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Deconvolution From Instrumental Devices and
Source Effect in Acoustic Experiments
Henri-Pierre Valero, Stéphanie Gautier, Ginette Saracco, and Matthias Holschneider

Abstract—Two methods to deconvolve experimental data from
the distortions introduced by instrumental devices or source effects
are presented. Considering a total acquistion system (emission-
reception line, amplifier, pre-amplifier) as a global experimental
filter, we can define its properties (module and phase) experi-
mentally from the generation of a family of source signals dilated
in time. The estimation of this filter allows the deconvolution of
the recorded output signal. The first approach is based on the
simple reconstruction formula of the continuous wavelet transform
(CWT). The second method is based on the construction of a
normalized family of a finite number of specific filters, independent
of the frequency range used. In both cases, experimental results in
an acoustic tank are presented. We show that after deconvolution,
the source signal is correctly reconstructed from the recorded
output signal and the global instrumental filter.

Index Terms—Acoustic experiment, continuous wavelet trans-
form, deconvolution, diffraction tomography experiment, family
of adapted and normalized filters, heterogeneous rock, simple re-
construction formula of the CWT, transmission experiment, ultra-
sonic data.

I. INTRODUCTION

A signal measured by an instrumental device can be repre-
sented by the following equation:

(1)

where corresponds to the response of the instrumental de-
vice, to the impulse response of the medium andto the input
signal sent by the generator to the experimental system.is the
propagated signal measured by the receiver.

The problem to solve is therefore the following: Is it possible
to get back the input signal considering the effects of the
different measurement devices. In fact, it is the same as doing
the contrary operation of (1) which means a deconvolution.

Numerous deconvolution methods dealing with different
problems and input parameters of the system exist ([1]–[4],
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Fig. 1. Scheme of the experimental set-up in the water-tank.

[6]–[8], [12]). The most robust method is the Wierner-Levinson
one ([5], [11]), where the filter is defined by the minimization
of a quadratic form, namely the measurement error in the
sense of the least squares method. Our approach consists in the
following. We first build the global instrumental response of
our device with the help of a test medium; then we apply its
inverse to the measured output signals. These methods have
been applied in real acoustic experiments for low ultrasound
frequencies with omnidirectional transducers, and for high
ultrasound frequencies with planar directional transducers. We
will present the calculated filters as well as the deconvolved
data of the instrumental response of the devices for two kinds
of source signals.

II. EXPERIMENTAL CONDITIONS

Different propagation experiments are performed in a water
tank (dimension: m) in the Acoustic
Laboratory at Rennes, France. The scheme of the experimental
set-up is presented in Fig. 1. Fig. 2 shows the comparison be-
tween the theoretical signal generated by the synthesizer which
is sent to the source hydrophone, and the one recorded by the
receiver after crossing the experimental device.

We can see that the device has an instrumental response vari-
able with respect to the frequency range of the generated signal.
The water creates only a time-delay dephasing, without disper-
sion effect, and the geometrical divergence of the omnidirec-
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Fig. 2. Comparison of emitted source signal (left) and received signal after
crossing the experimental device (right).

tional transducer generates a weak absorption of sound during
the travel of the wave between the two kinds of transducers.

Although all sensors have a limited frequency range, we have
to choose this range in accordance to the geometrical and me-
chanical parameters that we want to study in real experimental
applications. We need to keep a constant ratio between the ge-
ometrical dimensions and the wavelength of the source, if we
want to transpose in acoustic laboratory experiments, real exper-
imental conditions. Examples include the size of heterogeneities
in front of the emitted wavelength in the diffusion problem, or
the distance between the scatterer or the source with regard to
the receiver in the propagation or scattering problem. More-
over, a transposition in low ultrasound frequencies implies mul-
tiple parasite reflections on the walls of the acoustic tank. These
waves can be partially attenuated with the help of alveoled and
conics absorbers (latex or polyethyrene material mixed to high
density composites).

In geoexploration experiments, the frequency range currently
used is around 0.1 Hz–10 kHz. This corresponds to a wave-
length transposition of 100 m–1 dm in the acoustic tank respec-
tively to a water mean velocity of 1500 m/s. To keep a constant
ratio between the physical parameters to be analyzed and exper-
imental geometric parameters, we need to work in a frequency
range of 10 Hz–1 MHz. The limitations on one hand of tank di-
mensions and on the other hand of the piezoelectric technology
imply working with two kinds of ultrasound source: a signal
limited to a frequency-range of 20 kHz–140 kHz (omnidirec-
tional transducer) and to ultrasound-range 100 kHz–1 MHz (di-
rectional transducer). This corresponds to a global wavelength
of 15 cm to 0.15 mm.

III. M ETHODS OFDECONVOLUTION

A. First Method

If are the wavelet coefficients of the global instru-
mental filter associated to a dilated family of “wavelet-
source” signals , we can write under some conditions

Fig. 3. Deconvolution examples for a Ricker (top) and a Morlet’s wavelet
(bottom) using the simple reconstruction formula of the CWT (first method).
The curves represent respectively A: the signal measured to the receiver after
crossing the experimental device, B: the source signal and C: the rebuilt signal.

([9], [10]) an exact formula allowing us to reconstruct for each
time the global filter

(2)

where is a nonnull constant defined by
. is the complex conjugate of the

analyzing wavelet such that

with . is the Fourier transform of.
The instrumental filter expression in this discrete form is then

(3)

where and correspond to the minimal and maximal
value of the emitted frequency. The fact of limitations on the
number of dilation parameters may lead to a loss of informa-
tion during the reconstruction of the filter. Nevertheless, it is
necessary to apodize to obtain a good result in the time
domain. This method which is easy to apply depends on the fre-
quency range of the generated input signals. A necessary condi-
tion for the reconstruction is to generate a wavelet family with
a scale-range of 3 octaves, decomposed linearly into 10 voices
(linear intervals). It means that the result depends on the number
of wavelets generated. Nevertheless, the results of the deconvo-
lution with an apodization window show that the source signal
is correctly reconstructed from the recorded transmitted signal
and the instrumental global filter (see Figs. 3 and 4). These re-
sults are obtained in low ultrasound frequencies with omnidirec-
tional hydrophones for two different transient signals: a Ricker
function (derivative of second order of a Gaussian function) and
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Fig. 4. Modulus and phase (un-wrapping) of the instrumental filter using
the simple reconstruction formula of the continuous wavelet transform (first
method).

a Morlet’s wavelet (modulated Gaussian). The number of oc-
taves of the dilation parameters is close to three (20–140 kHz).
We can observe a weak difference in the amplitude between the
input signal A and the reconstructed signal C. Nevertheless, the
waveforms are correctly rebuilt.

B. Extended Method

Let us denote in Fourier space a general family of filters of
controlled input signals . After passage through the acqui-
sition system we obtain, as previously, the measurements

Instead of recovering , we can only hope to obtain
, where is a suitable window function that we

can choose such that

We are looking for a solution

The filters should be regular in order to obtain stable in-
versions. A solution to this problem is obtained by setting

(4)

The main point is the choice of the functionwhich plays an
important role in the stability of the calculus. This choice will
be made by studying the behavior of the ratio

(5)

A smooth and regular behavior of the ratio allows a limita-
tion of the numerical instabilities in the computation of the indi-
vidual filters when the denominator tends toward zero. It means
we have to choose a function as the best fit of the total
emitted energy

Two approaches are tested during acoustic experiments without
and in the presence of scatterers (heterogeneous rock and plate
of duralumin) with regard to the best fit of the total energy:
a function with a general predefinite shape (rectangular,
Blackman or Kaiser Bessel window) and a function with an
adapted shape.

The signal deconvolved for the voicewill be calculated as
the following:

(6)

and

(7)

where is the adapted function deduced from .
The deconvolved signal verifies:

(8)

So, we derive in fact a very general method of the construction
of a filter appropriate to the experiment regardless of the input
signal and the frequency range used.

IV. A PPLICATION TO ACOUSTICDATA

A. Experimental Procedure in Water Tank Without Scatterers

Experiments are performed in two specified frequency ranges
of 30 kHz–140 kHz with omnidirectional transducers and ap-
propriate amplifier and pre-amplifier, and a frequency range
of 200 kHz–1000 kHz with directional transducers for the ex-
tended method. The source signals emitted in the water tank are
respectively a Morlet’s wavelet

(9)

and a Ricker’s wavelet

(10)

Both families of functions are generated with a linear step: 10
voices per octave until 140 kHz with omnidirectional transducers
and a regular step of 20 kHz in the second frequency range. This
frequency range covers the band pass of the directional trans-
ducers of the central frequency of 500 kHz. The acquistion pa-
rameters (sampling frequency, voltage calibration, power gains
for amplifier and preamplifier, …) are fixed during all the ex-
periments. Consequently, the differences observed between the
source emitted signal and the signal measured after propagation
are only due to the global filter of the experimental devices.

1) The Simple Reconstruction of the Continuous Wavelet
Transform (CWT) Method:The simple reconstruction formula
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Fig. 5. Deconvolution examples based on the general method for a Ricker
(right) and a Morlet’s wavelet (left), for two different frequencies. The variations
between the recorded signal, for two different frequencies, confirm the necessity
to deconvolve data from the instrumental filter.

of the continuous wavelet method has been used to compute
the experimental global filter thanks to water transmission
experiments.

The results of the deconvolution in the case of the first
method are shown (Fig. 3). The signal A corresponds to the
output signal; B is the source signal generated by the synthe-
sizer and sent to the emitter. C is the result of the deconvolution.
The phasis and the modulus of the global instrumental filter
are presented in Fig. 4 for an omnidirectional source and low
frequencies, for a Ricker and a Morlet’s wavelet. We can notice
that the deconvolved signal C has a correct shape with regard
to the theoretical signal source A, but its amplitude is weakly
different (0.8% is lost). This difference of energy is due to the
limitation of the voices introduced in the simple reconstruction
formula of CWT, which covers slightly more than two octaves
(30–140 kHz).

2) The Extended Method:This method has been applied to
low frequencies with omnidirectional transducers with Ricker
and Morlet’s wavelet and to high frequencies with directional
transducers in the case of Ricker’s function. The characteri-
zation in both cases of the effects of instrumental devices on
recorded signals is obtained by the construction of a finite
number of individual and normalized filters independently of
the frequency range used.

The deconvolution examples based on the extended method
for omnidirectional transducers with a family of Morlet’s func-
tion (left) and Ricker function (right) are shown in Fig. 5 with
the same notation for the curves A, B, C as in Fig. 3. The predef-
inite shape of the window used to obtain the best fit of the

Fig. 6. Results from the deconvolution of recorded signal with inverse instru-
mental filter in time (top) and frequency domain (bottom) for the frequency
source of 300 kHz.

Fig. 7. Results from the deconvolution of recorded signal, in time (top) and
frequency domain (bottom) for the frequency source of 500 kHz.

total energy [see (5)] is here the Hamming window. In this case,
the amplitude and the waveform of the reconstructed signals C
are in perfect concordance with the emitted signal A.

For directional transducers, the estimated global instrumental
filter is shown in Fig. 11. Two examples of deconvolution are
presented for a family of Ricker functions generated by trans-
ducers of the central frequency of kHz, and decon-
volved for a frequency source of kHz (Fig. 6) and of

kHz (Fig. 7).
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Fig. 8. Phase and modulus of the function�̂(u) used in the calculations.

Fig. 9. Phase and modulus of the function̂�(u) rebuilt using Rickers as
recorded data in the computation of the global filter.

The function used for the determination of the indi-
vidual filters is initialized with a phase zero and an am-
plitude modulus of one. The characteristics of this function are
presented in Fig. 8.

The adapted shape of the function allows limiting some
numerical instabilities in the computation of the filters
(Fig. 10). We verify the functions are well reconstructed
(Fig. 9) using source signals as recorded signals in the compu-
tation of the instrumental filter. This good reconstruction is a
proof of the precision of the method.

Fig. 11 shows the computed global filter of the experimental
devices. The inverse global filter is then applied to the recorded
signals in order to remove the effect of the instrumental filter

Fig. 10. Ratio modulus Ŵ (u)= jÎ (u)j for two kinds of window

Ŵ (u): the function�̂(u) and a rectangular window with the same width. The
regular behavior of the ratio when the window is the function�̂(u) indicates
that the numerical instabilities are more limited than if we use the rectangular
one.

Fig. 11. Phase and modulus of the computed global instrumental filter.

from the data. The comparisons between the experimental re-
sults and the theoretical ones (source signal convolved with the

’s function) are both in time and frequency domain, in a
perfect concordance (Figs. 6 and 7). Some small high-frequency
oscillations are present in the experimental curves. We can as-
sociate these small oscillations to the convolution of the trans-
mitted signals with the inverse filter whose modulus reaches a
maximum for these high frequencies. This method is neverthe-
less very efficient considering the weak differences between the-
oretical and rebuilt signals.

B. Experimental Procedure in Presence of Scatterers in the
Water-Tank

In this section, the ability of the extended method to com-
pute the filter in a more general experimental situation is tested.
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Fig. 12. Diffraction tomography experiment with cylindrical rock immersed
in the water tank and data acquisition system with hydrophones source and
receiver.

We introduce different objects in the acoustic tank, and we try
to evaluate the experimental response of these scatterers decon-
volved from the instrumental device and/or the source.

In the first experiment, a cylindrical rock of lava (15 cm of di-
ameter by 50 cm of length) is immersed vertically in the center
of the water-tank. In order to image the whole lava sample, a
pair of directional transducers (emitter–receiver) with an an-
gular offset of 15 , rotates around the target on a circle of 40 cm
of radius from the center of the rotation axis (see Fig. 12). Sev-
enty-two seismograms (or traces) per common-offset gather are
recorded for a fixed depthwith the same source signal (Ricker
function in time, i.e.,: second-order derivative of a Gaussian
function), with an angular step of 5. For each step we av-
erage over 16 recorded signals and one complete acquisition

takes around 8 min. These responses are
recorded with a sampling rate of 410 s and digitized by
the A/D converter (5000 samples per trace), before being stored
on the computer.

The whole lava sample is then targeted by a wave front issue
from the directional source. Beforehand, the source signal is
measured and recorded in the same conditions (sampling fre-
quency, distance source receiver, temperature of water 20.2and
ambient noise) to perform a deconvolution of experimental data.
Both transducers have a central frequency kHz. The
source-transducer will emit a family of Ricker functions toward
the object in the frequency range of 100–400 kHz every 10 kHz
up to the frequency of 130 kHz, then a step of 30 kHz up to the
frequency of 400 kHz. The scattered pressure field is then mea-
sured by the second transducer.

The wavelength of investigation is between 1.48 mm and
0.37 mm in water with a water velocity of 1482.89 m/s [13]
and attenuation coefficient Neper/m. These ex-
periments need to have a good precision in translation 10mm
and in rotation 10 degree.

1) The Blackman Adapted Window:Two approaches are
tested during this study: a function with a general shape
(rectangular and Blackman window). We present only results

Fig. 13. Module of the experimental filter using the extended method without
adaptive window, but with a shape of Blackman window.

Fig. 14. Phase (un-wrapping) of the experimental filter using the extended
method without adaptive window, but with a shape of Blackman window.

obtained with the extended method using a predefinite window
with a fixed shape (Blackman function), but the support of the
window is evaluated with regards to the best fit of the total
emitted energy and by studying the ratio in (5), in
a diffraction tomography experiment.

Figs. 13 and 14 present the result of the experimental filter
with Blackman window. It is interesting to notice that the vari-
ation of the amplitude, with respect to the frequency, points out
the fact that this rock is clearly heterogeneous. This kind of
methodology is really important to know the frequency behavior
of rheological parameters of the rock as the intrinsic attenuation
factor (attenuation in accordance with a Kelvin–Voigt model or
a Maxwell model).

The rebuilt function corresponding to the Blackman
adapted window using Ricker source signals as recorded sig-
nals in the computation of the global filter is presented in Fig. 15
for the modulus and Fig. 16 for the phase. These results corre-
spond to the test that we perform since we have thefilters
[see (4)] to verify that the reconstruction is correct. The adapted
Blackman window can be defined. Fig. 18 represents the total
emitted energy and the study of its inverse allows
defining the (adapted Blackman window) in order that the
deconvolution be stable.
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Fig. 15. Module of thê�(u) function rebuilt using Rickers as recorded data
in the computation of the global filter for the extended method with a Blackman
adapted window.

Fig. 16. Phase of thê�(u) function rebuilt using Rickers as recorded data in
the computation of the global filter for the extended method with a Blackman
adapted window.

Fig. 17. Result after deconvolution of diffraction tomography data. One trace
is presented using a Blackman adapted window with the extended method.
The present distortions in the deconvolved signal are only due to the intrinsic
attenuation of the rock. The effects of the source and of the instrumental
devices are cancelled.

Fig. 18. Denominator of thehn function in (4) corresponding to the total
emitted energy during diffraction tomography experiment for one azimuthal
acquisition (or trace).

Fig. 19. Photography of the reflection experiments with the directional
transducers and the plate of duralumin.

The result of the application of the inverse global filter on scat-
tered field pressure is presented in Fig. 17. We can compare the
experimental scattered field (one trace) recorded to the receiver-
hydrophone (bottom), and the experimental scattered field after
deconvolution of the instrumental device effect and source ef-
fect (top). The difference between these two signals is only due
to the intrinsic attenuation properties of the lava sample.

2) The Adapted Function : We have also attempted the
extended method with the adapted function to build the
experimental global filter with reflection measurements. A pho-
tograph of the reflection experiments is shown in Fig. 19. A
perfectly reflecting plate made in duralumin is immersed in the
water-tank. The directional source-transducer sends the same
family of Ricker’s wavelet as previously seen in Section IV-A.
The receiver measures the reflected pressure field by the plate,
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Fig. 20. Phase and modulus of the global filter in the case of reflection
experiments.

Fig. 21. Results from the deconvolution of reflected signal with inverse instru-
mental filter in time (top) and frequency domain (bottom) for the frequency
source of 300 kHz.

Fig. 22. Results from the deconvolution of reflected signal, in time (top) and
frequency domain (bottom) for the frequency source of 500 kHz.

and this one is recorded and digitized (5000 samples) in order to
be treated. The global filter estimated with the extended method
is presented in Fig. 20.

We observed a good agreement between the deconvolved sig-
nals and the theoretical ones (Figs. 21 and 22). Nevertheless,
we point out more important differences than with the water
transmission experiments. These additional oscillations may be
due to scattering resonances of the plate. These scattering reso-
nances can also explain the local minima observed in the mod-
ulus of the global filter (Fig. 20).

V. CONCLUSION

These methods presented to build the global instrumental
filter, and more general filters, are easy to implement from an
experimental point of view as well as from a numerical one. They
give similar results. The first one, based on the wavelet theory
and more precisely on the simple reconstruction formula of the
wavelet transform, depends on the dilation range generated. It
means that the amplitude of the reconstructed signal can be lower
than the emitted signal, because we need to have a minimum
frequency range of three octaves during experiments. These
conditions limit the efficiency of this method in laboratory
experiments, in particular, in the acoustic tank. The second one,
more general, is based on the construction of a family of filters
that enables freeing ourselves from the work frequency range.

Acoustical experiments have shown the validity of both
methods because of the good deconvolution of measured output
signals. We notice that the extended methods are efficient inde-
pendently of the emitted signal (Morlet or Ricker’s functions),
the directivity of the tranducers, the geometry of the acquisition
system, and the frequency of the source signal compared with
the central frequency of the transducers.

A new interest is the use of the presented methods to com-
pute more general filters in the case of real experimental con-
ditions for heterogeneous rock or a perfect reflector inserted in
the middle of the tank. The two examples treated in this paper
show the interest of these extended methods to deconvolve ex-
perimental data from the instrumental device and/or from the
source effect, and where the energy after deconvolution is re-
spected with regard to the frequency range of the source signal.
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