

Cobalt-catalyzed versus uncatalyzed intramolecular Diels-Alder cycloadditions

Bohdan Biletskyi, Alphonse Tenaglia, Hervé Clavier

▶ To cite this version:

Bohdan Biletskyi, Alphonse Tenaglia, Hervé Clavier. Cobalt-catalyzed versus uncatalyzed intramolecular Diels-Alder cycloadditions. Tetrahedron Letters, 2018, 59 (2), pp.103 - 107. 10.1016/j.tetlet.2017.11.052. hal-01768362

HAL Id: hal-01768362

https://hal.science/hal-01768362

Submitted on 18 Apr 2018

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Graphical Abstract

To create your abstract, type over the instructions in the template box below. Fonts or abstract dimensions should not be changed or altered.

Cobalt-Catalyzed Versus Uncatalyzed Intramolecular Diels-Alder Cycloadditions

Leave this area blank for abstract info.

Bohdan Biletskyi, Alphonse Tenaglia, Hervé Clavier

$$Z = R^{1}$$

$$\Delta \text{ or } Co(OAc)_{2}$$

$$R^{1} \neq H$$

$$R^{2} \quad Col_{2}, \text{ dppe, } Zn, Znl_{2}$$

Cobalt-Catalyzed Versus Uncatalyzed Intramolecular Diels-Alder Cycloadditions

Bohdan Biletskyi^a, Alphonse Tenaglia^a and Hervé Clavier^{a, *}

^a Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, Marseille, France

ARTICLE INFO

ABSTRACT

Article history: Received Received in revised form

Accepted
Available online

Keywords:
Cobalt
Cycloaddition
Cycloisomerization
Dienyne
Carbocycle

The intramolecular [4+2] cycloadditions of dienynes was investigated using cobalt-based catalysts. Substrates without substitution on alkyne moiety were found to react under thermal activation. The use of a cobalt salt as catalyst made reactions cleaner by limiting the formation of byproducts. Cycloadditions with dienynes possessing a substituent on the alkyne pattern occurred only in presence of a cobalt catalyst which displayed a moderate to good activity depending on the substrate patterns.

Cycloisomerizations are valuable transformations to prepare straightforwardly cyclic, bicyclic or polycyclic compounds from simple and readily available acyclic materials.1 Moreover, they belong to the class of atom-economy processes since no formal gain or loss of any atom takes place.² However they are generally promoted by transition metals which allow to activate polyunsaturated substrates and trigger the formation of the new C-C bonds under mild reaction conditions.^{3,4} For example, the intramolecular [4+2] cycloaddition of dienynes was successfully investigated with various transition metals (Scheme 1). Wender reported first an efficient Ni(0)-based catalytic system under mild reaction conditions which unfortunately gave a rather modest endo/exo preference (1.8-2.2/1).5 Shortly after, Livinghouse demonstrated that Rh(I)-based catalysts showed an even better efficiency since [4+2] cycloadducts were isolated with good to excellent diastereoselectivity⁶ and the use of chiral phosphines allowed to perform this transformation in an enantioselective fashion.7 Then, efforts focused on the study and improvement of Rh-catalysis, 8 and the transposition to iridium-catalysis did not led to better results.9 Recently, Chung reported that [4+2] cycloadditions of dienynes can be achieved at room temperature with a gold(I) catalyst but only for substrates featuring terminal alkynes ($R^2 = H$).¹⁰

Given the costs associated with the use of noble transition metals and chiral phosphines, it will be interesting to develop a new catalytic system for this transformation based on an earth abundant transition metal. Considering that cobalt showed a good ability to catalyze various cycloadditions, ¹¹ it seems to be a good candidate to investigate. Of note, whereas several examples of cobalt-mediated intermolecular [4+2] cycloadditions have been reported in the literature, ¹² to the best of our knowledge, no

$$Z \xrightarrow{\mathbb{R}^2} \mathbb{R}^2$$
 \mathbb{R}^2 \mathbb{R}^1

[M] = [Ni], Wender 1989

[M] = [Rh], Livinghouse 1990, Gilbertson 1998

[M] = [Ir], Shibata 2002

[M] = [Au], Chung 2011

[M] = [Co], This work

Scheme 1. Transition metal-promoted intramolecular Diels-Alder cycloadditions of dienynes.

intramolecular Diels-Alder cycloadditions have been described so far. 13

Based on our previous studies on the cobalt-mediated [6+2] cycloaddition between cycloheptatriene and 2π -partners (alkynes or allenes), ¹⁴ we started to explore the cycloaddition of dienyne 1a with CoI₂ as cobalt source, 1,2-bis(diphenylphoshino)ethane (dppe), zinc metal as reducing agent and ZnI₂ as Lewis acid (Table 1, entry 1). With this catalytic system, at 80 °C in dichloroethane, after 20 h of reaction, 34% of the expected [4+2] cycloadduct 2a was isolated (entry 1). Pleasingly, the reaction proceeded with a high diastereoselectivity, and tipycally 2a was isolated with high diastereomeric ratio >20:1.15 Importantly, the solvent needed to be degassed to avoid the formation of substantial amounts of dimerization products16 or oxidized product 3a. In the absence of ZnI₂, the catalytic system performed better and 60% of 2a was isolated (entry 2). Then, many bidentate ligands were tested, among them dppe, 1,2bis(diphenylphoshino)methane (dppm) or 1,10-phenanthroline (entries 2-4) but only minor changes in chemical yields and

Table 1. Optimization of reaction conditions for the cobalt-mediated [4+2] cycloaddition^a

TsN	Catalytic system	T ₂ N/Me
	Me CICH2CH2CI, 80 °C, 20 h	TsN
	1a	2 a (dr > 20.1)
Entry	Catalytic system	Yield %
1	CoI ₂ , Zn, dppe, ZnI ₂	34
2	CoI ₂ , Zn, dppe	60
3	CoI ₂ , Zn, dppm	65
4	CoI ₂ , Zn, 1,10-phenanthroline	54
5	CoBr ₂ , Zn, dppe	60
6	CoCl ₂ , Zn, dppe	53
7	Co(OAc) ₂ , Zn, dppe	53
8	CoI ₂ , Zn	36
9	Co(OAc) ₂ , Zn	57
10	CoI_2	21
11	Co(OAc) ₂	68
12	Co(OAc) ₂ ·4H ₂ O	57
13	Co(OBz) ₂	59
14	none	36 ^b

^a Conditions: [Co] (5 mol%), Zn (15 mol%), Ligand (5 mol%), ZnI₂ (10 mol%), dienyne **1a** (0.5 mmol), ClCH₂CH₂Cl (2 mL), 80 °C, 20 h.

diastereoselectivies were observed. As an additional evidence of the little impact of the ligand structure, when chiral ligands were used no chiral induction was detected.¹⁷ The nature of the cobalt(II) source was also found to be a minor parameter since only little differences were obtained with CoI₂, CoBr₂, CoCl₂ and Co(OAc)₂ (entries 2, 5-7). As the ligand structure did not impact significantly the course of the reaction, we carried out experiments without ligands (entries 8 and 9). Surprisingly, the catalytic system Co(OAc)₂ and zinc metal performed well with the formation of 57% of 2a. Control experiments without reducing agent were also achieved (entries 10-13). Whereas in the case of CoI₂ the yield slightly decreased, with Co(OAc)₂ a significant improvement was observed and 68% of 2a was isolated. Co(OAc)2·4H2O and Co(OBz)2 exhibited somewhat lower activities. Importantly, we performed a control experiment without catalyst and, at 80 °C, 36% of cycloadduct 2a with an excellent diastereoselectivity (dr > 20:1) along with 41% of 3a (entry 14).¹⁸ Of note, in the reactions carried out in presence of cobalt, less than 10% of 3a was generally observed. The oxidation process affording 3a took place only during the reaction, since the purification step did not increase its quantity and cyclohexadiene derivatives were found stable in solution few days at room temperature. Thus, it appeared that the use of Co(OAc)₂ allowed to reduce the oxidation process more than improve the reaction itself.

Then, we started to compare the uncatalyzed and cobalt-mediated intramolecular Diels-Alder cycloadditions of various dienynes featuring a terminal alkyne 1 (Table 2). Both reaction conditions gave [4+2] cycloadducts 2 with high diastereoselectivities. Compared to 1a, C- and O-tethered dienynes were found less reactive. For example, 1b gave only 11% of corresponding cycloadduct 2b under thermal activation along with 22% of 3b. In presence of Co(OAc)₂, the reaction performed better with less oxidation competing (entries 3 and 4). Similar results were obtained with dienyne 1c to the exception that this time the use of

Table 2. Comparison between uncatalyzed and cobalt-mediated intramolecular Diels-Alder cycloadditions of various dienynes 1^a

			Products				
Entry	Substrate	Catalyst	[4+2] Cycloadduct 2 ^b	Yield (%)	Oxidized product 3	Yield (%)	
1	TsN ==	None	TsN, Me	36	TsN Me	41	
2	1a Me	Co(OAc) ₂	H 2a (dr > 20:1)	68	3a	<10	
3	$MeO_2C_{\sqrt{-}}$	None	MeO ₂ C, Me	11	MeO ₂ C Me	22	
4	MeO ₂ C´ 1bMe	Co(OAc) ₂	MeO ₂ C H 2b (dr > 20:1)	27	MeO ₂ C 3b	<10	
5	√ =	None	o nPr	11	o nPr	21	
6	1c nPr	Co(OAc) ₂	H 2c (dr > 20:1)	23	3c	31	
7	TsN(None	TsN	60	TsN Ph	15	
8	1d Ph	Co(OAc) ₂	H 2d (dr > 20:1)	60	3d	<10	
9	√ =	None	Ph	63	Ph	17	
10	1e Ph	Co(OAc) ₂	H	68	3e	12	
	.5		2e (dr > 20:1)				

^a Conditions: Co(OAc)₂ (4.4 mg, 5 mol%), dienyne 1 (0.5 mmol), ClCH₂CH₂Cl (2 mL) 80 °C, 20 h.

^b41% of oxidized product **3a** was also isolated.

^b Major diastereomer depicted.

Co(OAc)₂ improved yields of both cycloadduct and oxidized product (entries 5 and 6). Better outcomes were obtained for dienynes **1d** and **1e** bearing a phenyl substituent at the terminal position of the dienic moiety but no significant difference between uncatalyzed and cobalt-catalyzed reactions could be noticed (entries 7-10).

When the dienyne 4a with a methyl substituent on the alkyne pattern was tested no reaction occurred either under thermal conditions nor in presence of Co(OAc)2 or CoI2 (Table 3, entries 1-3). Therefore, we decided to reinvestigate the catalytic system for this type of substrate. The catalytic system CoI₂, Zn, dppe and ZnI₂ was found competent to give cycloadduct 5a (69%) along with small amount of **6a** (11% yield) (entry 4). It turned out that the use of Co(OAc)₂ instead of CoI₂ led to a substantial decrease of the activity with only 10% of isolated cycloadduct 5a and 16% of **6a** (entry 5). Additional experiments proved the need of ZnI₂ that upgraded the efficiency of the cobalt-based catalyst but did not exhibit any activity itself (entries 6-8). Having in hands the optimized reaction conditions, several substituted dienynes 4 have been tested (Table 4). Despite a good diastereoselectivity, the catalytic system exhibited a reduced activity C- and Otethered dienynes and only low yields of 5b and 5c were obtained along with higher quantities of aromatic products (entries 2 and 3). For 4d bearing a phenyl substituent at the terminal position of the dienic moiety, only traces of cycloadduct 4d were isolated (entry 4) whereas with the O-tethered analogous 4e a better yield compared to dienyne 4c was reached (entry 5). Finally, with trimethylsilyl-substituted dienyne 4f the catalytic system led to the formation of 72% of the expected cycloadduct 5f and only 10% of oxidized product **6f** (entry 6).

Table 3. Optimization of reaction conditions for substituted dienyne $4a^a$

Col₂ (5 mol%), dppe (5 mol%), R' R' Zn (15 mol%), Znl₂ (10 mol%)

Table 4. 4 Scope investigation of cobalt-mediated intramolecular Diels-Alder cycloadditions of substituted dienynes 4ª

Entry Substrate [4+2] Cycloadduct 5° Yield (%) New Me TsN Me			DCE, 80 °C, 20 h	Y	+ Y			
Entry Substrate [4+2] Cycloadduct 5 ^h Yield (%) Oxidized product 6 Yield (%) Oxidized product 6 Yield (%) Oxidized product 6 Yield (%) Me TsN TsN Me TsN Me TsN TsN TsN TsN TsN TsN TsN Ts		4	-R		6			
4+2 Cycloadduct 5° Yield (%) Oxidized product 6 Yield (%)			Products					
TsN	Entry	Substrate	[4+2] Cycloadduct 5 ^b	Yield (%)	Oxidized product 6	Yield (%)		
TSN He Sa (dr > 20:1) 2 MeO ₂ C Me MeO ₂ C Me MeO ₂ C He MeO ₂ C	1	Me	Ме	69	Me	11		
5a (dr > 20:1) 2 MeO ₂ C — Me Me MeO ₂ C Me MeO ₂ C MeO ₂ C MeO ₂ C Me MeO ₂ C MeO ₂		ISN	T _S N , Me		TsN			
5a (dr > 20:1) MeO ₂ C Me MeO ₂ C MeO ₂ C Me		4a Me						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
## MeO ₂ C	2	MeO ₂ C _√ ——Me		37		26		
5b (dr > 20:1) Me Me Me Mo Me Mo Me Mo Me Mo Mo		MeO ₂ C			50 ₂ 0			
3 Me Me Me Me Me Me Me Me TsN		4b ────Me	MeO ₂ C → H		MeO ₂ C 6b			
4c nPr	2	Mo		10	Mo	10		
4c nPr 5c $(dr > 20:1)$ 4 TsN Me	3	o me	<i>n</i> Pr	19	<i>n</i> Pr	16		
5c (dr > 20:1) Me Me Me Me Me Me Me Me Me M		10	0					
4 TsN Me TsN Ph TsN Me		4 0 ⊆ <i>n</i> Pr	H 5c (dr > 20·1)		6c			
TsN H 5	4	Me	Me	6	Мe	-		
4d Ph H 6d 5d (dr > 20:1) 5 Me 31 Me 17 4e Ph H 6e 5e (dr > 20:1) 6 TsN TMS 72 TMS 10 TsN Me TsN Me TsN Me		ISIV	TsN		TsN			
5d (dr > 20:1) Me		4d Ph						
4e Ph H 6e 5e (dr > 20:1) TSN TSN Me TsN Me TsN Me			5d (dr > 20.1)					
4e Ph H 6e 5e (dr > 20:1) TSN TSN Me TSN Me TSN Me	5	_— — −Me	Me ↓ Dh	31	Me ↓ Ph	17		
5e (dr > 20:1) TSN TSN TSN TSN TSN TSN TSN TS			Q J					
TSN TMS 72 TMS 10		4 e [™] Ph	H		6e			
TsN TsN Me	6	TMS		72	TMS	10		
4t \(\)	U	TsN	,√Me	12	Me	10		
		4f Me	TsN					
4f		4 I	H 5f (dr > 20:1)		6f			

^a Conditions: CoI₂ (5 mol%), Zn (15 mol%), dppe (5 mol%), ZnI₂ (10 mol%), dienyne 4 (0.5 mmol), ClCH₂CH₂Cl (2 mL), 80 °C, 20 h.

^a Conditions: [Co] (5 mol%), Zn (15 mol%), dppe (5 mol%), ZnI₂ (10 mol%), dienyne **4a** (0.5 mmol), ClCH₂CH₂Cl (2 mL), 80 °C, 20 h. NR = No Reaction;

^b 11% of oxidized product **3a** was also isolated.

c 16% of 6a.

In summary, cobalt-based catalysts promoted the intramolecular [4+2] cycloaddition of dienynes. An important difference has been noticed as a function of substrates structure. With dienynes containing a terminal alkyne moiety, reactions performed without catalyst gave the expected cycloadducts along with substantial amounts of products resulting from their dehydrogenation. The use of a cobalt salt as catalyst; here the best was found to be sole Co(OAc)₂; improved slightly the yields of [4+2] cycloadducts but made reactions cleaner by lowering the oxidation process whereas unwanted resulting dimerization¹⁶ can be circumvent by the use of degassed solvents. With dienynes possessing a substituent on the alkyne pattern, no reaction occurred without cobalt and even ZnI2 as Lewis acid was required to activate the catalyst. Once again, the nature of the tether as well as the one of the substituents on both alkyne and diene moieties were found to strongly influence the outcome of the highly diastereoselective [4+2] cycloadditions. The development of more active cobaltbased catalysts is currently underway in our laboratory.

Acknowledgments

This work was supported by the Ministère de l'Enseignement Supérieur et de la Recherche (B. B. Ph.D. grant), the CNRS, AMU, and Centrale Marseille.

Supplementary Material

Supplementary data associated with this article can be found, in the online version, at.

References and notes

- For reviews reporting applications in synthesis, see: (a) Stathakis, C. I.; Gkizis, P. L.; Zografos, A. L. Nat. Prod. Rep. 2016, 33, 1093-1117; (b) Ardkhean, R.; Caputo, D. F. J.; Morrow, S. M.; Shi, H.; Xiong, Y.; Anderson, E. A. Chem. Soc. Rev. 2016, 45, 1557-1569; (c) Fensterbank, L.; Malacria, M. Acc. Chem. Res. 2014, 47, 953-965; (d) Rudolph, M.; Hashmi, A. S. K. Chem. Soc. Rev. 2012, 37, 2448-2462; (e) Furstner, A. Chem. Soc. Rev. 2009, 38, 3208-3221; (f) Nicolaou, K. C.; Snyder, S. A.; Montagnon, T.; Vassilikogiannakis, G.; Angew. Chem. Int. Ed. 2002, 41, 1668-1698.
- (a) Trost, B. M. Acc. Chem. Res. 2002, 35, 695–705; (b) Trost, B. M. Angew. Chem. Int. Ed. 1995, 34, 259–281; (c) Trost, B. M. Science 1991, 254, 1471–1477.
- For reviews on transition metal catalyzed cycloisomerisations, see: (a) Dorel, R.; Echavarren, A. M. Chem. Rev. 2015, 115, 9028-9072; (b) Obradors, C.; Echavarren, A. M.; Acc. Chem. Res. 2014, 47, 902-912; (c) Yamamoto, Y. Chem. Rev. 2012, 112, 4736-4769; (d) Michelet, V.; Toullec, P. Y.; Genêt, J.-P. Angew. Chem. Int. Ed. 2008, 47, 4268-4315; (e) Aubert, C.; Buisine, O.; Malacria, M. Chem. Rev. 2002, 102, 813-834.
- For asymmetric processes, see: (a) Marinetti, A.; Jullien, H.; Voituriez, A. Chem. Soc. Rev. 2012, 41, 4884-4908; (b) Watson, I. D. G.; Toste, F. D. Chem. Sci. 2012, 3, 2899-2919; (c) Fairlamb, I. J. S. Angew. Chem. Int. Ed. 2004, 43, 1048-1052.
- 5. Wender, P. A.; Jenkins, T. E. J. Am. Chem. Soc. 1989, 111, 6432-6434.
- Jolly, R. S.; Luedtke, G.; Sheehan, D.; Livinghouse, T. J. Am. Chem. Soc. 1990, 112, 4965-4966.
- 7. McKinstry, L.; Livinhouse, T. Tetrahedron 1994, 50, 6145-6154.
- (a) Gilbertson, S. R.; Hoge, G. S. Tetrahedron Lett. 1998, 39, 2075-2078;
 (b) Gilbertson, S. R.; Hoge, G. S.; Genov, D. G. J. Org. Chem. 1998, 63, 10077-10080;
 (c) Wang, B.; Cao, P.; Zhang, X. Tetrahedron Lett. 1998, 39, 2075-2078;
 (d) Motoda, D.; Kinoshita, H.; Shinokubo, H.; Oshima, K. Angew. Chem. Int. Ed. 2004, 43, 1860-1862;
 (e) Yoo, W.-J.; Allen, A.; Villeneuve, K.; Tam, W. Org. Lett. 2005, 7, 5853-5856;
 (f) DeBoef, B.; Counts, W. R.; Gilbertson, S. R. J. Org. Chem. 2007, 72, 799-804;
 (g) Aikawa, K.; Akutagawa, S.; Mikami, K. J. Am. Chem. Soc. 2006, 128, 12648-12649;
 (h) Shintani, R.; Sannohe, Y.; Tsuji, T.; Hayashi, T. Angew. Chem. Int. Ed. 2007, 46, 7277-7280;
 (i) Lee, S. I.; Park, S. Y.; Park, J. H.; Chung, Y. K.; Han, J. W. Bull. Korean Chem. Soc. 2007, 28, 1919-1920;
 (j) Gómez, Kamber, N. E.; Deschamps, N. M. Cole, A. P.; Wender, P. A.; Waymouth, R. M. Organometallics 2007, 26, 4541-4545;

- (k) Canlas, G. M. R.; Gilbertson, S. R. Chem. Commun. 2014, 50, 5007-5010
- Shibata, T.; Takasaku, K.; Takesue, Y.; Hirata, N.; Takagi, K. Synlett 2002, 1681-1682.
- Kim, S. M.; Park, J. H.; Chung, Y. K. Chem. Commun. 2011, 47, 6719-6721.
- (a) Röse, P.; Hilt, G. Synlett 2016, 48, 463-492; (b) Amatore, M.; Aubert,
 C.; Malacria, M.; Petit, M. In Science of Synthesis, Vol. 1 Update 2012/3,
 Pliekter, B., Ed.; Thieme: Stuttgart, 2012, 1-121; (c) Hess, W.,
 Treutwein, J.; Hilt, G. Synthesis 2008, 22, 3537-3562.
- For selected examples, see: (a) Kuttner, J. R.; Warratz, S.; Hilt, G. Synthesis 2012, 44, 1293-1303; (b) Pünner, F.; Hilt, G. Chem. Commun. 2012, 48, 3617-3619; (c) Hilt, G.; Hengst, C. J. Org. Chem. 2007, 72, 7337-7342; (d) Hilt, G.; Lüers, S.; Harms, K. J. Org. Chem. 2004, 69, 624-630.
- [4+2] cycloadducts were observed as side products in intramolecular Pauson-Khand reactions of dienynes, see: (a) Park, K. H.; Choi, S. Y.; Kim, S. Y.; Chung, Y. K. Synlett 2006, 527-532; (b) Choi, S. Y.; Lee, S. I.; Park, K. H.; Chung, Y. K. Synlett 2007, 1857-1862; For an unsuccessful attempt, see reference 8e.
- (a) Achard, M.; Tenaglia, A.; Buono, G. Org. Lett. 2005, 7, 2353–2356;
 (b) Toselli, N.; Martin, D.; Achard, M.; Tenaglia, A.; Bürgi, T.; Buono, G. Adv. Synth. Catal. 2008, 350, 280-286;
 (c) Clavier, H. Le Jeune, K.; De Riggi, E.; Tenaglia, A.; Buono, G. Org. Lett. 2011, 13, 308-311.
- Lower diastereomeric ratios were observed with substrates containing little impurities.
- For a more detailed discussion on the formation of dimers using rhodium-based catalysts, see: reference 8b.
- 17. See the supporting information.
- For a rare example of thermal intramolecular [4+2] cycloaddition of dienyne, see: Karabiyikoglu, S.; Merlic, C. A. Org. Lett. 2015, 17, 4086-489.