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CONTROLLABILITY AND POSITIVITY CONSTRAINTS IN POPULATION

DYNAMICS WITH AGE STRUCTURING AND DIFFUSION

DEBAYAN MAITY, MARIUS TUCSNAK, AND ENRIQUE ZUAZUA

Abstract. In this article, we study the null controllability of a linear system coming from a population
dynamics model with age structuring and spatial diffusion (of Lotka-McKendrick type). The control
is localized in the space variable as well as with respect to the age. The first novelty we bring in is
that the age interval in which the control needs to be active can be arbitrarily small and does not need
to contain a neighbourhood of 0. The second one is that we prove that the whole population can be
steered into zero in a uniform time, without, as in the existing literature, excluding some interval of
low ages. Moreover, we improve the existing estimates of the controllability time and we show that
our estimates are sharp, at least when the control is active for very low ages. Finally, we show that
the system can be steered between two positive steady states by controls preserving the positivity of
the state trajectory. The method of proof, combining final-state observability estimates with the use of
characteristics and with L∞ estimates of the associated semigroup, avoids the explicit use of parabolic
Carleman estimates.

Key words. Population dynamics, Null controllability.
AMS subject classifications. 93B03, 93B05, 92D25

1. Introduction and main results

In this article, we study the null-controllability of an infinite dimensional linear system describing
the dynamics of a single species age-structured population with spatial diffusion. In these models,
going back to Gurtin [9] and generalizing the classical Lotka-McKendrick system, the state space
of the system is H = L2([0, a†] × Ω), where a† denotes the maximal age an individual can attain
and Ω ⊂ Rn (with n ∈ N in general but with n = 3 for real life applications) is an open bounded set
which represents the spatial environment occupied by the individuals. Let p(t, a, x) be the distribution
density of individuals with respect to age a > 0 and spatial position x ∈ Ω at some time t > 0. Then,
according to the above reference, the function p satisfies the degenerate parabolic partial differential
equation

∂p

∂t
+
∂p

∂a
− Lp+ µ(a)p = mv (t, a, x) ∈ (0,∞)× (0, a†)× Ω, (1.1)

where the operator L is defined by

Lp =

n∑
i,j=1

∂

∂xi

(
σij

∂p

∂xj

)
, (1.2)
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with σij = σji ∈ C2(Ω), for 1 6 i, j 6 n, and we assume there exists a constant c > 0 such that

n∑
i,j=1

σij(x)ξiξj > c|ξ|2 (x ∈ Ω, ξ ∈ Rn).

Moreover, the positive function µ denotes the natural mortality rate of individuals of age a, supposed
to be independent of the spatial position x and of time. The control function is v, depending on t, a
and x, whereas m is the characteristic function of (a1, a2) × ω, with 0 6 a1 < a2 6 a† and ω ⊂ Ω
an open set. Thus the control is localized both in age and with respect to the spatial variable. This
control process corresponds to harvesting of adding individuals of age between a1 and a2 from the
spatial domain ω. Note that equation (1.1) is a slight generalization of the one proposed in [9], where
the operator L is just the standard Laplacian. We denote by β the positive function describing the
fertility rate at age a, supposed to be independent of the spatial position x and of time, so that the
density of newly born individuals at the point x at time t is given by

p(t, 0, x) =

∫ a†

0
β(a)p(t, a, x) da (t, x) ∈ (0,∞)× Ω. (1.3)

We assume that the individuals never leave the set Ω, so that p satisfies the Neumann boundary
condition

∂p

∂νL
=

n∑
i,j=1

σij
∂p

∂xj
ni = 0 (t, a, x) ∈ (0,∞)× (0, a†)× ∂Ω, (1.4)

where n denotes the unit outer normal to ∂Ω. To complete the model, we introduce the initial condition

p(0, a, x) = p0(a, x) (a, x) ∈ (0, a†)× Ω. (1.5)

We assume that the fertility rate β and the mortality rate µ satisfy the conditions

(H1) β ∈ L∞(0, a†), β > 0 for almost every a ∈ (0, a†).
(H2) µ ∈ L1[0, a∗] for every a∗ ∈ (0, a†), µ > 0 for almost every a ∈ (0, a†).

(H3)

∫ a†

0
µ(a) da = +∞.

For more details about the modelling of such system and the biological significance of the hypotheses,
we refer to Webb [20].

Theorem 1.1. Assume that β and µ satisfy the conditions (H1)-(H3) above. Moreover, suppose that
the fertility rate β is such that

β(a) = 0 for all a ∈ (0, ab), (1.6)

for some ab ∈ (0, a†) and that a1 < ab. Recall that m is the characteristic function of (a1, a2) × ω,
with 0 6 a1 < a2 6 a† and that ω ⊂ Ω is an open set. Then for every τ > a1 + a† − a2 and for
every p0 ∈ L2((0, a†) × Ω) there exists a control v ∈ L2((0, τ) × (a1, a2) × ω) such that the solution p
of (1.1)-(1.5) satisfies

p(τ, a, x) = 0 for all a ∈ (0, a†), x ∈ Ω. (1.7)

To state our result on controllability with positivity constraints, we first define the concept of
non-negative steady state for (1.1) - (1.5).

Definition 1.2. Let vs ∈ L∞((0, a†)× Ω) be a steady interior control such that

vs > 0 a.e. on (0, a†)× Ω.
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A non-negative function ps ∈ L∞((0, a†)× Ω) satisfying the equations

∂ps
∂a
− Lps + µ(a)ps = mvs (a, x) ∈ (0, a†)× Ω,

∂ps
∂νL

= 0 (a, x) ∈ (0, a†)× ∂Ω,

ps(0, x) =

∫ a†

0
β(a)ps(a, x) da, x ∈ Ω,

(1.8)

is said to be a non-negative steady state for (1.1) - (1.5).

Our second main result can be stated as follows:

Theorem 1.3. Assume the hypothesis of Theorem 1.1. Let ps,I and ps,F are two non-negative steady
states of the system (1.1) - (1.5). Assume that there exist a∗ ∈ (0, a†) and δ > 0 such that

ps,I(a, x), ps,F (a, x) > δ a.e. on [0, a∗]× Ω. (1.9)

Then there exist τ > 0 and v ∈ L∞((0, τ)× (0, a†)× Ω) such that the problem (1.1) - (1.5) with

p0(a, x) = ps,I(a, x)

admits a unique solution p satisfying

p(τ, a, x) = ps,F (a, x) for all (a, x) ∈ (0, a†)× Ω.

Moreover, p(τ, a, x) > 0 for a.e. (t, a, x) ∈ (0, τ)× (0, a†)× Ω.

Remark 1.4. We denote by R =

∫ a†

0
β(a)e−

∫ a
0 µ(r) dr da the reproductive number. It is known that

(see, for instance [2, Theorem 3.1])

• if R < 1 then there exists a unique non-negative solution to (1.8)
• if R = 1 and vs ≡ 0, then there exists infinitely many solutions to (1.8) of the form ps =

αe−
∫ a
0 µ(r) dr, α ∈ (0,∞).

• if R > 1 then there is no non-negative solution to (1.8).

Consequently, the existence of non-negative steady states satisfying (1.9) is ensured at least when R = 1
and vs = 0. Another situation where we know that such states exist is when the control is active on
all [0, a†]× Ω and R < 1 (see [2, Theorem 3.1]).

On the other hand, one can show that, if ps is a non-negative solution to the system (1.8), then

lim
a→a†

ps(a, x) = 0 a.e. x ∈ Ω. (1.10)

Therefore we cannot assume that the initial or target non-negative steady states are bounded from
below by a strictly positive constant on [0, a†], i.e., we cannot take a∗ = a† in Theorem 1.3.

Let us now mention some related works from the literature. The null controllability results of the
diffusion free age-dependent population dynamics model were first obtained by Barbu, Iannelli and
Martcheva [5]. They proved the state of the system can be steered to any steady state, except for
a small interval of ages near zero. Recently, Hegoburu, Magal and Tucsnak [10] proved that this
restriction is not necessary, provided individuals do not reproduce at the age close to zero. They also
proved there exists controls which preserves the positivity of the state trajectory. However, in the both
works, the control is supported in the interval (0, a0), for some a0 < a†. Recently, Maity [14] proved
that null controllability can be achieved by controls supported in any subinterval of (0, a†), provided
we control before the individuals start to reproduce.
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Concerning the models with spatial diffusion, namely for the system (1.1) - (1.5), as far as we know,
the first result was obtained by Ainseba and Aniţa [2]. They proved that the system (1.1) - (1.5)
can be driven to a steady state in any arbitrary time τ > 0 keeping the positivity of the trajectory,
provided the initial data is close to the steady state and the control acts in a spatial subdomain ω ⊂ Ω
but for all ages. When control acts in a spatial subdomain and only for small ages, a similar result
for a large time was proved by Ainseba and Aniţa [3]. In [1] Ainseba proved null controllability of
the system (1.1)-(1.5) except for a small interval of ages near zero, with controls acting everywhere
in the ages but in a spatial subdomain. Recently, Hegoburu and Tucsnak [11] proved that the system
(1.1) - (1.5) is null controllable for all ages and in any time by controls localized with respect to the
spatial variable but active for all ages. Their method is based on Lebeau-Robbiano type strategy,
originally developed for the null-controllability of the heat equation. Traore [18] considered a similar
model with nonlinear distributions of the newborns. He proved null controllability except for small
ages with controls localized in space variable and active for all ages. Martinez et. al [15] considered
linearized Croco-type equation, which is similar to the system (1.1) -(1.5), with β = µ = 0. They
proved regional null controllability of such system.

The main novelties brought in by our paper are:

• We improve the existing estimates on the time necessary to control the system to zero and we
show that our global controllability result applies to individuals of all ages, without needing
to exclude ages in a neighbourhood of zero.
• We are able to tackle the case of a control which is active for ages a ∈ [a1, a2], with arbitrary
a1 ∈ [0, a†) and a2 ∈ (a1, a†], provided that suppβ ∩ [0, a1] = ∅. Thus, unlike in the existing
literature, we do not need to control arbitrarily low ages.
• Unlike most of the approaches in the literature, our methodology does not require adaptations

of the existing parabolic Carleman estimates to the adjoint system of (1.1) - (1.5). We just
combine characteristics method with existing observability estimates for parabolic equations.
Thus our approach applies independently of the method used to derive final-state observability
for the associated parabolic system (moment methods, local or global Carleman estimates,
Lebeau-Robbiano strategy,...).
• Controllability with positivity constraints is proved, as far as we know for the first time, with a

control which is localized both in age and with respect to the space variable. The methodology
employed to obtain this result is based on duality and L∞ estimates for parabolic PDEs.

The remaining part of this work is organized as follows:

• In Section 2 we first recall some basic facts about the Lotka-McKendrick semigroup with
diffusion. We next formulate our control problem in a semigroup setting and we define the
associated adjoint semigroup.
• In Section 3 we prove the final state observability for the adjoint system and, as a consequence,

we obtain the proof of the main result in Theorem 3.2.
• Section 4 is devoted to the proof that controllability between positive steady states can be

achieved in sufficiently large time, i.e., to the proof of Theorem 1.3.
• Section 5 is devoted to the description of possible extensions and open questions.

2. Lotka-McKendrick Semigroup with Diffusion

In this section, we provide some basic results on the population semigroup for the linear age struc-
tured model with diffusion and its adjoint operator. Most of them were existing in the literature, so
we just give the statements and the appropriate references. In some cases, namely when the adjoint
operator is involved, we did not find detailed justifications in the existing literature, so, with no claim
of originality, we felt necessary to give a more detailed presentation.
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We write below equations (1.1)-(1.5) as an abstract control system with input space

H = L2(0, a†;L
2(Ω))

Before introducing the semigroup generator, we consider the diffusion free population operator

A1 : D(A1)→ H,

defined by

D(A1) =
{
ϕ ∈ H | ϕ(·, x) is locally absolutely continuous on [0, a†),

ϕ(0, x) =

∫ a†

0
β(a)ϕ(a, x) da for a.e. x ∈ Ω,

∂ϕ

∂a
+ µϕ ∈ H

}
,

A1ϕ = −∂ϕ
∂a
− µϕ, (2.1)

and the diffusion operator A2 : D(A2)→ H defined by

D(A2) =
{
ϕ ∈ L2(0, a†;H

2(Ω)) | ∂ϕ
∂νL

= 0 on ∂Ω
}
,

A2ϕ =
n∑

i,j=1

∂

∂xi

(
σij

∂ϕ

∂xj

)
(ϕ ∈ D(A2)). (2.2)

We also introduce the input space U = H and the control operator B ∈ L(U,H) defined by

Bu = mu (u ∈ U). (2.3)

With the above notation, we rewrite the system (1.1)-(1.5) as:

ż(t) = Az(t) +Bu(t), (2.4)

z(0) = p0, (2.5)

where we have set p(t, ·) = z(t), v(t, ·) = u(t) and the population operator with diffusionA : D(A)→ H
is defined by

D(A) = D(A1) ∩ D(A2), A = A1 +A2. (2.6)

The fact that the system we consider is well-posed follows from the following result:

Lemma 2.1. The operator (A,D(A)) is the infinitesimal generator of a strongly continuous semigroup
T on H.

Proof. A proof of this lemma can be found in [12, Theorem 2.8]. �

With the above notation, our main result in Theorem 1.1 can be rephrased to : the pair (A, B), with
A defined in (2.6) and B defined in (2.3) is null controllable in ant time τ > a1 +max{a1, a†−a2}. It is
well-known that, the null controllability in time τ of (A, B) is equivalent to the final-state observability
in time τ of the pair (A∗, B∗), where A∗ and B∗ are the adjoint operators of A and B, respectively
(see, for instance, [19, Section 11.2]). It is thus important to determine the adjoint of the operator A.
To this aim, we introduce an auxiliary unbounded operator (A0,D(A0)) defined by

D(A0) =
{
ϕ ∈ H | ϕ(·, x) is locally absolutely continuous on [0, a†), ϕ ∈ L2(0, a†;H

2(Ω)),

lim
a→a†

ϕ(a, x) = 0 for a.e. x ∈ Ω,
∂ϕ

∂νL
= 0 on ∂Ω,

∂ϕ

∂a
− µϕ+ Lϕ ∈ H

}
,

A0ϕ =
∂ϕ

∂a
− µϕ+ Lϕ (ϕ ∈ D(A0)). (2.7)

We have the following lemma:
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Lemma 2.2. The operator (A0,D(A0)) is the infinitesimal generator of a strongly continuous semi-
group T0 on H.

Proof. For ϕ ∈ D(A0), we have

(A0ϕ,ϕ)H = lim
a→a−†

∫ a

0

∫
Ω

(
∂ϕ

∂a
− µϕ+Bϕ

)
ϕ

= lim
a→a−†

∫
Ω

ϕ2(a)

2
−
∫

Ω

ϕ2(0)

2
− lim
a→a−†

∫ a

0

∫
Ω

(
µϕ2 +

∑
aij

∂ϕ

∂xi

∂ϕ

∂xj

)
6 0,

thus A0 is a dissipative operator.
To show that it is m−dissipative, we prove below that I −A0 is onto. To this aim, let f ∈ H and

consider the equation, of unknown ϕ ∈ D(A0),

ϕ− ∂ϕ

∂a
+ µϕ− Lϕ = f in (0, a†)× Ω, lim

a→a−†
ϕ(a, x) = 0,

∂ϕ

∂νL
= 0 on ∂Ω. (2.8)

Denoting

ϕ̃(a, x) = exp

(
−a−

∫ a

0
µ(r) dr

)
ϕ(a, x) (a ∈ (0, a†), x ∈ Ω), (2.9)

we see that (2.8) is equivalent to the equation, of unknown ϕ̃,

−∂ϕ̃
∂a
− Lϕ̃ = f̃ in (0, a†)× Ω, ϕ̃(a†, x) = 0 in Ω,

∂ϕ̃

∂νL
= 0 on ∂Ω,

where f̃(a, x) = exp

(
−a−

∫ a

0
µ(r) dr

)
f(a, x). It is easy to see that f̃ ∈ H. It is easily seen that the

above equation has a solution ϕ̃ ∈ L2(0, a†;H
2(Ω)) ∩H1(0, a†;L

2(Ω)) with

‖ϕ̃(a, ·)‖L2(Ω) 6 C

(
−a−

∫ a

0
µ(r) dr

)
‖f‖H .

The above estimate and (2.9) imply that (2.8) has a solution ϕ ∈ D(A0), thus A0 is m−disiipative.
Hence A0 generates a C0 semigroup on H. �

We are now in a position to rigourously construct the adjoint of the unbounded operator A.
Proposition 2.3. The adjoint of (A,D(A)) in H is defined by

D(A∗) = D(A0), A∗ψ =
∂ψ

∂a
− µψ + βψ(0, x) + Lψ. (2.10)

Proof. We can easily verify that D(A0) ⊂ D(A∗).
To prove the reverse inclusion, we first note that for λ > 0 large enough, the operator λI − A0 is

boundedly invertible (this follows from the that A0 is a semigroup generator). For those values of λ
we can thus consider the operator I −F(λ), where F(λ) ∈ L(L2(Ω)) is defined by

F(λ)g(x) =
[
(λI −A0)−1(β(a)g(x))

]
(0, x). (2.11)

We note that for λ large enough the operator I −F(λ) is invertible. Indeed, this follows from the fact
that lim

λ→∞
‖F(λ)‖L(L2(Ω),H) = 0.

For λ as above, we define Gλ : H 7→ H defined by by Gλf = ϕλ where ϕλ solves

λϕλ−
∂ϕλ
∂a

+µϕλ−Lϕλ−β(a)ϕλ(0, x) = f in (0, a†)×Ω, lim
a→a−†

ϕλ(a, x) = 0,
∂ϕλ
∂νL

= 0 on ∂Ω. (2.12)
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The fact that the operator Gλ is well defined follows from the fact that the unique solution of (2.12)
is clearly given by

ϕλ(a, x) = (λI −A0)−1 (f(a, x) + Vλ,f (a, x)) , (2.13)

where
Vλ,f (a, x) = β(a) (I − F (λ))−1

([
(λI −A0)−1f

]
(0, x)

)
.

This means, in particular, that ϕλ ∈ D(A0).
We are now in the position to prove the inclusion D(A∗) ⊂ D(A0). To this aim, take λ as above

and let ψ ∈ D((λI −A)∗). Then there exists f ∈ H such that∫ a†

0

∫
Ω
ψ(λI −A)ϕ =

∫ a†

0

∫
Ω
fϕ for all ϕ ∈ D(A).

Let ηλ = Gλf , with Gλ defined several lines above. Then, using (2.12) and integrating by parts we
obtain∫ a†

0

∫
Ω
fϕ = lim

a→a−†

∫ a

0

∫
Ω

(
ληλ −

∂ηλ
∂a

+ µηλ − Lηλ − β(a)ηλ(0, x)

)
ϕ

= lim
a→a−†

∫
Ω

∫ a

0
ηλ

(
λϕ+

∂ϕ

∂a
+ µϕ− Lϕ

)
=

∫ a†

0

∫
Ω
ηλ(λI −A)ϕ.

Therefore, ∫ a†

0

∫
Ω

(ψ − ηλ)(λI −A)ϕ = 0, for all ϕ ∈ D(A). (2.14)

By choosing ϕ = (λI −A)−1(ψ − ηλ) we get∫ a†

0

∫
Ω
|ψ − ηλ|2 = 0.

Thus ψ ∈ D(A0) and ψ solves (2.12). This completes the proof of the proposition. �

3. An Observability Inequality:

As mentioned above, the null-controllability of a pair (A, B) is equivalent to the final state ob-
servability of the pair (A∗, B∗), see [19, Theorem 11.2.1]. Recall that that final-state observability of
(A∗, B∗) is defined as

Definition 3.1. [19, Definition 6.1.1] The pair (A∗, B∗) is final state observable in time τ if there
exists a kτ > 0 such that ∫ τ

0
‖B∗T∗t q0‖H > k2

τ‖T∗τq0‖2 (q0 ∈ D(A∗)).

For A defined in (2.6) and q0 ∈ H we set

q(t) = T∗t q0 (t > 0),

where T is the semigroup generated by A. According to Proposition 2.3 we have:

∂q

∂t
− ∂q

∂a
− Lq − β(a)q(t, 0, x) + µ(a)q = 0, t > 0, (a, x) ∈ (0, a†)× Ω,

q(t, a†, x) = 0, t > 0, x ∈ Ω,

∂q

∂νL
= 0, t > 0, (a, x) ∈ (0, a†)× ∂Ω,

q(0, a, x) = q0(a, x), (a, x) ∈ (0, a†)× Ω.

(3.1)
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In view of [19, Theorem 11.2.1], the statement in Theorem 1.1 is equivalent to the following theorem:

Theorem 3.2. Under the assumption of Theorem 1.1, the pair (A∗, B∗) is final-state observable for
every τ > a1 + a† − a2. In other words, for every τ > a1 + a† − a2 there exists kτ > 0 such that the
solution q of (3.1) satisfies∫ a†

0

∫
Ω
q2(τ, a, x) dxda 6 k2

τ

∫ τ

0

∫ a2

a1

∫
ω
q2(t, a, x) dxdadt (q0 ∈ D(A∗)). (3.2)

Before we begin the proof of the above result, let us briefly describe its main steps. The first one is
writing an explicit expression of q. We define

V (t, x) = q(t, 0, x), (t, x) ∈ (0, τ)× Ω. (3.3)

Integrating along the characteristic lines, the solution of (3.1) can be written as

q(t) =


π(a)

π(a+ t)
etA2q0(a+ t, ·) +

∫ t

0

π(a)

π(a+ t− s)e
(t−s)A2β(a+ t− s)V (s, ·) t 6 a† − a,∫ t

t+a−a†

π(a)

π(a+ t− s)e
(t−s)A2β(a+ t− s)V (s, ·) ds t > a† − a,

(3.4)

where π(a) = e
−
∫ a

0
µ(r)dr

. Without loss of generality, we can assume that a2 6 ab and let τ be as
in Theorem 3.2. We decompose the interval (0, a†) as

(0, a†) = (0, ã) ∪ (ã, a†),

where a0 is chosen suitably so that a0 < a2 and τ > a†−a for all a ∈ (a0, a†). Now using the expression
of q in (3.4) and choosing a0 suitably, we can show that∫ a†

0

∫
Ω
q2(τ, a, x) dxda =

∫ a0

0

∫
Ω
q2(τ, a, x) dxda+

∫ a†

a0

∫
Ω
q2(τ, a, x) dxda (3.5)

6 C

(∫ a0

0

∫
Ω
q2(τ, a, x) dxda+

∫ τ

η

∫
Ω
q2(t, 0, x) dxdt

)
, (3.6)

for some η > a1 (see proof of Theorem 3.2 for more details).
The second step consists in deriving upper appropriate bounds for each one of the terms in the

right-hand side of (3.5). This is accomplished by combining some change of variables using the
characteristics of the diffusion free problem with some known observability inequalities for parabolic
equations.

To accomplish this program, we first recall the following observability inequality for parabolic equa-
tions (see, for instance, Imanuvilov and Fursikov [8]) :

Proposition 3.3. Let T > 0, 0 6 t0 < τ and t1 ∈ (t0, T ]. Then for every w0 ∈ L2(Ω), the solution w
of the initial and boundary problem

∂w

∂s
(s, x)− Lw(s, x) = 0 ((s, x) ∈ (t0, T )× Ω),

∂w

∂νL
= 0 ((s, x) ∈ (t0, T )× ∂Ω),

w(t0, x) = w0(x), (x ∈ Ω),

(3.7)
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satisfies the estimate∫
Ω
w2(T, x) dx 6

∫
Ω
w2(t1, x) dx 6 c1e

c2

t1 − t0
∫ t1

t0

∫
ω
w2(s, x) dx ds, (3.8)

where the constants c1 and c2 depend on L, on Ω and on τ .

In the following two propositions we estimate each of the terms appearing in the right-hand side of
(3.5).

Proposition 3.4. Let us assume the hypothesis of Theorem 1.1 and let τ > a1 and a0 ∈ (0, ab). Then
there exists a constant C > 0 such that, for every q0 ∈ D(A∗), the solution q of the system (3.1), obeys∫ a0

0

∫
Ω
q2(τ, a, x) dxda 6 Cτ

∫ τ

0

∫ a2

a1

∫
ω
q2(t, a, x) dx da dt. (3.9)

Proof. First of all, without loss of of generality we can assume that a2 6 ab (otherwise we simply
observe for small ages). We can also assume that a0 > max{a1, a2 − τ}. Since β(a) = 0 for all
a ∈ (0, ab), q satisfies

∂q

∂t
− ∂q

∂a
− Lq + µ(a)q = 0, t > 0, (a, x) ∈ (0, ab)× Ω,

∂q

∂νL
= 0 t > 0, (a, x) ∈ (0, ab)× ∂Ω.

(3.10)

This means that q satisfies the adjoint of a system called “Crocco type” (see [15]), where the authors
proved a regional controllability result. We set

q̃(t, a, x) = q(t, a, x) e
−

∫ a

0
µ(r) dr

. (3.11)

Then q̃ satisfies 
∂q̃

∂t
− ∂q̃

∂a
− Lq̃ = 0, t > 0, (a, x) ∈ (0, ab)× Ω,

∂q̃

∂νL
= 0 t > 0, (a, x) ∈ (0, ab)× ∂Ω.

(3.12)

The desired conclusion of this Proposition follows as soon as we show that there exists a constant
Cτ > 0 such that ∫ a0

0

∫
Ω
q̃2(τ, a, x) dx da 6 Cτ

∫ τ

0

∫ a2

a1

∫
ω
q̃2(t, a, x) dx dadt, (3.13)

for every τ > a1. Indeed, using (3.13) we get

∫ a0

0

∫
Ω
q2(τ, a, x) dx da 6

e
2

∫ ã

0
µ(r) dr

∫ a0

0

∫
Ω
q̃2(τ, a, x) dx da

6

(
e
2‖µ‖L1[0,a0]

)∫ a†

0

∫
Ω
q̃2(τ, a, x) dx da 6 Cτ

∫ τ

0

∫ a2

a1

∫
ω
q̃2(t, a, x) dx da dt

6 Cτ

∫ τ

0

∫ a2

a1

∫
ω
q2(t, a, x) dx dadt,
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where Cτ is a generic constant depending only on τ . We have thus shown that (3.13) implies (3.9).
We can thus concentrate on the remaining part of the proof in checking (3.13).

Without loss of generality, let us assume that

τ < a2, τ > a2 − a1, a0 ∈ (a1, a2). (3.14)

We set b0 = a2 − τ and we split the interval (0, a0) as follows

(0, a0) = (0, b0) ∪ (b0, a1) ∪ (a1, a0). (3.15)

As explained in the introduction, we are going to use Proposition 3.3 along the characteristics. Before
doing that, let us explain why we have divided the interval (0, a0) in the above way. Basically, this
division depends on the point in which the trajectory γ(s) = (τ − s, a+ s), s ∈ [0, τ ] (or equivalently
the backward characteristics staring from (τ, a)) enters the observation region (a1, a2)×(0, τ) and exits
from the same region (see Fig. 1). More precisely:

• For a ∈ (0, b0), the trajectory γ(s) enters the observation region for s = a1−a. As b0 + τ < a2,
for s = τ, γ(s) it hits the line t = 0 without leaving the observation region (blue region in
Fig. 1).
• For a ∈ (b0, a1), the trajectory γ(s) enters the observation domain for s = a1− a and exits the

observation region for s = a2 − a < τ (red region in Fig. 1).
• For a ∈ (a1, a0) the trajectory γ(s) starts inside the observation region but it exits the region

in time s = a2 − a < τ (green region in Fig. 1).

Let us remark that, the choices in (3.14) are made to cover all possible scenarios. Towards the end of
the proof of the proposition, we shall explain how to split the interval in other cases.

In the remaining part of the proof we give upper bounds for

∫
I

∫
Ω
q̃2(τ, a, x) dx da where I is

successively each one of the intervals appearing in the decomposition (3.15).
Upper bound on (0, b0):

For a.e a ∈ (0, b0), we first set

w(s, x) = q̃(s, a+ τ − s, x) (s ∈ (0, τ), x ∈ Ω).

Then w satisfies 
∂w

∂s
− Lw = 0, (s, x) ∈ (0, τ)× Ω,

∂w

∂νL
= 0, (s, x) ∈ (0, τ)× ∂Ω,

w(0, x) = q̃(0, τ + a, x), x ∈ Ω.

(3.16)

Applying Proposition 3.3, with t0 = 0, t1 = τ + a− a1 and T = τ , we obtain∫
Ω
w2(τ, x) dx 6

∫
Ω
w2(τ + a− a1, x) dx 6 c1e

c2

τ + a− a1

∫ τ+a−a1

0

∫
ω
w2(s, x) dxds.

In terms of q̃, the above inequality writes∫
Ω
q̃2(τ, a, x) dx 6 c1e

c2

τ + a− a1

∫ τ+a−a1

0

∫
ω
q̃2(s, a+ τ − s, x) dxds

= c1e

c2

τ + a− a1

∫ τ+a

a1

∫
ω
q̃2(τ + a− s, s, x) dxds.

Integrating with respect to a over (0, b0) we obtain
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∫ b0

0

∫
Ω
q̃2(τ, a, x) dxda 6 c1e

c2

τ − a1

∫ b0

0

∫ τ+a

a1

∫
ω
q̃2(τ + a− s, s, x) dxdsda

= Cτ

∫ a2

a1

∫ b0

s−τ

∫
ω
q̃2(τ + a− s, s, x) dxdads = Cτ

∫ a2

a1

∫ a2−s

0

∫
ω
q̃2(r, s, x) dxdrds

6 Cτ

∫ τ

0

∫ a2

a1

∫
ω
q̃2(t, a, x) dxdadt. (3.17)

b b

0 a1 a2

t = a1

t = τ
b0 a0

Figure 1. An illustration of the choice made in (3.14): Blue region corresponds to
the interval (0, b0), Red corresponds to the interval (b0, a1), Green corresponds to the
interval (a1, a0).

Upper bound on (b0, a1):

For a.e. a ∈ (b0, a1), we define

w(s, x) = q̃(s, a+ τ − s, x) (s ∈ (τ + a− a2, τ), x ∈ Ω).

Then w satisfies
∂w

∂s
− Lw = 0, (s, x) ∈ (τ + a− a2, τ)× Ω,

∂w

∂νL
= 0, (s, x) ∈ (τ + a− a2, τ)× ∂Ω,

w(τ + a− a2, x) = q̃(τ + a− a2, a2, x), x ∈ Ω.

(3.18)

Applying Proposition 3.3 with the choice t0 = τ + a− a2, t1 = τ + a− a1 and T = τ, it follows that∫
Ω
w2(τ, x) dx 6

∫
Ω
w2(τ + a− a1, x) dx 6 c1e

c2

a2 − a1

∫ τ+a−a1

τ+a−a2

∫
ω
w2(s, x) dxds.

In terms of q̃, the above inequality becomes
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∫
Ω
q̃2(τ, a, x) dx 6 c1e

c2

a2 − a1

∫ τ+a−a1

τ+a−a2

∫
ω
q̃2(s, a+ τ − s, x) dxds

= C

∫ a2

a1

∫
ω
z̃2(τ + a− s, s, x) dxds.

Integrating with respect to a over (b0, a1) we get∫ a1

b0

∫
Ω
q̃2(τ, a, x) dxda 6 C

∫ a1

b0

∫ a2

a1

∫
ω
q̃2(τ + a− s, s, x) dxdsda

= C

∫ a2

a1

∫ a1

b0

∫
ω
q̃2(τ + a− s, s, x) dxdads = C

∫ a2

a1

∫ τ+a1−s

τ+b0−s

∫
ω
q̃2(r, s, x) dxdrds

6 C
∫ a2

a1

∫ τ

0

∫
ω
q̃2(r, s, x) dxdrds = C

∫ τ

0

∫ a2

a1

∫
ω
q̃2(t, a, x) dxdadt. (3.19)

Upper bound on (a1, a0):

For a.e. a ∈ (a1, a0), we define

w(s, x) = q̃(s, a+ τ − s, x) (s ∈ (τ + a− a2, τ), x ∈ Ω).

Then w satisfies the system (3.18). Applying Proposition 3.3 with t0 = τ + a− a2 and t1 = T = τ, we
have that ∫

Ω
w2(τ, x) dx 6 c1e

c2

a2 − a
∫ τ

τ+a−a2

∫
ω
w2(s, x) dxds.

In terms of q̃, the above inequality reads as follows∫
Ω
q̃2(τ, a, x) dx 6 c1e

c2

a2 − a
∫ τ

τ+a−a2

∫
ω
q̃2(s, a+ τ − s, x) dxds

= c1e

c2

a2 − a
∫ a2

a

∫
ω
q̃2(τ + a− s, s, x) dxds.

Integrating with respect to a over (a1, a0) we get∫ a0

a1

∫
Ω
q̃2(τ, a, x) dxda 6 c1e

c2

a2 − a0

∫ a0

a1

∫ a2

a

∫
ω
q̃2(τ + a− s, s, x) dxdsda

= Cτ

∫ a2

a1

∫ s

a1

∫
ω
q̃2(τ + a− s, s, x) dxdads = Cτ

∫ a2

a1

∫ τ

τ+a1−s

∫
ω
q̃2(r, s, x) dxdrds

6 Cτ

∫ τ

0

∫ a2

a1

∫
ω
q̃2(t, a, x) dxdadt. (3.20)

Therefore, combining (3.17), (3.19) and (3.20) we get∫ a0

0

∫
Ω
q̃2(τ, a, x) dxda 6 Cτ

∫ τ

0

∫ a2

a1

∫
ω
q̃2(t, a, x) dx da dt, , (3.21)

Let us explain how to split the interval (0, a0) in other possible cases:

• If τ < a2, τ < a2 − a1, a0 ∈ (a2 − τ, a2), then we use (0, a0) = (0, a1) ∪ (a1, b0) ∪ (b0, a0).
• If τ > a2, a0 ∈ (a1, a2) then we use (0, a0) = (0, a1) ∪ (a1, a0).

This completes the proof of the proposition. �
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In the next proposition, we estimate q(t, 0, x). More precisely, we prove the following:

Proposition 3.5. Let us assume the hypothesis of Theorem 1.1 and let τ > a1 and η ∈ (a1, τ). Then
there exists a constant C > 0 such that, for every q0 ∈ D(A∗), the solution q of the system (3.1),
satisfies ∫ τ

η

∫
Ω
q2(t, 0, x) dxdt 6 C

∫ τ

0

∫ a2

a1

∫
ω
q2(t, a, x) dxdadt. (3.22)

Proof. Let q̃ be defined as in (3.11). In particular, q̃ satisfies (3.12). Here also we are going to use
Proposition 3.3 along the characteristics. Since we want to estimate q(t, 0, x) we need to consider the
trajectory γ(s) = (t− s, s), s 6 t 6 τ (or equivalently the backward characteristic stating from (t, 0)).
If τ < a1, the trajectory γ(s) never reaches the observation region (0, τ) × (a1, a2) (see Fig. 2). This
is why we choose τ > a1. Without loss of generality, let us assume that

τ > ab, η < ab and a2 6 ab.

Case 1: For a.e. t ∈ (ab, τ), we define

w(s, x) = q̃(s, t− s, x), s ∈ (t− ab, t), x ∈ Ω. (3.23)

Then w satisfies 
∂w

∂s
− Lw = 0 ((s, x) ∈ (t− ab, t)× Ω),

∂w

∂νL
= 0 ((s, x) ∈ (t− ab, t)× ∂Ω),

w(t− ab, x) = q(t− ab, ab, x) (x ∈ Ω).

(3.24)

Using Proposition 3.3, with t0 = t− ab, t1 = t− a1 and T = t, we obtain∫
Ω
w2(t, x) dx 6

∫
Ω
w2(t− a1, x) dx 6 c1e

c2

ab − a1

∫ t−a1

t−ab

∫
ω
w2(s, x) dxds.

In terms of q̃ the above inequality reads as∫
Ω
q̃2(t, 0, x) dx 6 c1e

c2

ab − a1

∫ t−a1

t−ab

∫
ω
q̃2(s, t− s, x) dxds

= c1e

c2

ab − a1

∫ ab

a1

∫
ω
q̃2(t− s, s, x) dxds.

Integrating with respect to t over [ab, τ ] we obtain

∫ τ

ab

∫
Ω
q̃2(t, 0, x) dxdt 6 c1e

c2

ab − a1

∫ τ

ab

∫ ab

a1

∫
ω
q̃2(t− s, s, x) dxdsdt

= C

∫ ab

a1

∫ τ

ab

∫
ω
q̃2(t− s, s, x) dxdtds = C

∫ ab

a1

∫ τ−s

ab−s

∫
ω
q̃2(r, s, x) dxdrds

6 C
∫ τ

0

∫ ab

a1

∫
ω
q̃2(t, a, x) dxdadt. (3.25)

Case 2: For a.e t ∈ (η, ab), we define

w(s, x) = q̃(s, t− s, x) (s ∈ (0, t), x ∈ Ω). (3.26)
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0 a1 a2

t = a1

t = τ

η

Figure 2. An illustration of the estimate of q̃(t, 0, x). Here we have chosen a2 = ab.
Since τ > a1 all the backward characteristics starting from (t, 0) enters the observation
domain (the green region).

Then w satisfies 
∂w

∂s
− Lw = 0 ((s, x) ∈ (0, t)× Ω),

∂w

∂νL
= 0 ((s, x) ∈ (0, t)× ∂Ω),

w(0, x) = q̃(0, t, x) (x ∈ Ω).

By applying Proposition 3.3, with t0 = 0, t1 = t− a1 and T = t, we obtain

∫
Ω
w2(t, x) dx 6

∫
Ω
w2(t− a1, x) dx 6 c1e

c2

t− a1

∫ t−a1

0

∫
ω
w2(s, x) dxds.

This yields

∫
Ω
q̃2(t, 0, x) dx 6 c1e

c2

t− a1

∫ t−a1

0

∫
ω
q̃2(s, t− s, x) dxds = c1e

c2

t− a1

∫ t

a1

∫
ω
q̃2(t− s, s, x) dxds.

Integrating with respect to t over [η, ab] we get

∫ ab

η

∫
Ω
q̃2(t, 0, x) dxdt 6 c1e

c2

η − a1

∫ ab

η

∫ t

a1

∫
ω
q̃2(t− s, s, x) dxdsdt

6 Cη

∫ ab

0

∫ t

a1

∫
ω
q̃2(t− s, s, x) dxdsdt = C

∫ ab

a1

∫ ab

s

∫
ω
q2(t− s, s, x) dxdtds

= C

∫ ab

a1

∫ ab−s

0

∫
ω
q2(r, s, x) dxdrds 6 C

∫ τ

0

∫ ab

a1

∫
ω
q̃2(t, a, x) dxdadt. (3.27)
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Combining, (3.25) and (3.27) we obtain∫ T

η

∫
Ω
q̃2(t, 0, x) dxdt 6 C

∫ T

0

∫ a2

a1

∫
ω
q̃2(t, a, x) dxdadt.

Note that, from the definition of q̃ in (3.11), we have q̃(t, 0, x) = q(t, 0, x). Thus from the above
estimate we clearly obtain (3.22). �

3.1. Proof of the first main result. We are now in a position to prove Theorem 3.2, thus, conse-
quently, our first main result in Theorem 1.1.

Proof of Theorem 3.2. Without loss of generality let us assume that a1 < a† − a2 and a2 6 ab. Let us
set

δ = τ − (a1 + a† − a2).

Let us choose ε < δ such that
a2 − ε > max{a1, a† − τ}.

Note that such a choice is always possible as τ > a1 + a† − a2 > a† − a2 (see Fig. 3).

a2 − ε

0 a1 a2
a†

t = a1 + a† − a2

t = τ

t > a† − a

t < a† − a

τ = a1

a† − τ

Figure 3. An illustration of the final time observability: For a ∈ (0, a2 − ε) (blue
region) the backward characteristics enters the observation domain. Thus we have the
estimate (3.29). For a ∈ (a2 − ε, a†), the backward characteristics (green region) hits
the line a = a†, gets renewed by the renewal condition β(a)q(t, 0, x) and then enters
the observation domain (purple region). This is obtained in (3.32).

Now ∫ a†

0

∫
Ω
q2(τ, a, x) dxda =

∫ a2−ε

0

∫
Ω
q2(τ, a, x) dxda+

∫ a†

a2−ε

∫
Ω
q2(τ, a, x) dxda. (3.28)

By applying Proposition 3.4, we have∫ a2−ε

0

∫
Ω
q2(τ, a, x) dxda 6 Cτ

∫ τ

0

∫ a2

a1

∫
ω
q2(t, a, x) dxdadt. (3.29)
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Thus the theorem is proved as soon as we show that∫ a†

a2−ε

∫
Ω
q2(τ, a, x) dxda 6 Cτ

∫ τ

0

∫ a2

a1

∫
ω
q2(t, a, x) dxdadt. (3.30)

Therefore in the sequel, we concentrate on proving (3.30). We recall that q is given by the formula
(3.4). For a ∈ (a2 − ε, a†) we have τ + a > a†. So the expression of q in (3.4) yields

q(τ, a, ·) =

∫ τ

τ+a−a†

π(a)

π(a+ t− s)e
(t−s)A2β(a+ t− s)V (s, ·) ds, a ∈ (a2 − ε, a†). (3.31)

Integrating over Ω it is easy to verify that∫
Ω
q2(τ, a, x) dx 6 Cτ

∫ τ

τ+a−a†

∫
Ω
V 2(s, x) dxds.

Now integrating with respect to a over (a2 − ε, a†) we obtain∫ a†

a2−ε

∫
Ω
q2(τ, a, x) dxda 6 Cτ

∫ τ

a1+(δ−ε)

∫
Ω
q2(t, 0, x) dxdt. (3.32)

Finally using Proposition 3.5 to the above estimate we get (3.30). This completes the proof of the
theorem. �

4. Controls preserving positivity

An important issue in view of applications (namely in population dynamics) is to design controls
such that the corresponding state trajectories join two different non-negative stationary states in some
time τ , while preserving the positivity of the controlled trajectory for t ∈ [0, τ ]. This type of result
has been proved in [10] for the diffusion free Lotka-McKendrick system (in a uniform time) and in
Lohéac, Trélat and Zuazua [13] for purely parabolic problems (in a time depending on an appropriate
norm of the difference of the two stationary states). We prove below that the situation encountered in
the latter case also applies to the problem considered in the present work. An essential ingredient in
obtaining this type of result is proving the null controllability of the system by means of L∞ controls
and then “slowly” (s.t. positivity is preserved) driving, the initial state towards the desired target.

We first recall a classical estimate for the semigroup generated by a strictly elliptic operator with
Neumann boundary conditions.

Lemma 4.1. Let A2 is defined in (2.2). Then the following holds

‖etA2ϕ‖L∞(Ω) 6 ‖ϕ‖L∞(Ω), for all t > 0, ϕ ∈ L∞(Ω).

Proof. For the proof of this result we refer to Daners [6, Corollary 7.2] or Ouhabaz [17, Corollary
4.10]. �

As a consequence of the above result, we show below that for every t > 0, the restrictions to
L∞((0, a†) × Ω) of the operator Tt, where T is the semigroup constructed in Section 2, are bounded
on L∞((0, a†)× Ω). In PDE terms, we have:

Proposition 4.2. There exists a constant C > 0 such that the solution of (1.1) - (1.5) satisfies

‖p‖L∞((0,τ)×(0,a†)×Ω)) 6 C
(
‖p0‖L∞((0,a†)×Ω) + ‖v‖L∞((0,τ)×(0,a†)×Ω)

)
, (4.1)

for every p0 ∈ L∞((0, a†)× Ω) and v ∈ L∞((0, τ)× (0, a†)× Ω).
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Proof. Consider the operator A defined in (2.6) and the semigroup T on H = L2((0, a†)×Ω) generated
by A. Integrating along the characteristic lines, we have

Ttp0 =


π(a)

π(a− t)e
tA2p0(a− t, x) (t 6 a),

π(a)etA2V (t− a, x) (t > a),

(p0 ∈ H). (4.2)

where π(a) = e−
∫ a
0 µ(r)dr and V (t, x) =

∫ a†

0
β(a)Ttp0(a, x) da. Moreover, V (t, x) satisfies

V (t, x) =

∫ min{t,a†}

0
β(t− s)π(t− s)etA2V (s, x) ds+

∫ a†

min{t,a†}
β(a)

π(a)

π(a− t)e
tA2p0(a− t, x)da.

From the above expression and using Lemma 4.1 we obtain

‖Ttp0‖L∞((0,a†)×Ω) 6 C‖p0‖L∞((0,a†)×Ω), for all t ∈ [0, τ ],

where the constant C is independent of t. Finally using Duhamel’s formula one can easily obtain
(4.1). �

We next show that under the assumptions in this section, the observability inequality in Theorem 3.2
can be strengthened to an inequality where the upper bound is the L1 norm of the observation. More
precisely, we have:

Proposition 4.3. Under the assumption and with the notation in Theorem 3.2, for every τ > a1 +
a† − a2, there exists kτ > 0 such that the solution q of (3.1) satisfies∫ a†

0

(∫
Ω
q2(τ, a, x) dx

) 1
2

da 6 kτ

∫ τ

0

∫ a2

a1

∫
ω
|q(t, a, x)|dx da dt (q0 ∈ H). (4.3)

The proof of the above proposition is similar to that of Theorem 3.2. The main idea is the same, i.e.,
to use observability inequality for parabolic equations along the characteristic lines. The difference
is that now we want to observe the L1 norm of q instead of L2 norm of q. Thus we can not use
Proposition 3.3. Rather we are going to use the below observability inequality for parabolic equations,
which is a slight variation of a result from Fernandez-Cara and Zuazua [7, Proposition 3.2].

Proposition 4.4. Let τ > 0, 0 6 t0 < τ and t1 ∈ (t0, τ ]. Then for every w0 ∈ L2(Ω), the solution
w(s, x) of the Cauchy problem

∂w

∂s
(s, x)− Lw(s, x) = 0, (s, x) ∈ (t0, T )× Ω,

∂w

∂νL
= 0, (s, x) ∈ (t0, τ)× ∂Ω,

w(t0, x) = w0(x), x ∈ Ω,

(4.4)

satisfies the estimate∫
Ω
w2(τ, x) dx 6

∫
Ω
w2(t1, x) dx 6 c1e

c2/(t1−t0)

(∫ t1

t0

∫
ω
|w(s, x)| dxds

)2

, (4.5)

where the constants c1 and c2 depend on L, on Ω and on τ .

With the help of the above proposition we obtain:

Proposition 4.5. Let us assume the hypothesis of Theorem 1.1 and let τ > a1, a0 ∈ (0, ab) and
η ∈ (a1, τ). Then there exists Cτ > 0 such that, for every q0 ∈ D(A0), the solution q of (3.1), satisfies
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(i) ∫ a0

0

(∫
Ω
z2(τ, a, x) dx

) 1
2

da 6 Cτ

∫ τ

0

∫ a2

a1

∫
ω
|z(t, a, x)|dx da dt. (4.6)

(ii) ∫ τ

η

(∫
Ω
q2(t, 0, x) dx

) 1
2

dt 6 Cτ

∫ τ

0

∫ a2

a1

∫
ω
|q(t, a, x)|dx dadt. (4.7)

Proof. The proof is similar to the one of Proposition 3.4 and Proposition 3.5. The only difference is
that we have to use Proposition 4.4 instead of Proposition 3.3. As the procedure is completely similar
we skip the details of the proof. �

We can now prove Proposition 4.3.

Proof of Proposition 4.3. The proof of this theorem is similar to that of Theorem 3.2. Let δ and ε are
defined as in the proof of Theorem 3.2. Then∫ a†

0

(∫
Ω
q2(τ, a, x) dx

) 1
2

da =

∫ a2−ε

0

(∫
Ω
q2(τ, a, x) dx

) 1
2

da+

∫ a†

a2−ε

(∫
Ω
q2(τ, a, x) dx

) 1
2

da. (4.8)

On the other hand, using the expression of q in (3.4) we obtain∫ a†

a2−ε

(∫
Ω
q2(τ, a, x) dx

) 1
2

da 6 Cτ

∫ τ

a1+(δ−ε)

(∫
Ω
q2(t, 0, x) dx

) 1
2

dt. (4.9)

Finally, combining the above two estimates together with Proposition 4.5 we get (4.3). �

In the following theorem we prove the null controllability of the system (1.1) -(1.5) by means of
L∞ controls. Besides the above ingredients, we use a classical duality argument, following closely the
methodology in Micu, Roventa and Tucsnak [16, Proposition 2.5].

Theorem 4.6. With the notation and with the assumption in Theorem 1.1, for every τ > a1 +a†−a2

and for every p0 ∈ L∞((0, a†) × Ω) there exists a control v ∈ L∞((0, τ) × (a1, a2) × ω) such that the
solution p of (1.1)-(1.5) satisfies

p(τ, a, x) = 0 for all a ∈ (0, a†), x ∈ Ω. (4.10)

Moreover, there exists a positive constant Kτ such that for p0 ∈ L∞((0, a†) × Ω) the control function
v and the corresponding state trajectory p satisfy

‖p‖L∞([0,τ ]×(0,a†)×Ω) + ‖v‖L∞([0,τ ]×(0,a†)×Ω) 6 Kτ‖p0‖L∞((0,a†)×Ω). (4.11)

Proof. We first remind the notation in Section 2, considering the pair (A, B), with A defined in (2.6)
and B defined in (2.3), and denoting by T the C0 semigroup on H = L2([0; a†]× Ω) generated by A.

Consider the subspace X of L1([0, τ ]× [0, a†]× Ω) defined by

X =
{
B∗T∗t q0 | q0 ∈ H

}
.

Given p0 ∈ L∞((0, a†)× Ω) consider the linear functional F on X defined by

F
(
B∗T∗t q0

)
= −

∫ a†

0

∫
Ω
p0 (T∗τq0) . (4.12)

Using (4.3), it follows F is well defined and that

|Fw| 6 kτ
√
|Ω|‖p0‖L∞((0,a†)×Ω)‖w‖L1((0,τ)×(0,a†)×Ω) (w ∈ X )
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By the Hahn-Banach theorem, we can extend the linear functional F to a bounded linear functional

F̃ on L1([0, τ ]× [0, a†]× Ω) such that

|Fw| 6 kτ
√
|Ω|‖p0‖L∞((0,a†)×Ω)‖w‖L1((0,τ)×(0,a†)×Ω),

(
w ∈ L1([0, τ ]× [0, a†]× Ω)

)
.

By the Riesz representation theorem there exists v ∈ L∞((0, τ)× (a1, a2)× ω) such that∫ τ

0

∫ a†

0

∫
Ω
v(t− σ)B∗T∗t q0 +

∫ a†

0

∫
Ω
p0 (T∗τq0) = 0 (q0 ∈ H).

From the above formula it follows that∫ τ

0

〈
Tτ−sBv(s), q0

〉
H

ds+
〈
Tτp0, q0

〉
H

= 0 (q0 ∈ H), (4.13)

which is equivalent to

Tτp0 +

∫ τ

0
Tτ−sBv(s) ds = 0.

Thus the solution p of (1.1)-(1.5) corresponding to the control v constructed above satisfies (4.10).
Moreover, we have that

‖v‖L∞([0,τ ]×(0,a†)×Ω) 6 C‖p0‖L∞((0,a†)×Ω).

Therefore, using the above estimate and Proposition 4.2 we obtain (4.11). �

Now we are in a position to prove our second main result.

Proof of Theorem 1.3. Step 1. Let ps,I and ps,F be two non negative steady states of the system (1.1)
- (1.5) and let vs,I and vs,F be the corresponding steady controls. We set

ps,r =
(

1− r

N

)
ps,I +

r

N
ps,F , vr,k =

(
1− r

N

)
vs,I +

r

N
vs,F (r = 0, 1, · · · , N), (4.14)

where N ∈ N will be made precise later on. Using (1.9), we have that

ps,r(a, x) > δ ( a.e. on [0, a∗]× Ω, r = 0, 1, · · · , N). (4.15)

Step 2. Without loss of generality let us assume that a2 < a∗. Let us fix τ∗ > a1 + a† − a2 and
consider the following control problem for r > 1

∂p̃r
∂t

+
∂p̃r
∂a
− Lp̃r + µ(a)p̃r = mṽr ((t, a, x) ∈ (0, τ∗)× (0, a†)× Ω),

∂p̃r
∂νL

= 0 ((a, x) ∈ (0, a†)× ∂Ω),

p̃r(t, 0, x) =

∫ a†

0
β(a)pr(t, a, x) da ((t, x) ∈ (0, τ∗)× Ω),

p̃r(0, a, x) = ps,r−1(a, x)− ps,r(a, x) ((a, x) ∈ (0, a†)× Ω).

(4.16)

By Theorem 4.6, there exits ũr ∈ L∞((0, τ∗)× (a1, a2)× ω) such that

p̃r(τ∗, a, x) = 0 (a ∈ (0, a†), x ∈ Ω),

and

‖p̃r‖L∞((0,τ∗)×(0,a†)×Ω) 6 Kτ∗‖ps,r−1(a, x)− ps,r(a, x)‖L∞((0,a†)×Ω), (4.17)

where the constant Kτ∗ does not depend on r. In particular, if we set

pr = p̃r + ps,r, vr = ṽr + vs,r ((t, a, x) ∈ (0, τ∗)× (0, a†)× Ω), (4.18)
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then pr satisfies the system (1.1)-(1.4) with

pr(0, a, x) = ps,r−1(a, x), pr(τ∗, a, x) = ps,r(a, x) ((a, x) ∈ (0, a†)× Ω, r = 1, 2, · · · , N).
(4.19)

At this point we choose N sufficiently large to have

‖ps,r−1 − ps,r‖L∞((0,a†)×Ω) <
δ

Kτ∗
,

where δ > 0 is the constant appearing in (1.9). Using the above relation, together with (4.15) and
(4.17), for a.e. (t, a, x) ∈ [0, τ∗]× [0, a∗]× Ω we have

pr(t, a, x) > p̃r(t, a, x) + ps,r(a, x) > 0. (4.20)

For (t, a, x) ∈ (0, τ∗)× (a∗, a†)× Ω, we note that pr(t, a, x) satisfies
∂pr
∂t

+
∂pr
∂a
− Lpr + µ(a)pr = 0 ((t, a, x) ∈ (0, τ∗)× (a∗, a†)× Ω),

∂pr
∂νL

= 0 ((a, x) ∈ (a∗, a†)× ∂Ω).
(4.21)

Moreover,

pr(0, a, x) > 0 ((a, x) ∈ (a∗, a†)× Ω),

and

pr(t, a∗, x) > 0 ((t, x) ∈ (0, τ∗)× Ω).

Therefore, by a comparison principle (see, for instance, [4, Theorem 4.1.4]) we have

pr(t, a, x) > 0 ((t, a, x) ∈ (0, τ∗)× (a∗, a†)× Ω a.e. ).

Combing the above with (4.20), we obtain

pr(t, a, x) > 0 ((t, a, x) ∈ (0, τ∗)× (0, a†)× Ω a.e. ). (4.22)

Step 3. We define

p(t, a, x) =



p1(t, ·, ·) if t ∈ (0, τ∗)

p2(t− τ∗, ·, ·) if t ∈ (τ∗, 2τ∗)

...

pN (t− (N − 1)τ∗, ·, ·) if t ∈
(

(N − 1)τ∗, Nτ∗

) (4.23)

and

v(t, a, x) =



v1(t, ·, ·) if t ∈ (0, τ∗)

v2(t− τ∗, ·, ·) if t ∈ (τ∗, 2τ∗)

...

vN (t− (N − 1)τ∗, ·, ·) if t ∈
(

(N − 1)τ∗, Nτ∗

)
.

(4.24)

Then we can easily verify that (p, v) satisfies the system (1.1) - (1.4). Moreover, the conclusion of
Theorem 1.3 holds with τ = Nτ∗. This completes the proof of the theorem. �
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5. Comments and extensions

The main result in this section gives lower bounds for the controllability time in Theorem 1.1. We
show, in particular, that the controllability time in Theorem 1.1 is sharp in the case a1 = 0. More
precisely, we have:

Proposition 5.1. Under the assumptions of of Theorem 1.1, let τ < max{a1, a† − a2}. Then there
exists q0 ∈ D(A∗) such that, the solution q of (3.1), satisfies

• q(t, a, x) = 0 for all (t, a, x) ∈ (0, τ)× (a1, a2)× Ω.

•
∫ a†

0

∫
Ω
q2(τ, a, x)dxda > 0.

Proof. Let (ϕj)j>1 be an orthonormal basis of L2(Ω) comprising of eigenvectors of the operator −A2

and let (λj)j>1 be the corresponding eigenvalues. The solution q of (3.1) writes

q(t, a, ·) =
∞∑
j=1

qj(t, a)ϕj ,

where 
∂qj

∂t
− ∂qj

∂a
− β(a)qj(t, 0) + (µ(a) + λj)q

j = 0, t > 0, a ∈ (0, a†),

qj(t, a†) = 0, t > 0,

qj(0, a) = qj0(a), a ∈ (0, a†)

(5.1)

and

q0(a, ·) =

∞∑
j=1

qj0(a)ϕj .

Integrating along the characteristic lines, we obtain the following expression of qj(t, a)

qj(t, a) =


πj(a)

πj(a+ t)
qj0(a+ t) +

∫ t

0

πj(a)

πj(a+ t− s)β(a+ t− s)V j(s) ds, t 6 a† − a,∫ t

t+a−a†

πj(a)

πj(a+ t− s)β(a+ t− s)V j(s) ds, t > a† − a,
(5.2)

where

V j(t) = qj(t, 0) and πj(a) = exp

(
λja+

∫ a

0
µ(r) dr

)
.

Without loss of generality, let us assume that a1 > 0.
Case 1: τ < a1

Let us choose ā ∈ (τ, a1) and ε > 0 such that (ā− ε, ā+ ε) ⊂ (τ, a1). Let q1
0 ∈ C∞c (0, a†) such that

q1
0 = 0 for all a ∈ [0, τ ] ∪ [a1, a†] and q1

0 = 1 for all a ∈ (ā− ε, ā+ ε).

Since β(a) = 0 for a ∈ [0, ab), using the expression (5.2), we first have V 1(t) = q1(t, 0) = 0 for all
t ∈ [0, τ ]. Using this it is easy to see that

q1(t, a) =


π1(a)

π1(a+ t)
if a ∈ (ā− t− ε, ā− t+ ε), t ∈ [0, τ ]

0 if a > a1, t ∈ [0, τ ].
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Now set q0(a, x) = q1
0(a)ϕ1(x). Then q(t, a, x) = 0 for all (t, a, x) ∈ (0, τ)× (a1, a†)× Ω. Moreover,∫ a†

0

∫
Ω
q2(τ, a, x)dxda >

∫ ā−τ+ε

ā−τ−ε
(q1)2(τ, a) da > 0.

Case 2: a1 6 τ < a† − a2

Let us choose ā ∈ (a2 + τ, a†) and ε > 0 such that (ā− ε, ā+ ε) ⊂ (a2 + τ, a†). Let q1
0 ∈ C∞c (0, a†) such

that

q1
0 = 0 for all a ∈ [0, a2 + τ ] and q1

0 = 1 for all a ∈ (ā− ε, ā+ ε).

As β(a) = 0, for a ∈ [0, ab), using the expression (5.2) we obtain

V 1(t, 0) = 0 for all t ∈ [0, ab).

Using the above identity and (5.2), we can easily obtain that

q1(t, a) = 0 for all t ∈ (0, ab), a ∈ (0, a2 + τ − t),
and

q1(ab, a) = 0 for all a ∈ [0, a2 + τ − ab] ∪ [a† − ab, a†]

q1(ab, a) =
π1(a)

π1(a+ t)
for all a ∈ (ā− ab − ε, ā− ab + ε).

Next we can calculate q1 for (t, a) ∈ (ab, 2ab) × (0, a†) with q1(ab, ·) as initial data. Continuing this
process, we obtain

q1(t, a) = 0 for all t ∈ (0, τ), a ∈ (0, a2 + τ − t),
and

q1(τ, a) =
π1(a)

π1(a+ t)
for all a ∈ (ā− τ − ε, ā− τ + ε).

Then we can proceed as Case 1 to conclude the proof of the proposition. �

As a consequence of the above proposition, the following theorem follows easily:

Theorem 5.2. Under the assumption of Theorem 1.1, the system (1.1)-(1.5) is not null-controllable
in time τ < max{a1, a† − a2}.
Remark 5.3. The above theorem shows that the controllability time in Theorem 1.1 is sharp in the
case a1 = 0.

Before ending the paper, we describe some possible extensions to be considered in future work.
First, still in the case a1 = 0, it would be interesting to make precise the dependence of the control

cost on a2. This could allow the extension to the diffusive case of the singular perturbation result
obtained in [10], which describes the behaviour of the control problem when a2 → 0 (direct birth
control) in the diffusion free case. Moreover, let us note that the methods in this work are easily
adaptable to the case when the mortality and fertility rates depend on the spatial variable x, whereas
their adaptation to time dependent mortality and fertility rates seems a more difficult question.

Other possible directions for future extensions of the results and methods in this work concern non-
linear problems (such as considering, for instance, mortality rates depending on the total populations),
controllability issues for systems involving competing species or feedback control problems.

Acknowledgement: We would like to thank Nicolas Hegoburu for fruitful discussions which help
us to improve the controllability time.
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