Quenched convergence and strong local equilibrium for asymmetric zero-range process with site disorder

Abstract : We study asymmetric zero-range processes on Z with nearest-neighbour jumps and site disorder. The jump rate of particles is an arbitrary but bounded nondecreasing function of the number of particles. We prove quenched strong local equilibrium at subcritical and critical hydrodynamic densities, and dynamic local loss of mass at supercritical hydrodynamic densities. Our results do not assume starting from local Gibbs states. As byproducts of these results, we prove convergence of the process from given initial configurations with an asymptotic density of particles to the left of the origin. In particular , we relax the weak convexity assumption of [7, 8] for the escape of mass property. 1 MSC 2010 subject classification: 60K35, 82C22.
Type de document :
Pré-publication, Document de travail
MAP5 2018-09. 2018
Liste complète des métadonnées

Littérature citée [23 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01766873
Contributeur : Christophe Bahadoran <>
Soumis le : samedi 14 avril 2018 - 14:11:00
Dernière modification le : mercredi 18 avril 2018 - 01:26:01

Fichiers

loceqzrp_110418_HAL.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01766873, version 1
  • ARXIV : 1804.06148

Collections

Citation

Christophe Bahadoran, T. Mountford, K. Ravishankar, E Saada. Quenched convergence and strong local equilibrium for asymmetric zero-range process with site disorder. MAP5 2018-09. 2018. 〈hal-01766873〉

Partager

Métriques

Consultations de la notice

67

Téléchargements de fichiers

13