Classical Extraction in Continuation Models

Abstract : We use the control features of continuation models to interpret proofs in first-order classical theories. This interpretation is suitable for extracting algorithms from proofs of Π 0 2 formulas. It is fundamentally different from the usual direct interpretation, which is shown to be equivalent to Friedman's trick. The main difference is that atomic formulas and natural numbers are interpreted as distinct objects. Nevertheless, the control features inherent to the continuation models permit extraction using a special " channel " on which the extracted value is transmitted at toplevel without unfolding the recursive calls. We prove that the technique fails in Scott domains, but succeeds in the refined setting of Laird's bistable bicpos, as well as in game semantics.
Type de document :
Communication dans un congrès
1st International Conference on Formal Structures for Computation and Deduction (FSCD 2016), Jun 2016, Porto, Portugal. 52, pp.13:1-13:17, 2016, LIPIcs. 〈10.4230/LIPIcs.FSCD.2016.13〉
Liste complète des métadonnées

Littérature citée [20 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01766872
Contributeur : Valentin Blot <>
Soumis le : samedi 14 avril 2018 - 14:03:37
Dernière modification le : mardi 17 avril 2018 - 14:47:10

Fichier

LIPIcs-FSCD-2016-13.pdf
Fichiers éditeurs autorisés sur une archive ouverte

Identifiants

Citation

Valentin Blot. Classical Extraction in Continuation Models. 1st International Conference on Formal Structures for Computation and Deduction (FSCD 2016), Jun 2016, Porto, Portugal. 52, pp.13:1-13:17, 2016, LIPIcs. 〈10.4230/LIPIcs.FSCD.2016.13〉. 〈hal-01766872〉

Partager

Métriques

Consultations de la notice

22

Téléchargements de fichiers

7