Train speed profiles optimization using a genetic algorithm based on a random-forest model to estimate energy consumption

Abstract : The most important part of the train's energy is consumed by the traction system. The tractive energy depends mainly on the driving behaviour. Improving driving strategies has great potential to enhance the energy efficiency. This paper presents a speed profile optimization approach based on a genetic algorithm. The objective of the genetic algorithm is to find, for each interstation, the best speed profile which minimizes the energy consumption. The optimized profile takes into account both the physical and the operational constraints such as the maximum allowed travel time, the speed limitations per section and the maximum allowed acceleration and jerk. The fitness function is based on a Random Forest model which is built using on-board measurements. The aim of the model is to estimate accurately the energy consumption corresponding to each speed profile. The initial population of genetic algorithm is mainly composed of the best realistic speed profiles extracted from the collected data.
Type de document :
Communication dans un congrès
Transport Research Arena (TRA) 2018, Apr 2018, vienne, Austria
Liste complète des métadonnées

Littérature citée [17 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01767006
Contributeur : Ahmed Amrani <>
Soumis le : dimanche 15 avril 2018 - 00:32:36
Dernière modification le : vendredi 27 avril 2018 - 17:06:02

Fichier

TRA2018_SP_Amrani_et_al_07_02_...
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01767006, version 1

Collections

Citation

Ahmed Amrani, Amira Hamida, Tao Liu, Olivier Langlois. Train speed profiles optimization using a genetic algorithm based on a random-forest model to estimate energy consumption. Transport Research Arena (TRA) 2018, Apr 2018, vienne, Austria. 〈hal-01767006〉

Partager

Métriques

Consultations de la notice

268

Téléchargements de fichiers

218