Typed realizability for first-order classical analysis

Abstract : We describe a realizability framework for classical first-order logic in which realizers live in (a model of) typed λµ-calculus. This allows a direct interpretation of classical proofs, avoiding the usual negative translation to intuitionistic logic. We prove that the usual terms of Gödel's system T realize the axioms of Peano arithmetic, and that under some assumptions on the computational model, the bar recursion operator realizes the axiom of dependent choice. We also perform a proper analysis of relativization, which allows for less technical proofs of adequacy. Extraction of algorithms from proofs of Π 0 2 formulas relies on a novel implementation of Friedman's trick exploiting the control possibilities of the language. This allows to have extracted programs with simpler types than in the case of negative translation followed by intuitionistic realizability.
Type de document :
Article dans une revue
Logical Methods in Computer Science, Logical Methods in Computer Science Association, 2015, 11 (4), pp.1 - 43. 〈10.2168/LMCS-11(4:22)2015〉
Liste complète des métadonnées

Littérature citée [45 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01766871
Contributeur : Valentin Blot <>
Soumis le : samedi 14 avril 2018 - 13:55:09
Dernière modification le : mardi 17 avril 2018 - 14:36:56

Fichier

1512.05313.pdf
Fichiers éditeurs autorisés sur une archive ouverte

Identifiants

Citation

Valentin Blot. Typed realizability for first-order classical analysis. Logical Methods in Computer Science, Logical Methods in Computer Science Association, 2015, 11 (4), pp.1 - 43. 〈10.2168/LMCS-11(4:22)2015〉. 〈hal-01766871〉

Partager

Métriques

Consultations de la notice

18

Téléchargements de fichiers

6