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Abstract—In this paper we propose a novel gait recognition
approach from animated 3D skeletal data. Our approach is based
on two disparate ideas from Shape Analysis and Functional Data
Analysis (FDA) for a joint geometric-functional analysis. That is,
skeletal sequences are viewed as time-parametrized trajectories
on the Kendall’s shape space when scaling, translation and ro-
tation variations are filtered out from fixed-time 3D skeletons. A
Riemannian Functional Principal Component Analysis (RFPCA)
is carried out on our manifold-valued trajectories in order to
build a new basis of principal functions, termed EigenTrajectories.
Thus, each trajectory, could be projected into the eigenbasis
which give rise to a compact signature, or EigenScores. The latter
is fed to pre-trained ’One-vs-All’ SVM classifiers for identity
recognition and authentication. Based on the geometry of the
underlying shape space, tools for re-sampling and synchronizing
trajectories are naturally derived to apply the proposed variant
of FPCA. We have conducted experiments on a subset of the
CMU dataset. Our approach shows promising results compared
to the state-of-the-art when a compact and robust signature is
considered.

Keywords 3D gait recognition, Behavioral biometrics, Func-
tional PCA, Kendall’s trajectory, Riemannian geometry.

I. INTRODUCTION

Gait recognition is a relatively old research field in be-
havioral biometrics. Suitable properties as user-friendly, cost-
effective and non-invasive made it attractive in applications
like crime investigation and physical access control. Over
the past few years, several 2D methods have been proposed
making use of the body either by establishing a prior body
model [1] or by using the overall shape of silhouette at-
tributes [2], [3]. However, the use of video data make the
problems of self-occlusion, pose variations, illumination and
appearance changes difficult to handle in addition to the
important task of background subtraction [4]. In order to
overcome these limitations, a new modality is emerging —
3D skeletal data. Several approaches have been proposed
recently by Ahmed et al. [5], Andersson et al. [6], Balazia
and Sojka [7], Ball et al. [8] and Kwolek et al. [9] that
exploit 3D skeletal data and have been tested on the output of
MoCap (Motion Capture) sensors. This trend is increasingly
confirmed with the development of affordable and reliable
MoCap sensors (i.e. Kinect-like) and the availability of public
development datasets [7]. Skeletal data are independent of
illumination, robust to self-occlusion and pose variations. They
are sources of anthropometric (body’s height, length of arms,
etc.) and kinematic features (evolution of angles, Center-of-
Mass trajectory, stride length, gait pattern, regularity, body’s

velocity, etc.). These features have been used separately or
jointly in a set of recent approaches. For instance, Ahmed et
al. [5] have computed horizontal (HDF) and vertical distances
(VDF) between couples of joints. In [6], a gait descriptor
was constructed by the mean and standard deviation of signals
defined by the lower limbs angles (hips, knees and ankles).
Kwolek et al. [9] proposed to compute bone rotations, inter-
joint distances, and the person’s height whereas Preis et al. [10]
extracted thirteen biometric features. Among them, eleven are
static features of the human body (height, length of legs, length
of both upper arms, etc.) and two are dynamic features that
are step length and the body’s speed. Dikovski et al. [11] used
statistical tools such as the mean and the standard deviation
on seven feature sets constructed from static body parameters
during one gait cycle, joint angles and inter-joint distances.
As for Sinha et al. [12], they proposed to combine many
gait features like areas of upper and lower body, inter-joint
distances along with the features proposed in [8] and [10].
In [7], authors focused on machine learning techniques in
order to improve gait features classification results since they
were largely used in the literature of 2D gait recognition.
Thus, they have proposed to learn gait features that maximize
the separability between the different classes of persons by
a modification of Fisher’s Linear Discriminant Analysis with
Maximum Margin Criterion (MMC).

All the aforementioned methods deal with 3D joints of
skeletons (or derived kinematics) in gait cycles. However,
they ignore the functional structure of gait cycles since they
are formed by skeletons differently shaped over the time and
holding variations that can be discriminant to identify one
walker by his walking way. Compared to these approaches, the
present work considers these sequences as trajectories living
in a certain space and parametrized by the time. Then, Func-
tional Principal Component Analysis (FPCA) is used to create
uncorrelated variables which could make identity classification
from gait trajectories faster. To this end, two key preprocess-
ing steps should be developed (1) normalize the temporal
length of skeletal sequences, and (2) temporally align them
to make inference interpretable. In summary, our approach
maps skeletal sequences as time-parametrized trajectories on
the Kendall’s shape space. Grounding on the geometry of the
space, tools for re-sampling and synchronizing trajectories are
derived. Due to the orbit-manifold structure of the underlying
space, an adapted variant of FPCA is proposed and applied
to gait trajectories for identity recognition. Accordingly, the



main contributions of this work are:

— Inspired from [13], a space-time representation of 3D
gait-related skeletal sequences as trajectories on the
Kendall’s shape space where shape-preserving variations
(scaling, translation and rotation) are filtered out.

— A variant of Functional PCA adapted to the manifold-
valued trajectories lying to the Kendall’s shape space is
proposed. It accounts for the non-linear structure and non-
trivial geometry of the underlying space, as investigated
very recently in [14] for more general Riemannian man-
ifolds.

— A novel 3D gait recognition approach based on our
variant of FPCA on the shape space. The proposed
approach outperforms existing methods thanks to a joint
geometric-functional analysis.

The rest of the paper is organized as follow. Section II
presents how skeletal sequences are modeled on the Kendall’s
shape space as parametrized trajectories. It will remind briefly
essential (Riemannian geometry) materials of the underlying
space. In section III, we introduce our variant of FPCA on
Kendall’s shape space. Section IV describes our experimental
setup and provides an evaluation of the proposed approach
with respect to previous studies. Some conclusions and future
perspectives are drawn in section V

II. TRAJECTORIES ON KENDALL’S SHAPE SPACE

Following the approach proposed in [13], 3D skeletal se-
quences are mapped to the Kendall shape space and thus
viewed as time-parametrized trajectories. Accordingly, shape-
preserving transformations such as translation, scaling and
rotation are filtered out from the static representation [15].
Before coming to the main contribution of this paper, we first
remind essential mathematical background on the geometry of
this particular space.

A. Riemannian Geometry of Kendall’s shape space

David G. Kendall defines the shape as all geometrical
information that remains once transformations such us scaling,
translation and rotation are filtered out [16]. In this work, we
adopt the same theory of [15] to filter these shape-preserving
transformations. Given a matrix representation X € R™*3 of
a 3D skeleton where n is the number of 3D joints, we set
S X, =0, for j=1,2,3, then | X|r = 1, as follows.
The product X = H X, where H is Helmet sub-matrix sized
(n — 1) x n, represents the centered coordinates of X (as
explained in [13]). With the condition || X ||z = 1, the pre-
shape space C = {X| || X||r = 1} is built. It is the unit sphere
of R3("=1_ To reach the shape space, rotations (elements of
the special orthogonal group SO(3), the 3D rotation group.)
need to be filtered out by the definition of equivalent classes
(or orbits), [X] = {XOJ|O € SO(3)}, defined as all the
rotated versions of X. So, the set of all [X],X € C form
the shape space S of 3D skeletons of n joints. The tangent
space attached to the preshape space at X € C is given by

Tx(C) = {V € C|uace(VTX) = 0}. Hence, the tangent
plane to S at [X] can be defined as,

Tix)(S) = {V € C|trace(V' X) = 0, trace(V' X 4) = 0},

1
where A is any skew-symmetric matrix of size 3 x 3. The
first condition makes V tangential to the preshape space
while the second condition imposes its orthogonality to the
rotation orbit. Together, they guarantee V' to be tangent to S.
For convenience, the tangent space Tix)(S) is identified with
R3"~7. Considering the spherical structure of C, it is possible
to construct a geodesic (i.e. shortest) path along the space that
connects a source shape [X] € S to a target shape [Y] € S.
It is given by the arc [«(t)] of the great circle going through
[X] and [Y] as follows

alt) = @(Sm((l — 00X +sin(t0)YO"), ()
where 6 = cos™}((X,YO*)) is length of the path a(t),
called also geodesic distance and O* is the optimal rotation
that optimally align Y to X. Furthermore, the Exponential
map and its inverse (Logarithm) map are defined by Eq.3 and
Eq.4, respectively. Together, they allow to map data from the
manifold to an arbitrary tangent space and inversely.
— Exponential map — for V' € Tjx(S), the Exponential
function expx1(.) : Tix](S) — S is defined as

sin(6)
0

expry)(V) = |cos(0)X + vy, 3)

where 0 = /(V, V) = /trace(VVT).
— Logarithm map — the inverse of the Exponential map
expry () : § = Tix|(S), is given by V/

0
M(YO* —cos(0)X) (4

Now that we have set all materials for static skeletal shape
analysis, we consider an arbitrary skeletal sequence as a time-
parametrized trajectory on the shape space S. Our aim is to
adapt the well-known Functional PCA to trajectories on S and
thus create new uncorrelated variables to represent them. In
addition to the difficulty related to the structure complexity
(non-linearity) of S, trajectories should be aligned. In other
words, the effect of different time-rate and the divergence in
trajectory’s starting shape should be filtered out. This problem
is well-known in functional data analysis by registration prob-
lem. Finally, trajectories should have the same temporal length.
We present solutions to the last two problems in the next
section. Our variant of FPCA applied to our orbit-manifold-
valued trajectories is presented in Section III.

V = exp (V) =

B. Trajectories on the Kendall’s Space

Actually, the segmentation of gait sequences results to
cycles, termed strides. They have different temporal length
i.e. different number of skeleton frames per sequence. In
order to apply FPCA on shape trajectories as it will be



explained in Sec.IIl, two conditions are required — (1) lengths
of trajectories must be equal; and (2) they must be temporally
aligned. To this end, a re-sampling step of the sequences
on S is applied based on the geodesic path given by Eq.2
as a natural interpolation tool in the shape space S. In
addition a temporal alignment step of shape trajectories is
performed using a proper elastic metric defined in [13] on
Kendall’s shape space. These points are deeply described in
the following items.

Re-sampling trajectories on S: here, we explain the re-
sampling of a discrete trajectory a(t)i=¢, .. ¢,, a(t;) € S of
length n in order to get a new version a(s)s=s, ,...s,, Of length
m (either m < n or m > n). This step allows obtain fixed-
length shape trajectories. if m > n, we have increased the
temporal resolution and this action is known as up-sampling.
Otherwise, it is a down-sampling. The resulting trajectory «(s)
is given by a(s;) = gy (sin(w26)z + sin(w10)y) where
wy = 75;7_?:1, Wy = 7;22;‘"’;1 and s; verifies t;, < s; < t;,.
Clearly, we used here the interpolation tool defined in Eq.2
which allows to connect successive shapes in the trajectory
based on the geodesic (shortest) path between them.

Temporal alignment of trajectories on S: given the
shape trajectories as functional data, they might not be
comparable since each of them has its pace and gait
velocity. In other words, there is no correspondence between
functions to be compared. This problem is known in
Functional Data Analysis as registration problem. This is
why a synchronization is a must so that FPCA is well
interpretable. As a solution to this issue, DTW (Dynamic
Time Warping) algorithm is quite used. The goal here is to
find the optimal registration v* that minimizes the distance
d(ar, az) = argmin, [ dy(ai(t), as((1)))dt between two
trajectories v et ao. However, this cost function is not a
proper metric, since the alignment of a; to «g is not the
same as the alignment of as to «; (i.e. not symmetric).
In [13], Ben Amor et al. solved this problem by defining
Transported-SRVF, which is a representation of a trajectory
on the tangent space to S, attached to a reference point
[R] of the shape space S, as well as an elastic metric that
is interesting mathematically and computationally. In other
words, they represent trajectories on Riemannian manifolds
such that the distance between two trajectories is invariant to
identical time warping. We have adopted the latter approach
(i.e. T-SRVF)for temporal registration of gait trajectories.

III. FPCA ON KENDALL TRAJECTORIES

Previously, we have introduced mathematical materials and
preprocessing tools, essential to apply FPCA on gait trajecto-
ries. Here, we introduce the main contribution of the paper,
i.e. our Functional PCA variant on Kendall’s shape space. We
first review briefly Functional Principal Component Analysis
(FPCA) in Euclidean spaces, then, we present our variant
adapted to the Kendall’s shape space.

A. Functional PCA in Euclidean Spaces

Functional Principal Components Analysis (FPCA) is a
powerful statistical tool used to capture variations of random
functions in terms of principal modes of variations, while
reducing the dimensionality (i.e create new uncorrelated vari-
ables with maximum variance) [17]. That is, FPCA represents
any random function in a new function basis of the covariance
operator of a set functions. More formally, given a stochastic
square integrable process X (t), where ¢ € T, the mean is first
defined by p(t) = E(X(t)) and the covariance operator is
given by G(s,t) = Cov(X (s), X (1)) = > peq Mk (s)pr(t),
t,s € T where Ay > Ay > --- > 0 are the eigenvalues and
o are the orthogonal principal functions of the linear Hilbert-
Schmidt operator. Grounding on the Karhunen-Loeve theorem,
it is possible to express the centered process X (¢) — p(t) using
the principal functions basis as X (t) — u(t) = > re; Sepr(t),
where &, = (X (£) — u(t), pu()) = [ (X (£) = u())on(t)dt
is the eigenvalue corresponding to the k' eigenfunction, ¢y,
(here, (.,) is the inner product of the ambient L? Hilbert space
of valued square integrable functions). The centered process is
then equivalent to the coefficients &1, &s,---. A K-truncated
version is given by a linear combination of the K first principal
functions once the mean value is subtracted as,

K
X(t) ~ Xre(t) = plt) + Y repn(t). ©)
k=1

Coming back to our trajectories living on Kendall’s shape
space, the set of orbits of the unit sphere of R3("~1) under the
group action of the special orthogonal group SO(3). Several
challenges encounter the adaptation of the conventional FPCA
to our trajectories. One needs first to define the ’'mean’
trajectory p(t) on the shape space S. Once done, the linear
combination Zszl Erpr(t) in Eq.5 is no more valid, as
the approximation X () do not lie necessarily to S. In the
following items, we propose an intrinsic method to compute a
sample average trajectory of a set of gait trajectories, then, we
present our variant of FPCA adapted to the underlying space.

B. Computing an Average Sample Trajectory on S

Computing statistical summaries on shape trajectories is
not trivial as several requirements should be fulfilled. First,
trajectories should have the same temporal length. Second,
gait trajectories exhibits temporal variability due to the dif-
ference in the execution rate and eventually different starting
shape. To solve these problems, we use the pre-processing
solutions presented in Section II-B. As a result, we build a
set of NV synchronized gait trajectories {a;(t)i=1,.. n}i<j<n
of length n. We then compute an average trajectory by com-
puting cross-sectional Karcher mean [15] defined by, fi(t) =
argmingy)cs Zf\;l ds([X], [X:])?% at each time ¢. That is, the
problem of computing an average trajectory turns to estimate
a Karcher sample mean at each time ¢, on synchronized and
re-sampled trajectories. Algorithm.l summarizes the iterative
procedure to compute cross-sectional Karcher means and its
extension to trajectories. Figure.l illustrates a sample average



trajectory of a collection of several hundred of gait cycles
related to 54 different subjects. Despite huge number of
samples, their average trajectory exhibits natural deformations
of a gait cycle. This is due to both the preprocessing steps (i.e.
re-sampling and temporal alignment) and the cross-sectional
Karcher mean estimation procedure in the shape space.

Fig. 1. Equally-spaced shapes of the sample average trajectory computed
over a collection of several hundred of gait cycles of 54 different subjects.

Algorithm 1 Sample average trajectory computation on S.

Require: {a;(t)i=1, n}ti1<j<n N trajectories, €1,€e3 > 0
I fort=1...ndo
2:  Initialize fig(t) < a1 (t), i < 1
3 repeat
4 Compute v;(t) emp;il(t)(aj (), forj=1,...N
5: Compute T;(t) + % > v;(t)
6 Update fi;(t) using fi;41(t) < expp, ) (e10(1))
7 t=1+1
until (|7(¢)| < €2)
9: end for
Ensure: [i(t) a sample average trajectory of {a;(t)i=1, .}

Now, one can move to the core of the approach which con-
sists in performing Functional PCA on gait shape trajectories.

C. Functional PCA over trajectories on S

As has been explained previously, the application of FPCA
to gait shape trajectories isn’t straightforward. This is mainly
due to the non-linear (spherical) geometry of the pre-shape
space C and the orbit-manifold structure of the shape space.
Based on the very recent work [14], we propose here an intrin-
sic approach to perform FPCA on the set of tangent spaces
attached to S at fi(t), the average trajectory. In fact, given
N trajectories {a;(t)i=1,..n}1<j<n and their average trajec-
tory fi(t);=1, n. they are log-mapped to the tangent spaces
T +)(S) using Eq.4 which gives V'(¢). Since tangent spaces
Th(1)(S) are identified with R*"~7, V/(¢) could be viewed
as discrete versions of random functions of L?(R3"~7), the
Hilbert space of valued square integrable functions of R3"~7.
As a result, Functional PCA on S corresponds to a multivariate
FPCA in R®"~7. Thus, V(t) and X(t) are expressed as follows:

V(1) = Vie(t) = alt) + S i, Enon(t)
~ Xk (t) = eXPﬂ(t)(V(t))~

fa
2

Recently, in [14], a more general Riemannian FPCA have
been proposed. However, to our knowledge, this is the first
formulation of FPCA on Kendall’s shape space. Algorithm.2
summarizes the steps of our intrinsic adaptation of PCA to
Kendall’s shape trajectories.

Algorithm 2 Functional PCA in the shape space S.

Require: {;(t)i=1,.n}t1<j<n. N trajectories of S
Compute /i(t);=1,.» a sample average trajectory (Algo.1)
fort=1...n do

Vi(t) = expy )
end for
V + [Vect(V1)...Vect(Vn)] IIVect(V;) stacks col. of V.
[€x, or(t)] « Figen(V) //Eigen(V) stands for the Eigen
decomposition of V.
for j=1...Ndo

X;(t) = exppu)(p;(t)), fort =1,...,n
end for

Ensure: ¢, EigenScores, ¢y (t) EigenFunctions of log-
mapped trajectories and X (t) EigenTrajectories.

((t)), for j=1,...,N

To illustrate this idea, we provide in Figure. 2 the first four
modes of variation (i.e. EigenTrajectories) computed on a set
of gait trajectories. The first principal component is in the
direction of the largest spread (or variance) and so on. These
EigenTrajectories represent gait sequences once associated
EigenFunctions are projected back to the shape space.

First mode of variation

Second mode of variation

Fig. 2. Four first EigenTrajectories outputs of Algo.2 on a set of several
hundred trajectories of 54 subjects.

Now, given an arbitrary gait trajectory (even never seen by
FPCA), it is easy to compute its new coordinates in the basis
of EigenTrajectories and reconstruct it back in the Kendall
shape space for the purpose of comparison. Different steps of
the projection and reconstruction are enumerated in Algo.3.
An example of reconstruction is illustrated in Figure.3. The
figure shows the good reconstruction achieved. The original
gait trajectory and its reconstructed version are perfectly
synchronized.

Algorithm 3 Trajectory reconstruction from the eigenbasis.

Require: EigenTrajectories {X k(t)e=1,.n}, a trajectory
a(t)i=1,.. n» the average trajectory ji(t);=1,. n
Compute V' (t) = logp, ) (a(t)) fort =1...n
Compute @;(t) = logp ) (X;(t))
& = (V{8 ps(0). for j = 1. K
a(t) = expuy (e Eepr(®), t=1...n

Ensure: ¢, new coordinates of «(t) in the EigenBasis of
FPCA and & the reconstruction of «.




Fig. 3. One gait trajectory (blue) and its reconstruction (green) using Algo.3.

IV. EXPERIMENTAL RESULTS

To demonstrate the effectiveness of the proposed approach,
we perform gait recognition on MoCap skeletons sequences
following the experimental setting described in [7]. We report
results for the recognition and authentication scenarios. We
carried experiments on a subset of the well-known Mocap
CMU dataset!. This dataset contains different human actions
and daily activities such as walking, running, playing tennis,
etc. It includes several gait-related sequences as well of 54
subjects. The authors of [7] have extracted gait cycles and
have released them?. In total, they extracted more than 3, 800
sequences of the 54 subjects. Based on their experimental
setup, a 3-fold cross validation is performed that consists
to split extracted gait cycles to three folds: one training set
and two evaluation sets in a manner that each set contains
disjoint instances from all the classes of subjects. In our
experiments, the FPCA basis is formed using data of training
set (Algo.2), and the evaluation data are projected into the
EigenBasis (Algo.3). The classification is performed using
’One-vs-All’ classifiers using a nested 10 fold cross validation
by considering one fold as a test set and the nine others as
gallery set.

The evaluation metrics such as CRR, AUC and MAP are
used to illustrate the performance of the proposed approach.

In the following, we briefly remind these metrics,

+ The CRR i.e. the average Correct Classification Rate is
the ratio of correctly predicted observations to the total
observations.

e« ROC curve is the Receiver Operating Characteristic
curve. It shows the variation of the True Positive Rate
(TPR) in function of the False Positive Rate (FPR).

e The AUC score (Area Under Curve) measures the area
under the ROC curve.

o The Recall is the ratio of correctly predicted positive
observations to the all observations whereas the Precision
is the ratio between correctly predicted positive observa-
tions and all the positive observations predicted.

o the MAP score (Mean Average Precision) is the area
under the Recall/Precision graph that makes a classifier
good if its Precision will stay high as Recall increases.

The values of the evaluation metrics are reported in Table
I together with the dimension of the features. Comparative
results of state-of-the-art methods are also reported. The

Thttp://mocap.cs.cmu.edu
Zhttps://gait.fi.muni.cz/\#framework

TABLE I
COMPARISON WITH THE STATE-OF-ART BASED ON THE RESULTS
REPORTED IN [7].

Method Dimension CRR AUC MAP
Ahmed et al. [5] 24 0.7134 | 0.6387 | 0.1617
Andersson et al. [6] 80 0.7787 | 0.6545 | 0.1926
Ball et al. [8] 18 0.6963 | 0.6612 | 0.1454
Dikovski et al. [11] 71 0.8926 | 0.6964 | 0.2582
Kwolek et al. [9] 660 0.9099 | 0.6477 | 0.2121
Preis et al. [10] 13 0.13 0.6236 | 0.0579
Sinha et al. [12] 45 0.7666 | 0.6809 | 0.1858
Balazia et al. [7] 0.8314 | 0.6216 | 0.1643
(PCA+LDA) between 54!
and Np2-54
Balazia et al. [7] 53 0.9102 | 0.7551 | 0.2996
(MMC)
Ours (80%)° 14 0.7469 | 0.8923 | 0.4709
Ours (98%)° 85 0.9223 | 0.9664 | 0.6437

! Number of subjects in the extracted Database.
2 Number of labeled templates for learning the features.
3 Percentage of variance explained by the r-first EigenTrajectories.

identification metric evaluation’s results indicates that our
approach outperforms existing methods in terms of CRR.
Actually, when using 98% of explained variance in FPCA,
we report 92.23% correct classification and this represents
the best CRR compared to the previous methods. The feature
vector dimension is comparable to the size of feature vectors
of previous approaches. When only 80% of the energy is
used, the feature vector is very small (of size in average
14) and the CRR is 74.69%. For deeper understanding of
the impact of the low-dimensionality in the application of
FPCA, we report in Table II the evolution of CRR in terms
of the amount of energy used while performing FPCA. We
notice that 90% of the energy at least is needed to perform
competitive results with state-of-the-art. In the third column
of Table I, we report the MAP that represents the area
under the Rappel-Precision curve. The results reported by the
proposed approach is higher compared to the state-of-the-art.
Even with 80% of the energy, the reported MAP (47.09%)
remains considerably better than the best result in state-of-
the-art 29.96%. The corresponding Recall-Precision curve is
reported in Figure. 4 at the right and is above the state-of-
the-art ones. The difference in performance is considerable
implying that the combination between the One-vs-All SVMs
and FPCA results in an efficient gait recognition system.

Again, this difference is actually confirmed by the ROC
curves reported in Figure. 4 (in the left panel), together with
AUC value in Table I. In practice, the ROC curves and
the recall-Precision curves relative to the proposed approach
were computed by averaging the 54 curves resulting for each
test set when performing the 10-fold cross-validation. These
computations are based on the predicted probabilities returned
by each learned SVM Model (for each class) when using the
One-vs-All SVM classification schema with 54 classes. We
note that where the majority of existing works use distance-
based approaches, in our approach subject-specific classifiers
are trained using SVM models.
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Fig. 4. Reported ROC (left) and Recall-Precision (right) curves of the proposed approach at 80% and 98% of explained variance.

These results demonstrate that our variant of Functional
PCA adapted to the Kendall’s shape space is able to capture
a better geometric-functional signature of the human body.
The signature reflects higher discriminative power with respect
to previous methods. All that being said, we can not deny
that there are many mis-classifications that occur using our
method that is maybe due to the Reconstruction errors as the
projection on the eigen-basis results sometimes is non-accurate
coefficients.

TABLE 11
EVOLUTION OF THE CRR WHEN VARYING THE PERCENTAGE OF
VARIANCE EXPLAINED BY THE 7-FIRST EIGENTRAJECTORIES.

% of variance | 70% | 75% 80% 85% 90% | 98%
CRR | 0677 | 0715 | 0.746 | 0.790 | 0.831 | 0.922

V. CONCLUSION AND FUTURE WORK

In this paper, we have introduced a joint geometric-
functional analysis approach of 3D skeletal data for the pur-
pose of gait recognition. We have proposed a variant of FPCA
adapted to the Kendall’s shape space able to create new un-
correlated variables for gait trajectory representation. Through
the experiments conducted on a subset (limited to gait) of
the CMU dataset and following the experimental settings of
the state-of-the-art, we have demonstrated the effectiveness of
the proposed approach. The proposed framework is generic
enough to be extended to other future directions including (1)
gait classification for preventing fall of elderly; (2) performing
statistical #-tests on obtained eigenScores to study the effects of
diseases as autism, perkinson, or simply the age or the athletic
history on our daily activities as (gait, sit-to-stand, etc.).
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