Real time groove characterization combining partial least squares and SVR strategies: application to eddy current testing

Abstract : A quasi real-time inversion strategy is presented for groove characterization of a conductive non-ferromagnetic tube structure by exploiting eddy current testing (ECT) signal. Inversion problem has been formulated by non-iterative Learning-by-Examples (LBE) strategy. Within the framework of LBE, an efficient training strategy has been adopted with the combination of feature extraction and a customized version of output space filling (OSF) adaptive sampling in order to get optimal training set during offline phase. Partial Least Squares (PLS) and Support Vector Regression (SVR) have been exploited for feature extraction and prediction technique respectively to have robust and accurate real time inversion during online phase.
Type de document :
Article dans une revue
Journal of Physics: Conference Series, IOP Publishing, 2017, 904, 〈10.1088/1742-6596/904/1/012017〉
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-01767358
Contributeur : Andrea Massa <>
Soumis le : lundi 16 avril 2018 - 10:30:28
Dernière modification le : lundi 24 septembre 2018 - 11:34:03

Lien texte intégral

Identifiants

Citation

Shamim Ahmed, Marco Salucci, Roberto Miorelli, Anselmi Nicola, Giacomo Oliveri, et al.. Real time groove characterization combining partial least squares and SVR strategies: application to eddy current testing. Journal of Physics: Conference Series, IOP Publishing, 2017, 904, 〈10.1088/1742-6596/904/1/012017〉. 〈hal-01767358〉

Partager

Métriques

Consultations de la notice

231