J. Lu, M. Liong, Z. Li, J. I. Zink, and F. Tamanoi, Biocompatibility, Biodistribution, and Drug-Delivery Efficiency of Mesoporous Silica Nanoparticles for Cancer Therapy in Animals, Small, vol.25, issue.16, pp.1794-1805, 2010.
DOI : 10.1002/smll.201000538

H. Meng, M. Xue, T. Xia, Z. Ji, D. Y. Tarn et al., Use of size and a copolymer design feature to improve the biodistribution and the enhanced permeability and retention effect of doxorubicin-loaded mesoporous silica nanoparticles in a murine xenograft tumor model [CrossRef] [PubMed] 3. Wilczewska, A Nanoparticles as drug delivery systems Mesoporous silica nanoparticles in medicine?Recent advances Porous silicon nanoparticles for nanomedicine: Preparation and biomedical applications, Biodegradable luminescent porous silicon nanoparticles for in vivo applications, pp.4131-4144, 2009.

K. L. Jarvis, T. J. Barnes, C. A. Prestidge, M. H. Lee, N. J. Halas et al., Surface chemistry of porous silicon and implications for drug encapsulation and delivery applications Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy, CrossRef] [PubMed] 8. Gobin,CrossRef] [PubMed] 9. Sailor, M.J.; Wu, E.C. Photoluminescence-Based Sensing With Porous Silicon Films, Microparticles, and Nanoparticles, pp.25-38, 1929.

L. Gu, D. J. Hall, Z. Qin, E. Anglin, J. Joo et al., In vivo time-gated fluorescence imaging with biodegradable luminescent porous silicon nanoparticles, Nature Communications, vol.14, pp.2326-2332, 2013.
DOI : 10.1021/bc025600x

M. Gary-bobo, Y. Mir, C. Rouxel, D. Brevet, I. Basile et al., Mannose-Functionalized Mesoporous Silica Nanoparticles for Efficient Two-Photon Photodynamic Therapy of Solid Tumors, Angewandte Chemie, vol.18, issue.48, pp.11627-11631, 2011.
DOI : 10.1016/j.suronc.2009.02.002

URL : https://hal.archives-ouvertes.fr/hal-00646023

M. P. Monopoli, D. Walczyk, A. G. Campbell, G. Elia, I. Lynch et al., Biological Impacts of Nanoparticles, Journal of the American Chemical Society, vol.133, issue.8, pp.2525-2534, 2011.
DOI : 10.1021/ja107583h

A. Morère and P. Maillard, Cancer therapy improvement with mesoporous silica nanoparticles combining targeting, drug delivery and PDT, Int. J. Pharm, vol.2012, issue.423, pp.509-515

C. Graf, Q. Gao, I. Schütz, C. N. Noufele, W. Ruan et al., Surface Functionalization of Silica Nanoparticles Supports Colloidal Stability in Physiological Media and Facilitates Internalization in Cells, Langmuir, vol.28, issue.20, pp.7598-7613, 2012.
DOI : 10.1021/la204913t

M. Perrier, M. Gary-bobo, L. Lartigue, D. Brevet, A. Morère et al., Mannose-functionalized porous silica-coated magnetic nanoparticles for two-photon imaging or PDT of cancer cells, Journal of Nanoparticle Research, vol.361, issue.1, pp.1-17, 2013.
DOI : 10.1016/j.jcis.2011.05.038

URL : https://hal.archives-ouvertes.fr/hal-00841213

E. Secret, M. Maynadier, A. Gallud, M. Gary-bobo, A. Chaix et al., Anionic porphyrin-grafted porous silicon nanoparticles for photodynamic therapy, Chemical Communications, vol.18, issue.39, pp.2013-4202
DOI : 10.1002/adma.200502420

URL : https://hal.archives-ouvertes.fr/hal-00809285

O. Vaillant, K. E. Cheikh, D. Warther, D. Brevet, M. Maynadier et al., Mannose-6-Phosphate Receptor: A Target for Theranostics of Prostate Cancer, Angewandte Chemie, vol.432, issue.20, pp.6050-6054, 2015.
DOI : 10.1016/j.ijpharm.2012.04.056

G. D. Mogo¸sanumogo¸sanu, A. M. Grumezescu, C. Bejenaru, and L. Bejenaru, Polymeric protective agents for nanoparticles in drug delivery and targeting, Int. J. Pharm, vol.2, pp.419-429, 2016.

T. A. Debele, S. Peng, and H. C. Tsai, Drug Carrier for Photodynamic Cancer Therapy, International Journal of Molecular Sciences, vol.5, issue.9, pp.22094-22136
DOI : 10.1016/j.jaad.2003.10.471

URL : http://www.mdpi.com/1422-0067/16/9/22094/pdf

S. Giret, M. Wong-chi-man, and C. Carcel, Mesoporous-Silica-Functionalized Nanoparticles for Drug Delivery, Chemistry - A European Journal, vol.1, issue.40, pp.13850-13865, 2015.
DOI : 10.1002/adhm.201200067

URL : https://hal.archives-ouvertes.fr/hal-01334973

P. Nigam and D. Sarkar, Multifunctional silica nanoparticles for pancreatic cancer specific drug delivery and bioimaging, J. Chem. Appl. Biochem, vol.2, pp.110-116, 2015.

L. Xiao, L. Gu, S. B. Howell, and M. J. Sailor, Porous Silicon Nanoparticle Photosensitizers for Singlet Oxygen and Their Phototoxicity against Cancer Cells, ACS Nano, vol.5, issue.5, pp.3651-3659, 2011.
DOI : 10.1021/nn1035262

E. Secret, M. Maynadier, A. Gallud, A. Chaix, E. Bouffard et al., Two-Photon Excitation of Porphyrin-Functionalized Porous Silicon Nanoparticles for Photodynamic Therapy, Advanced Materials, vol.119, issue.45, pp.7643-7648, 2014.
DOI : 10.1021/ja971209o

URL : https://hal.archives-ouvertes.fr/hal-01096066

A. E. Nel, L. Madler, D. Velegol, T. Xia, E. M. Hoek et al., Understanding biophysicochemical interactions at the nano???bio interface, Nature Materials, vol.20, issue.7, pp.543-557, 2009.
DOI : 10.1289/ehp.6000

S. Zhu, M. Niu, H. Mary, and Z. Cui, Targeting of Tumor-Associated Macrophages Made Possible by PEG-Sheddable, Mannose-Modified Nanoparticles, Molecular Pharmaceutics, vol.10, issue.9, pp.3525-3530, 2013.
DOI : 10.1021/mp400216r

M. L. Immordino, F. Dosio, and L. Cattel, Stealth liposomes: Review of the basic science, rationale, and clinical applications, existing and potential, Int. J. Nanomed, vol.1, pp.297-315, 2006.

K. Knop, R. Hoogenboom, D. Fischer, and U. S. Schubert, Poly(ethylene glycol) in Drug Delivery: Pros and Cons as Well as Potential Alternatives, Angewandte Chemie International Edition, vol.61, issue.36, pp.6288-6308, 2010.
DOI : 10.3109/10731199009117287

C. Morelli, P. Maris, D. Sisci, E. Perrotta, E. Brunelli et al., PEG-templated mesoporous silica nanoparticles exclusively target cancer cells, Nanoscale, vol.2, issue.8, pp.3198-3207, 2011.
DOI : 10.1088/1748-6041/2/4/003

C. Hong, J. Lee, H. Zheng, S. Hong, and C. Lee, Porous silicon nanoparticles for cancer photothermotherapy, Nanoscale Research Letters, vol.6, issue.1, 2011.
DOI : 10.1021/nn900904h

URL : http://doi.org/10.1186/1556-276x-6-321

Y. Kuthati, P. Sung, and C. Weng, Functionalization of Mesoporous Silica Nanoparticles for Targeting, Biocompatibility, Combined Cancer Therapies and Theragnosis, Journal of Nanoscience and Nanotechnology, vol.13, issue.4
DOI : 10.1166/jnn.2013.7363

D. Brevet, M. Gary-bobo, L. Raehm, S. Richeter, O. Hocine et al., Morère, A. Mannose-targeted mesoporous silica nanoparticles for photodynamic therapy, Chem. Commun, pp.1475-1477, 2009.

D. Warther, C. M. Jimenez, L. Raehm, C. Gérardin, J. Durand et al., Small sized mesoporous silica nanoparticles functionalized with mannose for retinoblastoma cell imaging, RSC Advances, vol.7, issue.50, pp.37171-37179, 2014.
DOI : 10.1021/nn304045q

URL : https://hal.archives-ouvertes.fr/hal-01068017

A. Chaix, K. Cheikh, E. Bouffard, M. Maynadier, D. Aggad et al., Mesoporous silicon nanoparticles for targeted two-photon theranostics of prostate cancer, Journal of Materials Chemistry B, vol.9, issue.1, pp.3639-3642, 2016.
DOI : 10.1039/c3cc38837a

F. Tang, L. Li, and D. Chen, Mesoporous Silica Nanoparticles: Synthesis, Biocompatibility and Drug Delivery, Advanced Materials, vol.103, issue.12, pp.1504-1534
DOI : 10.1093/jnci/djr400

Q. He, J. Zhang, J. Shi, Z. Zhu, L. Zhang et al., The effect of PEGylation of mesoporous silica nanoparticles on nonspecific binding of serum proteins and cellular responses, Biomaterials, vol.31, issue.6, pp.1085-1092, 2010.
DOI : 10.1016/j.biomaterials.2009.10.046

Q. He, Z. Zhang, F. Gao, Y. Li, and J. Shi, In vivo Biodistribution and Urinary Excretion of Mesoporous Silica Nanoparticles: Effects of Particle Size and PEGylation, Small, vol.117, issue.2, pp.271-280, 2011.
DOI : 10.1016/j.micromeso.2008.08.004

S. Anderson, H. Elliott, D. Wallis, L. Canham, and J. Powell, Dissolution of different forms of partially porous silicon wafers under simulated physiological conditions, physica status solidi (a), vol.197, issue.2, pp.331-335, 2003.
DOI : 10.1002/pssa.200306519

M. Borkovec and G. Papastavrou, Interactions between solid surfaces with adsorbed polyelectrolytes of opposite charge, Current Opinion in Colloid & Interface Science, vol.13, issue.6, pp.429-437, 2008.
DOI : 10.1016/j.cocis.2008.02.006

C. H. Lee, S. H. Cheng, I. Huang, J. S. Souris, C. S. Yang et al., Intracellular pH-Responsive Mesoporous Silica Nanoparticles for the Controlled Release of Anticancer Chemotherapeutics, Angewandte Chemie, vol.266, issue.44, pp.8390-8395, 2010.
DOI : 10.1002/ange.201002639

B. Pelaz, P. Del-pino, P. Maffre, R. Hartmann, M. Gallego et al., Surface Functionalization of Nanoparticles with Polyethylene Glycol: Effects on Protein Adsorption and Cellular Uptake, ACS Nano, vol.9, issue.7, pp.6996-7008, 2015.
DOI : 10.1021/acsnano.5b01326

S. Milani, F. B. Bombelli, A. S. Pitek, K. A. Dawson, and J. Radler, Irreversible Binding of Transferrin to Polystyrene Nanoparticles: Soft and Hard Corona, ACS Nano, vol.6, issue.3, pp.2532-2541, 2012.
DOI : 10.1021/nn204951s

A. Lesniak, F. Fenaroli, M. P. Monopoli, C. Aberg, K. A. Dawson et al., Effects of the Presence or Absence of a Protein Corona on Silica Nanoparticle Uptake and Impact on Cells, ACS Nano, vol.6, issue.7, pp.5845-5857, 2012.
DOI : 10.1021/nn300223w

W. Liu, J. Rose, S. Plantevin, M. Auffan, J. Bottero et al., Protein corona formation for nanomaterials and proteins of a similar size: hard or soft corona?, Nanoscale, vol.12, issue.135, pp.1658-1668, 2013.
DOI : 10.1107/S0909049505012719

URL : https://hal.archives-ouvertes.fr/hal-01426275

R. Gref, M. Lück, P. Quellec, M. Marchand, E. Dellacherie et al., ???Stealth??? corona-core nanoparticles surface modified by polyethylene glycol (PEG): influences of the corona (PEG chain length and surface density) and of the core composition on phagocytic uptake and plasma protein adsorption, Colloids and Surfaces B: Biointerfaces, vol.18, issue.3-4, pp.301-313, 2000.
DOI : 10.1016/S0927-7765(99)00156-3

P. Aggarwal, J. B. Hall, C. B. Mcleland, M. A. Dobrovolskaia, and S. E. Mcneil, Nanoparticle interaction with plasma proteins as it relates to particle biodistribution, biocompatibility and therapeutic efficacy, Advanced Drug Delivery Reviews, vol.61, issue.6, pp.61-428, 2009.
DOI : 10.1016/j.addr.2009.03.009

B. Godin, J. Gu, R. Serda, R. Bhavane, E. Tasciotti et al., Tailoring the degradation kinetics of mesoporous silicon structures through PEGylation, Journal of Biomedical Materials Research Part A, vol.13, pp.1236-1243, 2010.
DOI : 10.1016/j.ijrobp.2006.09.011

C. Fu, T. Liu, L. Li, H. Liu, and D. Chen, The absorption, distribution, excretion and toxicity of mesoporous silica nanoparticles in mice following different exposure routes, Biomaterials, vol.34, issue.10, pp.2565-2575, 2013.
DOI : 10.1016/j.biomaterials.2012.12.043

A. C. Faure, S. Dufort, V. Josserand, P. Perriat, J. L. Coll et al., Control of the in vivo Biodistribution of Hybrid Nanoparticles with Different Poly(ethylene glycol) Coatings, Small, vol.6, issue.22, pp.2565-2575, 2009.
DOI : 10.1002/smll.200900563

C. Kelly, C. Jefferies, and S. Cryan, Targeted Liposomal Drug Delivery to Monocytes and Macrophages, Journal of Drug Delivery, vol.5, issue.1, 2011.
DOI : 10.1016/j.jconrel.2008.08.017

URL : https://doi.org/10.1155/2011/727241

J. L. Perry, K. G. Reuter, M. P. Kai, K. P. Herlihy, S. W. Jones et al., PEGylated PRINT Nanoparticles: The Impact of PEG Density on Protein Binding, Macrophage Association, Biodistribution, and Pharmacokinetics, Nano Letters, vol.12, issue.10, pp.5304-5310, 2012.
DOI : 10.1021/nl302638g