells. (b) Equivalent
plastic strain p with HHO(2) for a triangular mesh (left) and a polygonal mesh (right); there are
9,750 dofs for the triangular mesh and 7,590 dofs for the polygonal mesh.

we use a polyhedral mesh which is generated as above from a hexahedral mesh by removing the
common face for some pairs of neighboring cells (see Fig. 11a11a for the mesh; note that a random
moving of the internal nodes is not applied here to avoid nonplanar faces). We compare in Fig. 11b11b
the trace of stress tensor for HHO(1) on a tetrahedral mesh and the polyhedral mesh. The results
agree very well on the two meshes, and there is no sign of volumetric locking. These numerical
experiments indicate that, as predicted by the theory, the HHO method supports general meshes
both in two and three dimensions.

5 Conclusion

We have devised and evaluated numerically a Hybrid High-Order method to approximate asso-
ciative plasticity problems in the small deformation regime. The method shows a robust behavior
for the perfect plasticity model as well as for the combined linear isotropic and kinematic hard-
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(a) (b)

Figure 11: Compression of a cube: (a) Example of a polyhedral mesh composed of 2,243 cells.
(b) Trace of the stress tensor on the initial configuration (in MPa) for HHO(1) on a tetrahedral
mesh (left) and on the polyhedral mesh (right); there are 31,941 dofs for the tetrahedral mesh
and 75,261 dofs for the polyhedral mesh.

ening model and produces accurate solutions with a moderate number of degrees of freedom. In
particular, as mixed methods, the HHO method prevents volumetric locking due to plastic in-
compressiblity, but with less unknowns than mixed methods for the same accuracy. Moreover,
the HHO method supports general meshes with possibly non-matching interfaces. This work can
be pursued in several directions. One could use a non-local plasticity model, as for example a
strain-gradient plasticity model, to take into account scale-dependent effects as in [2525]. Further-
more, error estimates can be investiagted, possibly by taking inspiration from [33, 2525], where other
discretization methods are analyzed for plasticity problems. Finally, the extension of the present
HHO method to elastoplasticity in finite deformations is the subject of ongoing work.

A Appendix

A.1 Variants of the HHO method

Once the polynomial degree k attached to faces has been fixed, there are three different possibilities
for the polynomial degree l attached to cell, namely l ∈ {k− 1, k, k+ 1}∩N for diffusive problems
(see [1616]). Nevertheless, for k = 1, the choice l = 0 is not possible for linear elasticity because
of the rigid body motions. In this appendix, we focus on the case k = 2 and we compare
the variants l ∈ {1, 2, 3} for the cell degrees of freedom. We use the notation HHO(2;l) and
observe that the choice l = 2 corresponds to the results presented above. For the local operators
Ek
T
,Dk+1

T , and Sk∂T , the only difference is that we replace (vT ,v∂T ) ∈ Uk
T by (vT ,v∂T ) ∈ Uk,l

T :=

Pld(T ;Rd) × Pkd−1(F∂T ;Rd). Moreover, for l = k + 1, we consider the simpler expression for
Sk∂T : Pk+1

d−1(F∂T ,Rd) → Pkd−1(F∂T ,Rd) such that for all θ ∈ Pk+1
d−1(F∂T ;Rd), Sk∂T (θ) = Πk

∂T
(θ).

Lemma 33, Lemma 55, and Theorem 66 remain true (up to minor adaptations).
We compare these HHO variants on the first two benchmarks: the sphere under internal

pressure (see Section 4.14.1) and the quasi-incompressible Cook’s membrane (see Section 4.24.2). For
the sphere benchmark, the computed radial (σrr) and hoop (σθθ) components of the stress tensor
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are shown in Fig. 1212 at all the quadrature points for P = 300 MPa for HHO(2;1) and HHO(2;3).
The results are in agreement with those obtained with HHO(2;2). Let us now compare the time

100 120 140 160 180 200
−300

−200

−100

0

100

σrr: analytical • σrr: HHO(2;1)

σθθ: analytical • σθθ: HHO(2;1)

(a) HHO(2,1)

100 120 140 160 180 200
−300

−200

−100

0

100

σrr: analytical • σrr: HHO(2;3)

σθθ: analytical • σθθ: HHO(2;3)

(b) HHO(2,3)

Figure 12: Sphere under internal pressure: σrr (MPa) and σθθ (MPa) vs. r (mm) for HHO(2;1)
and HHO(2;3) methods at all the quadrature points for P = 300 MPa.

spent to solve the non-linear problem when using HHO(2,l) with l ∈ {1, 2, 3} and β = 2µ (β0 = 1).
The assembly time to build the local contributions to the global stiffness matrix is divided into
three parts: one part, denoted Gradrec, to reconstruct the strain and build the global system; a
second part, denoted Stabilization, to build the stabilization operator (including the time to
build the displacement reconstruction, see (2020)); and a last part, denoted Static Condensation,
to perform the static condensation. The solver time, which corresponds to solving the global linear
system, is denoted Solver. These times are computed after summation over all the Newton’s
iterations and are normalized by the total cost associated with HHO(2;2). In Fig. 13a13a, we provide
an assessment of the cost on a fixed mesh with 506 tetrahedra. We observe that the difference
between HHO(2;2) and HHO(2;3) is not really important; in fact, the time that HHO(2;3) spends
to reconstruct the less expensive stabilization is compensated by a larger number of Newton’s
iterations. The HHO(2;1) variant turns out to be the most efficient (around 20% less CPU time
than HHO(2;2)); indeed it needs less Newton’s iterations and the cost of a single Newton’s iteration
is the cheapest. In Fig. 13b13b, we report the total number of Newton’s iterations normalized by the
result for HHO(2;2) and β0 = 1 versus β0. On the one hand, we remark that β0 has a significant
influence on the number of Newton’s iterations if β0 . 1 and on the other hand, the different
variants need the same number of Newton’s iterations to converge if β0 & 10. Note that this
experiment is particularly challenging since we are considering here perfect plasticity for which
the stability result from Theorem 66 is not applicable.

We repeat the above experiments with the Cook’s membrane problem with strain hardening
plasticity so that the stability result of Theorem 66 holds true with θTh,Q ≈ 0.25. In Fig. 14a14a,
the CPU times on a 64 × 64 quadrangular mesh are reported. Here, HHO(2;3) turns out to be
the most efficient variant (around 22% less CPU time than HHO(2,2)); indeed it needs the same
number of Newton’s iterations and the computation of the stabilization operator is faster than for
the other variants. Nevertheless, these differences in terms of total CPU times are less noticeable
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Figure 13: Sphere under internal pressure: (a) Comparison of normalized CPU times for HHO(2;l),
l ∈ {1, 2, 3}. (b) Total number of Newton’s iterations versus β0 normalized by the result for
HHO(2;2) and β0 = 1.

in two dimensions than in three dimensions since the computations are less intensive. In Fig. 14b14b,
we plot the number of Newton’s iterations normalized by the result for HHO(2;2) and β0 = 1
versus β0. As above, HHO(2;1) is the variant that depends the least on β0 but this behavior is
less pronounced than for the sphere benchmark. In addition, whatever variant is used, if we take
β0 =

θTh,Q
2µ ≈ 0.005, the Newton’s method needs more than 500 iterations to converge (compared

to 108 iterations for HHO(2;2) and β0 = 1). A first conclusion is that it seems reasonable to
take β0 ∈ [1, 100] since the number of Newton’s iterations is lower and the condition number does
not increase too much. A second conclusion is that it seems preferable to use HHO(2;1) than
HHO(2;2) or HHO(2;3) since HHO(2;1) is less sensitive to the choice of β0.

A.2 Proof of Lemma 55

Proof. Recall the notation σ̃n
T

= (σ̃n
T

(ξ
T,j

))1≤j≤mQ with σ̃n
T

(ξ
T,j

) = C : (Ek
T

(unT ,u
n
∂T )(ξ

T,j
) −

ε̃p,n
T

(ξ
T,j

)) for all 1 ≤ j ≤ mQ. Let us consider the virtual displacement ((δvT δT,T ′)T ′∈Th , (0)F∈Fh) ∈
Uk
h,0 in (2929), with the Kronecker delta such that δT,T ′ = 1 if T = T ′ and δT,T ′ = 0 otherwise.

Owing to (1818), and since the quadrature is by assumption at least of order 2k, we have

(fn, δvT )L2(T ) = (σ̃n
T
,Ek

T
(δvT ,0))L2

Q
(T ) + β(γ∂TS

k
∂T (un∂T − unT |∂T ),Sk∂T (−δvT |∂T ))L2(∂T )

= (Πk
Q,T

(σ̃n
T

),Ek
T

(δvT ,0))L2(T ) − β(Sk∗∂T (γ∂TS
k
∂T (un∂T − unT |∂T )), δvT |∂T )L2(∂T )

= (Πk
Q,T

(σ̃n
T

),∇sδvT )L2(T ) − (Πk
Q,T

(σ̃n
T

) ·nT , δvT )L2(∂T )

− β(Sk∗∂T (γ∂TS
k
∂T (un∂T − unT |∂T )), δvT |∂T )L2(∂T )

= (σ̃n
T
,∇sδvT )L2

Q
(T ) − (T nT , δvT )L2(∂T ).

This establishes the local principle of virtual work (3232). Similarly, the law of action and reac-
tion (3333) follows by considering, for all F ∈ F i

h∪F
b,N
h , the virtual displacement ((0)T∈Th , (δvF δF,F ′)F ′∈Fh) ∈
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Figure 14: Quasi-incompressible Cook’s membrane: (a) Comparison of normalized CPU times for
HHO(2;l), l ∈ {1, 2, 3}. (b) Number of Newton’s iteration versus β0 normalized by the result for
HHO(2;2) and β0 = 1.

Uk
h,0 in (2929) (with obvious notation for the face-based Kronecker delta), and observing that both

δvF and T T±|F are in Pkd−1(F ;Rd). If F ∈ Fb,N
h with F = ∂T ∩ ΓN ∩HF , we have

(tn, δvF )L2(F ) = (Πk
F

(tn), δvF )L2(F )

= (σ̃n
T
,Ek

T
(0, δvF ))L2

Q
(T ) + β(γ∂TS

k
∂T (un∂T − unT |∂T ),Sk∂T (δvF ))L2(F )

= (Πk
Q,T

(σ̃n
T

),Ek
T

(0, δvF ))L2(T ) + β(γ∂TS
k
∂T (un∂T − unT |∂T ),Sk∂T (δvF ))L2(∂T )

= (Πk
Q,T

(σ̃n
T

) ·nT , δvF )L2(F ) + β(Sk∗∂T (γ∂TS
k
∂T (un∂T − unT |∂T )), δvF )L2(∂T )

= (T nT |F , δvF )L2(F ),

whereas if F ∈ F i
h with F = ∂T− ∩ ∂T+ ∩HF , we have

0 = (σ̃n
T+
,Ek

T+
(0, δvF ))L2

Q
(T+) + β(γ∂T+S

k
∂T+

(un∂T+
− unT+ |∂T+

),Sk∂T+
(δvF ))L2(∂T+)

+ (σ̃n
T−
,Ek

T−
(0, δvF ))L2

Q
(T−) + β(γ∂T−S

k
∂T−(un∂T− − unT− |∂T−),Sk∂T−(δvF ))L2(∂T−)

= (Πk
Q,T+

(σ̃n
T+

) ·nT+ , δvF )L2(∂T+) + β(Sk∗∂T+
(γ∂T+S

k
∂T+

(un∂T+
− unT+ |∂T+

)), δvF )L2(∂T+)

+ (Πk
Q,T−

(σ̃n
T−

) ·nT− , δvF )L2(∂T−) + β(Sk∗∂T−(γ∂T−S
k
∂T−(un∂T− − unT− |∂T−)), δvF )L2(∂T−)

= (T nT+|F + T nT−|F , δvF )L2(F ).

�

A.3 Proof of Theorem 66

Proof. Since the material is strain-hardening, the consistent elastoplastic tangent modulus is
symmetric positive-definite (see line 1010 of Algorithm 11). Hence, its smallest eigenvalue is real and
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positive, so that θTh,Q > 0. Observing that Ek
T

(vT ,v∂T ) ∈ Pkd(T,Rd×d) for all vh ∈ Uk
h,0 and that

all the quadrature weights are by assumption positive, we infer that∑
T∈Th

(C̃ep : Ek
T

(vT ,v∂T ),Ek
T

(vT ,v∂T ))L2
Q

(T )

+
∑
T∈Th

β(γ∂TS
k
∂T (v∂T − vT |∂T ),Sk∂T (v∂T − vT |∂T ))L2(∂T )

=
∑
T∈Th

mQ∑
j=1

ωT,jE
k
T

(vT ,v∂T )(ξ
T,j

) : C̃ep(ξT,j) : Ek
T

(vT ,v∂T )(ξ
T,j

)

+
∑
T∈Th

β(γ∂TS
k
∂T (v∂T − vT |∂T ),Sk∂T (v∂T − vT |∂T ))L2(∂T )

≥
∑
T∈Th

θTh,Q
mQ∑
j=1

ωT,jE
k
T

(vT ,v∂T )(ξ
T,j

) : Ek
T

(vT ,v∂T )(ξ
T,j

)


+
∑
T∈Th

β(γ∂TS
k
∂T (v∂T − vT |∂T ),Sk∂T (v∂T − vT |∂T ))L2(∂T )

≥ min(θTh,Q, β)
∑
T∈Th

{
‖Ek

T
(vT ,v∂T )‖2

L2
Q

(T )
+ ‖γ

1
2
∂TS

k
∂T (v∂T − vT |∂T )‖2

L2(∂T )

}

= min(θTh,Q, β)
∑
T∈Th

{
‖Ek

T
(vT ,v∂T )‖2

L2(T )
+ ‖γ

1
2
∂TS

k
∂T (v∂T − vT |∂T )‖2

L2(∂T )

}
.

We conclude by using the stability result from Lemma 33 and recalling that β = 2µβ0.

�
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