Correlation dimension and phase space contraction via extreme value theory

Abstract : This study uses the link between extreme value laws and dynamical systems theory to show that important dynamical quantities as the correlation dimension, the entropy and the Lyapunov exponents can be obtained by fitting observables computed along a trajectory of a chaotic systems. All this information is contained in a newly defined Dynamical Extreme Index. Besides being mathematically well defined, it is almost numerically effortless to get as i) it does not require the specification of any additional parameter (e.g. embedding dimension, decorrelation time); ii) it does not suffer from the so-called curse of dimensionality. A numerical code for its computation is provided.
Type de document :
Article dans une revue
Chaos, American Institute of Physics, 2018, 28, pp.041103. 〈10.1063/1.5027386〉
Liste complète des métadonnées

Littérature citée [19 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01768181
Contributeur : Sandro Vaienti <>
Soumis le : mardi 24 avril 2018 - 16:01:07
Dernière modification le : jeudi 7 février 2019 - 17:07:43
Document(s) archivé(s) le : jeudi 20 septembre 2018 - 00:03:02

Fichier

ProofMS.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Davide Faranda, Sandro Vaienti. Correlation dimension and phase space contraction via extreme value theory. Chaos, American Institute of Physics, 2018, 28, pp.041103. 〈10.1063/1.5027386〉. 〈hal-01768181〉

Partager

Métriques

Consultations de la notice

208

Téléchargements de fichiers

88