H. Alle and J. R. Geiger, Combined Analog and Action Potential Coding in Hippocampal Mossy Fibers, Science, vol.311, issue.5765, pp.1290-1293, 2006.
DOI : 10.1126/science.1119055

Y. Shu, A. Hasenstaub, A. Duque, Y. Yu, and D. A. Mccormick, Modulation of intracortical synaptic potentials by presynaptic somatic membrane potential, Nature, vol.311, issue.7094, pp.761-765, 2006.
DOI : 10.1126/science.1119055

M. H. Kole, J. J. Letzkus, and G. J. Stuart, Axon Initial Segment Kv1 Channels Control Axonal Action Potential Waveform and Synaptic Efficacy, Neuron, vol.55, issue.4, pp.633-647, 2007.
DOI : 10.1016/j.neuron.2007.07.031

H. Alle and J. Geiger, Analog signalling in mammalian cortical axons, Current Opinion in Neurobiology, vol.18, issue.3, pp.314-320, 2008.
DOI : 10.1016/j.conb.2008.08.006

M. H. Kole and G. J. Stuart, Signal Processing in the Axon Initial Segment, Neuron, vol.73, issue.2, pp.235-247, 2012.
DOI : 10.1016/j.neuron.2012.01.007

F. S. Werblin and J. Dowling, Organization of the retina of the mudpuppy, Necturus maculosus. II. Intracellular recording., Journal of Neurophysiology, vol.32, issue.3, pp.339-355, 1969.
DOI : 10.1152/jn.1969.32.3.339

E. Marder, Extending influence, Nature, vol.32, issue.7094, pp.702-703, 2006.
DOI : 10.1113/jphysiol.1978.sp012569

R. R. De-ruyter-van-steveninck and S. B. Laughlin, The rate of information transfer at graded-potential synapses, Nature, vol.379, issue.6566, pp.642-645, 1996.
DOI : 10.1038/379642a0

A. Borst and F. Theunissen, Information theory and neural coding, Nature Neuroscience, vol.381, issue.11, pp.947-957, 1999.
DOI : 10.1038/381610a0

R. Heidelberger, Mechanisms of tonic, graded release: lessons from the vertebrate photoreceptor, The Journal of Physiology, vol.23, issue.3, pp.663-667, 2007.
DOI : 10.1113/jphysiol.2005.092239

D. Debanne, E. Campanac, A. Bialowas, E. Carlier, and G. Alcaraz, Axon Physiology, Physiological Reviews, vol.18, issue.2, pp.555-602, 2011.
DOI : 10.1038/nn1854

D. Bucher and J. M. Goaillard, Beyond faithful conduction: Short-term dynamics, neuromodulation, and long-term regulation of spike propagation in the axon, Progress in Neurobiology, vol.94, issue.4, pp.307-346, 2011.
DOI : 10.1016/j.pneurobio.2011.06.001

H. Alle, A. Roth, and J. Geiger, Energy-Efficient Action Potentials in Hippocampal Mossy Fibers, Science, vol.301, issue.5641, pp.1405-1408, 2009.
DOI : 10.1126/science.1089662

B. Sengupta, M. Stemmler, S. B. Laughlin, and J. Niven, Action Potential Energy Efficiency Varies Among Neuron Types in Vertebrates and Invertebrates, PLoS Computational Biology, vol.79, issue.7, p.1000840, 2010.
DOI : 10.1371/journal.pcbi.1000840.s010

T. Shimahara and L. Tauc, Multiple interneuronal afferents to the giant cells in Aplysia., The Journal of Physiology, vol.247, issue.2, pp.299-319, 1975.
DOI : 10.1113/jphysiol.1975.sp010933

T. Shimahara and B. Peretz, Soma potential of an interneurone controls transmitter release in a monosynaptic pathway in Aplysia, Nature, vol.192, issue.5658, pp.158-160, 1978.
DOI : 10.1113/jphysiol.1973.sp010247

J. Nicholls and B. G. Wallace, Modulation of transmission at an inhibitory synapse in the central nervous system of the leech., The Journal of Physiology, vol.281, issue.1, pp.157-170, 1978.
DOI : 10.1113/jphysiol.1978.sp012414

E. Shapiro, V. F. Castellucci, and E. R. Kandel, Presynaptic membrane potential affects transmitter release in an identified neuron in Aplysia by modulating the Ca 2+ and K + currents, Proc. Natl Acad. Sci. USA 77, pp.629-633, 1980.

J. Zhu, M. Jiang, M. Yang, H. Hou, and Y. Shu, Membrane Potential-Dependent Modulation of Recurrent Inhibition in Rat Neocortex, PLoS Biology, vol.48, issue.Pt 4, p.1001032, 2011.
DOI : 10.1371/journal.pbio.1001032.s005

J. M. Christie, D. N. Chiu, and C. Jahr, Ca2+-dependent enhancement of release by subthreshold somatic depolarization, Nature Neuroscience, vol.120, issue.1, pp.62-68, 2011.
DOI : 10.1016/0165-0270(91)90017-T

B. Bouhours, F. F. Trigo, and A. Marty, Somatic Depolarization Enhances GABA Release in Cerebellar Interneurons via a Calcium/Protein Kinase C Pathway, Journal of Neuroscience, vol.31, issue.15, pp.5804-5815, 2011.
DOI : 10.1523/JNEUROSCI.5127-10.2011

D. Debanne, N. C. Guerineau, B. H. Gahwiler, and S. M. Thompson, Action-potential propagation gated by an axonal IA-like K+ conductance in hippocampus, Nature, vol.18, issue.6648, pp.286-289, 1997.
DOI : 10.1016/0166-2236(95)80031-V

W. Rall, Distributions of Potential in Cylindrical Coordinates and Time Constants for a Membrane Cylinder, Biophysical Journal, vol.9, issue.12, pp.1509-1541, 1969.
DOI : 10.1016/S0006-3495(69)86468-4

T. Sasaki, N. Matsuki, and Y. Ikegaya, Effects of Axonal Topology on the Somatic Modulation of Synaptic Outputs, Journal of Neuroscience, vol.32, issue.8, pp.2868-2876, 2012.
DOI : 10.1523/JNEUROSCI.5365-11.2012

G. B. Awatramani, G. D. Price, and L. Trussell, Modulation of Transmitter Release by Presynaptic Resting Potential and Background Calcium Levels, Neuron, vol.48, issue.1, pp.109-121, 2005.
DOI : 10.1016/j.neuron.2005.08.038

Y. Shu, Y. Yu, J. Yang, and D. A. Mccormick, Selective control of cortical axonal spikes by a slowly inactivating K+ current, Proc. Natl Acad. Sci. USA, pp.11453-11458, 2007.
DOI : 10.1016/0076-6879(92)07008-C

Y. Shu, A. Duque, Y. Yu, B. Haider, and D. A. Mccormick, Properties of Action-Potential Initiation in Neocortical Pyramidal Cells: Evidence From Whole Cell Axon Recordings, Journal of Neurophysiology, vol.97, issue.1, pp.746-760, 2007.
DOI : 10.1126/science.1061198

S. Boudkkazi, L. Fronzaroli-molinieres, and D. Debanne, Presynaptic action potential waveform determines cortical synaptic latency, The Journal of Physiology, vol.576, issue.5, pp.1117-1131, 2011.
DOI : 10.1113/jphysiol.2006.111336

URL : https://hal.archives-ouvertes.fr/hal-01766839

C. Saviane, M. H. Mohajerani, and E. Cherubini, An ID-like current that is downregulated by Ca2+ modulates information coding at CA3-CA3 synapses in the rat hippocampus, The Journal of Physiology, vol.552, issue.2, pp.513-524, 2003.
DOI : 10.1113/jphysiol.2003.051045

A. J. Foust, Y. Yu, M. Popovic, D. Zecevic, and D. A. Mccormick, Somatic Membrane Potential and Kv1 Channels Control Spike Repolarization in Cortical Axon Collaterals and Presynaptic Boutons, Journal of Neuroscience, vol.31, issue.43, pp.15490-15498, 2011.
DOI : 10.1523/JNEUROSCI.2752-11.2011

Y. Yu, C. Maureira, X. Liu, and D. Mccormick, P/Q and N Channels Control Baseline and Spike-Triggered Calcium Levels in Neocortical Axons and Synaptic Boutons, Journal of Neuroscience, vol.30, issue.35, pp.11858-11869, 2010.
DOI : 10.1523/JNEUROSCI.2651-10.2010

T. Sasaki, N. Matsuki, and Y. Ikegaya, Action-Potential Modulation During Axonal Conduction, Science, vol.463, issue.7278, pp.599-601, 2011.
DOI : 10.1038/nature08673

D. Debanne and S. Rama, Astrocytes Shape Axonal Signaling, Science Signaling, vol.4, issue.162, p.11, 2011.
DOI : 10.1126/scisignal.2001884

URL : https://hal.archives-ouvertes.fr/hal-01771777

L. Li, J. Bischofberger, and P. Jonas, Differential Gating and Recruitment of P/Q-, N-, and R-Type Ca2+ Channels in Hippocampal Mossy Fiber Boutons, Journal of Neuroscience, vol.27, issue.49, pp.13420-13429, 2007.
DOI : 10.1523/JNEUROSCI.1709-07.2007

E. Neher and T. Sakaba, Multiple Roles of Calcium Ions in the Regulation of Neurotransmitter Release, Neuron, vol.59, issue.6, pp.861-872, 2008.
DOI : 10.1016/j.neuron.2008.08.019

R. A. Zalutsky and R. A. Nicoll, Comparison of two forms of long-term potentiation in single hippocampal neurons, Science, vol.248, issue.4963, pp.1619-1624, 1990.
DOI : 10.1126/science.2114039

P. A. Salin, R. C. Malenka, and R. A. Nicoll, Cyclic AMP Mediates a Presynaptic Form of LTP at Cerebellar Parallel Fiber Synapses, Neuron, vol.16, issue.4, pp.797-803, 1996.
DOI : 10.1016/S0896-6273(00)80099-9

H. Alle, P. Jonas, and J. Geiger, PTP and LTP at a hippocampal mossy fiber-interneuron synapse, Proc. Natl Acad. Sci. USA 98, pp.14708-14713, 2001.
DOI : 10.1002/hipo.450020209

R. Scott, A. Ruiz, C. Henneberger, D. M. Kullmann, and D. A. Rusakov, Analog Modulation of Mossy Fiber Transmission Is Uncoupled from Changes in Presynaptic Ca2+, Journal of Neuroscience, vol.28, issue.31, pp.7765-7773, 2008.
DOI : 10.1523/JNEUROSCI.1296-08.2008

E. Eggermann, I. Bucurenciu, S. P. Goswami, and P. Jonas, Nanodomain coupling between Ca2+ channels and sensors of exocytosis at fast mammalian synapses, Nature Reviews Neuroscience, vol.58, issue.1, pp.7-21, 2012.
DOI : 10.1016/j.neuron.2008.04.024

F. Felmy, E. Neher, and R. Schneggenburger, Probing the Intracellular Calcium Sensitivity of Transmitter Release during Synaptic Facilitation, Neuron, vol.37, issue.5, pp.801-811, 2003.
DOI : 10.1016/S0896-6273(03)00085-0

J. D. Cooke, K. Okamoto, and D. M. Quastel, The role of calcium in depolarization-secretion coupling at the motor nerve terminal, The Journal of Physiology, vol.228, issue.2, pp.459-497, 1973.
DOI : 10.1113/jphysiol.1973.sp010095

R. Llinas, I. Z. Steinberg, and K. Walton, Relationship between presynaptic calcium current and postsynaptic potential in squid giant synapse, Biophysical Journal, vol.33, issue.3, pp.323-351, 1981.
DOI : 10.1016/S0006-3495(81)84899-0

B. Hochner, H. Parnas, and I. Parnas, Membrane depolarization evokes neurotransmitter release in the absence of calcium entry, Nature, vol.342, issue.6248, pp.433-435, 1989.
DOI : 10.1038/342433a0

C. Zhang and Z. Zhou, Ca2+-independent but voltage-dependent secretion in mammalian dorsal root ganglion neurons, Nature Neuroscience, vol.11, issue.5, pp.425-430, 2002.
DOI : 10.1097/00001756-200009280-00015

S. Mochida, C. T. Yokoyama, D. K. Kim, K. Itoh, and W. A. Catterall, Evidence for a voltage-dependent enhancement of neurotransmitter release mediated via the synaptic protein interaction site of N-type Ca 2+ channels, Proc. Natl Acad. Sci. USA 95, pp.14523-14528, 1998.

F. Felmy, E. Neher, and R. Schneggenburger, The timing of phasic transmitter release is Ca 2+ -dependent and lacks a direct influence of presynaptic membrane potential, Proc. Natl Acad. Sci. USA, pp.15200-15205, 2003.

O. Fili, Channel with Syntaxin 1A: Functional Impact on Channel Gating, The Journal of Neuroscience, vol.21, issue.6, pp.1964-1974, 2001.
DOI : 10.1523/JNEUROSCI.21-06-01964.2001

L. Feinshreiber, D. Singer-lahat, U. Ashery, and I. Lotan, Voltage-gated Potassium Channel as a Facilitator of Exocytosis, Annals of the New York Academy of Sciences, vol.47, issue.1, pp.87-92, 2009.
DOI : 10.1021/bi800512p

L. Feinshreiber, Non-conducting function of the Kv2.1 channel enables it to recruit vesicles for release in neuroendocrine and nerve cells, Journal of Cell Science, vol.123, issue.11, pp.1940-1947, 2010.
DOI : 10.1242/jcs.063719

H. Parnas and I. Parnas, The chemical synapse goes electric: Ca2+- and voltage-sensitive GPCRs control neurotransmitter release, Trends in Neurosciences, vol.30, issue.2, pp.54-61, 2007.
DOI : 10.1016/j.tins.2006.12.001

Y. M. Kupchik, A novel fast mechanism for GPCR-mediated signal transduction???control of neurotransmitter release, The Journal of Cell Biology, vol.46, issue.1, pp.137-151, 2011.
DOI : 10.1371/journal.pone.0008752

M. Linial, N. Ilouz, and H. Parnas, Voltage-Dependent Interaction Between the Muscarinic ACh Receptor and Proteins of the Exocytic Machinery, The Journal of Physiology, vol.375, issue.2, pp.251-258, 1997.
DOI : 10.1038/375645a0

N. Ilouz, L. Branski, J. Parnis, H. Parnas, and M. Linial, Depolarization Affects the Binding Properties of Muscarinic Acetylcholine Receptors and Their Interaction with Proteins of the Exocytic Apparatus, Journal of Biological Chemistry, vol.419, issue.41, pp.29519-29528, 1999.
DOI : 10.1038/378623a0

Y. M. Kupchik, Molecular mechanisms that control initiation and termination of physiological depolarization-evoked transmitter release, Proc. Natl Acad. Sci. USA 105, pp.4435-4440, 2008.
DOI : 10.1007/BF00584075

L. Ohana, O. Barchad, I. Parnas, and H. Parnas, The Metabotropic Glutamate G-protein-coupled Receptors mGluR3 and mGluR1a Are Voltage-sensitive, Journal of Biological Chemistry, vol.20, issue.34, pp.24204-24215, 2006.
DOI : 10.1016/S0306-4522(01)00305-0

S. M. Thompson and B. H. Gahwiler, Activity-dependent disinhibition. III. Desensitization and GABAB receptor-mediated presynaptic inhibition in the hippocampus in vitro, Journal of Neurophysiology, vol.61, issue.3, pp.524-533, 1989.
DOI : 10.1152/jn.1989.61.3.524

H. Kamiya, H. Shinozaki, and C. Yamamoto, Activation of metabotropic glutamate receptor type 2/3 suppresses transmission at rat hippocampal mossy fibre synapses., The Journal of Physiology, vol.493, issue.2, pp.447-455, 1996.
DOI : 10.1113/jphysiol.1996.sp021395

K. A. Moore, R. A. Nicoll, and D. Schmitz, Adenosine gates synaptic plasticity at hippocampal mossy fiber synapses, Proc. Natl Acad. Sci. USA, pp.14397-14402, 2003.
DOI : 10.1016/0306-4522(93)90458-R

L. He and L. G. Wu, The debate on the kiss-and-run fusion at synapses. Trends Neurosci, pp.447-455, 2007.

D. A. Richards, Vesicular release mode shapes the postsynaptic response at hippocampal synapses, The Journal of Physiology, vol.61, issue.21
DOI : 10.1016/j.neuron.2008.12.024

Q. Zhang, Y. Li, and R. W. Tsien, The Dynamic Control of Kiss-And-Run and Vesicular Reuse Probed with Single Nanoparticles, Science, vol.23, issue.8, pp.1448-1453, 2009.
DOI : 10.1111/j.1469-7793.2000.t01-1-00195.x

T. Blackmer, G Protein beta gamma Subunit-Mediated Presynaptic Inhibition: Regulation of Exocytotic Fusion Downstream of Ca2+ Entry, Science, vol.292, issue.5515, pp.293-297, 2001.
DOI : 10.1126/science.1058803

X. K. Chen, Activation of GPCRs modulates quantal size in chromaffin cells through G???? and PKC, Nature Neuroscience, vol.5, issue.9, pp.1160-1168, 2005.
DOI : 10.1016/S0165-6147(00)01800-9

I. Bucurenciu, J. Bischofberger, and P. Jonas, A small number of open Ca2+ channels trigger transmitter release at a central GABAergic synapse, Nature Neuroscience, vol.25, issue.1, pp.19-21, 2010.
DOI : 10.1038/nn.2461

M. J. Fedchyshyn and L. Wang, Developmental Transformation of the Release Modality at the Calyx of Held Synapse, Journal of Neuroscience, vol.25, issue.16, pp.4131-4140, 2005.
DOI : 10.1523/JNEUROSCI.0350-05.2005