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A Mean Field Game of Optimal Portfolio Liquidation.

Guanxing Fu∗ Paulwin Graewe† Ulrich Horst‡ Alexandre Popier§

January 24, 2021

Abstract

We consider a mean field game (MFG) of optimal portfolio liquidation under asymmetric informa-

tion. We prove that the solution to the MFG can be characterized in terms of a FBSDE with possibly

singular terminal condition on the backward component or, equivalently, in terms of a FBSDE with

finite terminal value, yet singular driver. Extending the method of continuation to linear-quadratic

FBSDE with singular driver we prove that the MFG has a unique solution. Our existence and

uniqueness result allows to prove that the MFG with possibly singular terminal condition can be

approximated by a sequence of MFGs with finite terminal values.

AMS Subject Classification: 93E20, 91B70, 60H30

Keywords: mean field game, portfolio liquidation, continuation method, singular FBSDE

1 Introduction and overview

Mean field games (MFGs) are a powerful tool to analyse strategic interactions in large populations when

each individual player has only a small impact on the behavior of other players. In the economics

literature, mean-field-type (or anonymous) games were first considered by Jovanovic and Rosenthal [33]

and later analyzed by many authors including [8, 20, 29]. In the mathematical literature MFGs were

independently introduced by Huang, Malhamé and Caines [31] and Lasry and Lions [37]. MFGs have

been successfully applied to various economic problems, ranging from systemic risk management [15]

to principal agent problems [22, 39] and from portfolio optimization [36] to optimal exploitation of

exhaustible resources [18].

In a standard MFG, each player i ∈ {1, ..., N} chooses an action ui from a given set of admissible controls

that minimizes a cost functional of the form

J i(~u) = E

[∫ T

0

f(t,Xi
t , µ̄

N
t , u

i
t)dt+ g(Xi

T , µ̄
N
T )
∣∣X i = xi

]
(1.1)

subject to the state dynamics{
dXi

t = b(t,Xi
t , µ̄

N
t , u

i
t) dt+ σ(t,Xi

t , µ̄
N
t , u

i
t) dW

i
t ,

Xi
0 = X i . (1.2)
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Here, W 1, · · · ,WN are independent Brownian motions, and X 1, ...,XN are independent and identically

distributed random variables with law ν that are independent of the Brownian motions. All stochastic

processes and random variables are defined on an underlying filtered probability space1. The vector

~u = (u1, · · · , uN ) denotes the action profile, and µ̄Nt := 1
N

∑N
j=1 δXjt

denotes the empirical distribution

of the individual players’ states at time t ∈ [0, T ]. It is usually assumed that the players observe their

own initial state and know the common distribution ν of the other player’s initial states.

The existence of approximate Nash equilibria for large populations can be established using a representa-

tive agent approach.The idea is to approximate the dynamics of the empirical distribution of the states

by a deterministic measure-valued process, and then to consider the optimization problem of a repre-

sentative player subject to the equilibrium constraint that the distribution of the representative player’s

state process under her optimal strategy coincides with the pre-specified measure-valued process. More

precisely, denoting by P(Rd) the space of probability measures on Rd, by Law(X) the law of a stochas-

tic process X and by X a random initial state with distribution ν the resulting MFG can be formally

described as follows:

1. fix a deterministic function t ∈ [0, T ] 7→ µt ∈ P(Rd);
2. solve the corresponding stochastic control problem :

infu E
[∫ T

0
f(t,XXt , µt, ut) dt+ g(XXT , µT )

∣∣∣X ] ,
subject to the state dynamics

dXXt = b(t,XXt , µt, ut) dt+ σ(t,XXt , µt, ut) dWt,

X0 = X
3. solve Law(X∗,X ) = µ where X∗,X is the optimal state process from 2.

. (1.3)

Let µ∗ be a solution to the above fix point problem and let u∗ be the representative player’s optimal

response to µ∗ given X . Then u∗ = φ(X ,W ) for some measurable function φ from R × C[0, T ] into a

suitable function space, and each individual player’s optimal response to µ∗ given her initial state X i = xi

is u∗,i = φ(xi,W i). Under suitable assumptions the homogeneous action profile (φ(·, ·), ..., φ(·, ·)) forms

an ε-equilibrium in the original game if N is large enough.

There are basically four approaches to solve mean field games. In their original paper [37], Lasry

and Lions followed an analytic approach. They analyzed a coupled forward-backward PDE system,

where the backward component is the Hamiltion-Jacobi-Bellman equation arising from the representative

agent’s optimization problem, and the forward component is a Kolmogorov-Fokker-Planck equation that

characterizes the dynamics of the state process; see also [25]. Merging the forward backward system

into a single master equation, the dynamics of the MFG can alternatively be described in terms of some

form of second order PDE on the space of probability measures; see [9, 12, 19, 21] for details. A more

probabilistic approach was introduced by Carmona and Delarue in [11]. Using a maximum principle of

Pontryagin type, they showed that the fixed point problem reduces to solving a McKean-Vlasov FBSDEs;

see also [6, 17]. A relaxed solution concept to MFGs was introduced by Lacker in [35] and later extended

by various authors including [14, 23]. In this paper we apply a probabilistic approach to analyze a novel

class of MFGs arising in models of optimal portfolio liquidation under market impact. Our existence

and uniqueness of equilibrium result is based on a new existence of solutions result for FBSDE systems

with singular drivers.

1.1 Single player models of optimal portfolio liquidation

Single-player portfolio liquidation models have been extensively analyzed in recent years. Their main

characteristic is a singularity at the terminal time of the Hamilton-Jacobi-Bellmann equation. The

1We assume throughout that all filtrations are augmented by the null sets.
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majority of the optimal liquidation literature assumes that only absolutely continuous trading strategies

are allowed; see e.g. [3, 28] and references therein. In such models the controlled state sequence follows

a dynamics of the form

Xt = x−
∫ t

0

ξs ds,

where x > 0 is the initial portfolio that a trader needs to unwind, and ξ is the trading rate. The set of

admissible controls is confined to those processes ξ that satisfy almost surely the liquidation constraint

XT = 0.

It is typically assumed that the unaffected benchmark price process follows a one-dimensional Brownian

motion W (or some Brownian martingale) and that the trader’s transaction price is given by

St = s0 +

∫ t

0

σs dWs −
∫ t

0

κsξs ds− ηtξt

where σ is a (sufficiently regular) stochastic volatility process. The integral term accounts for permanent

price impact, i.e. the impact of past trades on current prices, while the term ηtξt accounts for the

instantaneous impact that does not affect future transactions. The expected cost functional is typically

of the linear-quadratic form

E

[∫ T

0

(
κsξsXs + ηsξ

2
s + λsX

2
s

)
ds

]
where κ, η and λ are one-dimensional bounded adapted and non-negative processes. The process λ

describes the trader’s degree of risk aversion or her belief about the volatility process; it penalizes slow

liquidation. The process η describes the degree of market illiquidity; it penalizes fast liquidation. The

process κ describes the impact of past trades on current transaction prices.

There are basically two approaches to overcome the challenges resulting from the terminal state con-

straint. The majority of the literature, including Ankirchner et al. [3], Graewe et al. [27], Kruse and

Popier [34] and Popier [42, 43] considers finite approximations of the singular terminal value, and then

shows that the minimal solution to the value function with singular terminal condition can be obtained

by a monotone convergence argument. A second approach, originally introduced in Graewe et al. [28]

and further generalised in Graewe and Horst [26] is to determine the precise asymptotic behaviour of

a potential solution to the HJB equation at the terminal time, and to characterize the value function

in terms of a PDE or BSDE with finite terminal value yet singular driver, for which the existence of a

solution in a suitable space can be proved using standard fixed point arguments.

If the transactions are not directly observable, then it is natural to assume that the permanent impact is

driven by the market’s expectation about the trader’s transactions as in [5], given the publicly observable

information. It leads to a mean field control problem, which is not the focus of our paper.

1.2 A MFG of optimal portfolio liquidation

We consider a MFG of optimal portfolio liquidation among asymmetrically informed players. In order

to introduce the game, we fix a probability space (Ω,G,P) that carries independent standard Brownian

motions W 0,W 1, ...,WN with W 0 in one dimension and W i in m − 1 dimension and independent and

identically distributed one-dimensional random variables X 1, ....,XN with law ν that are independent of

the Brownian motions. The Brownian motion W 0 drives the unaffected benchmark price process. We

assume that W 0 is observable by all agents. The Brownian motion W i is private information to player i

and determines that player’s cost function. We may think of W i as measuring a player’s individual degree

of market impact and/or subjective belief about the price volatility. The random variables X 1, ....,XN
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specify the respective players’ initial portfolios. We assume that each player observes the realization of

her initial portfolio and knows the distribution of all the other initial portfolios.

Following [10] we assume that the transaction price for each player i = 1, ..., N is given by

Sit = si0 +

∫ t

0

σis dW
0
s −

∫ t

0

κis
N

N∑
j=1

ξjs ds− ηitξit.

In particular, the permanent price impact depends on the players’ average trading rate. Given her initial

portfolio X i = xi the optimization problem of player i = 1, ..., N is to minimize the cost functional

JN,i
(
~ξ
)

= E

∫ T

0

κit
N

N∑
j=1

ξjtX
i
t + ηit(ξ

i
t)

2 + λit(X
i
t)

2

 dt
∣∣X i = xi

 (1.4)

subject to the state dynamics

dXi
t = −ξit dt,

Xi
0 = X i, Xi

T = 0.
(1.5)

Here, ~ξ = (ξ1, · · · , ξN ) is the vector of strategies of all the players. We assume that the one-dimensional

cost coefficients (κi, ηi, λi) have the same distribution across players and are adapted to the filtration

Fi := (F it , 0 ≤ t ≤ T ), with F it := σ(X i,W 0
s ,W

i
s , 0 ≤ s ≤ t). (1.6)

Remark 1.1. As pointed above, we assume that all players observe the Brownian motion W 0 that drives

the unaffected benchmark price process; this motivates the individual information sets. Although we

strongly believe that all our results carry over to the more general case where the agents observe only the

price process itself, we prefer to work under the stronger assumption that W 0 is observable to simplify

the analysis.

Our game is different from the majority of the MFG literature in at least three respects. First, as

in [16, 25] the players interact through the impact of their strategies rather than states on the other

players’ payoff functions. Second, all players observe the common Brownian motion W 0 that drives the

benchmark price process. Hence, ours is a MFG with common noise. While MFGs with common noise

have been investigated before (see, e.g. [14]) the nature of both the common and the idiosyncratic noise

in our model is very different from the existing literature. Third, the individual state dynamics are

subject to a terminal state constraint arising from the liquidation requirement. MFGs with terminal

state constraint have been considered before in the literature by means of so-called mean field (game)

planning problems (MFGP) introduced by Lions in his lectures at Collège de France (2009-2010). In

these problems the terminal state constraint is given by a target density of the state at the terminal time.

While our problem formally belongs to the literature on MFGP, see e.g. [1, 24, 44] and the references

therein, ours seems to be the first paper that considers a MFG with strict terminal state constraint.

1.2.1 The MFG

In order to specify the resulting MFG, let W 0 and W be independent Brownian motions of dimension 1

and m−1, respectively2, and X be an independent one-dimensional random variable with law ν defined on

some probability space, again denoted (Ω,G,P). Let F0 := (F0
t , 0 ≤ t ≤ T ) with F0

t = σ(W 0
s , 0 ≤ s ≤ t)

2The same as N player game, we may interpret W 0 as the common information to all players and W as the private

information to the representative player.
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be the filtration generated by W 0 and let F := (Ft, 0 ≤ t ≤ T ) with Ft := σ(X ,W 0
s ,Ws, 0 ≤ s ≤ t). The

MFG associated with the N -player game (1.4) and (1.5) is then given by:

1. fix a F0 progressively measurable process µ (in some suitable space);

2. solve the corresponding constrained stochastic control problem :

infξ E
[∫ T

0

(
κsµsXs + ηsξ

2
s + λsX

2
s

)
ds
∣∣∣X ]

subsect to

dXt = −ξt dt,X0 = X and XT = 0;

3. search for the fixed point µt = E[ξ∗t |F0
t ], for a.e. t ∈ [0, T ]

(1.7)

where ξ∗ is the optimal strategy from 2 and the processes (κ, η, λ) are adapted to the filtration F. We

denote by µ∗ a solution to the fixed point problem in Step 3.

We apply the probabilistic method to solve the MFG with terminal constraint (1.7). In a first step

we show how the analysis of our MFG can be reduced to the analysis of a conditional mean-field type

FBSDE. The forward component describes the optimal portfolio process; hence both its initial and

terminal condition are known. The backward component describes the optimal trading rate; its terminal

value is unknown. Making an affine ansatz, we show that the mean-field type FBSDE with unkown

terminal condition can be replaced by a coupled FBSDE with known initial and terminal condition, yet

singular driver. Proving the existence of a small time solution to this FBSDE by a fixed point argument

is not hard. The challenge is to prove the existence of a global solution on the whole time interval. Under

a weak interaction condition that has been used in the game theory literature before (see, e.g. [29]) we

prove the existence and uniqueness of a global solution by a generalization of the method of continuation

established in [30, 41] to linear-quadratic FBSDE systems with singular driver. Under the additional

assumption that all players share the same cost structure, i.e. that

κi = κ(X i,W 0,W i), ηi = η(X i,W 0,W i), λi = λ(X i,W 0,W i)

for bounded measurable functions κ, η, λ we prove that each player’s best response to the mean-field

equilibrium µ∗ is of the form

ξ∗,i = φ(X i,W 0,W i)

for some function φ and that the resulting homogeneous action profile forms an ε-equilibrium in the

original N -player game.

The common information case where all the cost coefficients are measurable with respect to the common

factor can be analysed in greater detail. When different players hold different initial portfolios, then

the optimal portfolio processes are given as weighted averages of the players’ initial portfolios and the

differences of their own and the average initial portfolio. In this case, we show that if the average initial

portfolio is positive and a player holds an above average initial portfolio, then her optimal portfolio

process is always positive. If, however, a player holds a positive yet well below average initial portfolio,

then it is optimal to quickly unwind the position, to then take a negative position and to buy the stock

back by the end of the trading period. This is intuitive as players with negative portfolios benefit from

the negative price trends generated by other players while the cost of unwinding a small portfolio is low.

As such, our result suggests that traders with small portfolios act as liquidity providers in equilibrium

even if their initial holds are positive.

The benchmark case of deterministic coefficients can be solved in closed form. For this case we show

that when the strength of interaction κ in (1.7) is large and all players share the same initial portfolio,

the players initially trade very fast in equilibrium to avoid the negative drift generated by the mean field

interaction. Our model thus provides a possible explanation for large price drops in markets with many

strategically interacting homogenous investors. We also show that the deterministic case is equivalent

to a single player model with suitably adjusted cost terms.
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Under mild additional assumptions on the market impact parameters we further prove that the solution

to the MFG can be approximated by the solutions to a sequence of MFGs where the liquidation constraint

is replaced by an increasing penalization of open positions at the terminal time. The convergence result

can be viewed as a consistency result for both, the unconstrained and the constrained problem.

The three papers closest to our model are Cardaliaguet and Lehalle [10], Carmona and Lacker [16], Huang,

Jaimungal and Nourin [32]. In [16], the authors propose a specific portfolio liquidation model where each

players portfolio is subject to exogenous fluctuations (customer flow) described by independent Brownian

motions. As such, their model is much closer to a standard MFG than ours, but no liquidation constraint

is possible in their framework. The papers [10] and [32] consider mean field models parameterized by

different preferences and with major-minor players, respectively. Again, no liquidation constraint is

allowed. The model introduced in [10] is extended to portfolios of correlated assets in [38] where the

effect of trading flows on naive estimates of intraday volatility and correlations is analyzed.

The remainder of the paper is organized as follows. In Section 2 we state and prove our existence and

uniqueness of solutions result for the MFG (1.7) and establish additional results on the equilibrium

trading strategies and portfolio processes if all the players share the same information. In Section 3 we

prove that the solution to the MFG yields an ε-Nash equilibrium in the N -player game. In Section 4 we

prove that the MFG with singular terminal condition can be approximated by MFGs that penalize open

positions at the terminal time under additional assumptions on the market impact term.

1.2.2 Notation and notational conventions

Throughout, we adopt the convention that C denotes a constant which may vary from line to line.

Moreover, for a filtration G, Prog(G) denotes the sigma-field of progressive subsets of [0, T ]×Ω and for

I, which could be a subset of Rn, n ≥ 1 or R ∪ {+∞}, we consider the set of progressively measurable

processes w.r.t. G:

PG([0, T ]× Ω; I) = {u : [0, T ]× Ω→ I | u is Prog(G)−measurable} .

We define the following subspaces of PG([0, T ]× Ω; I):

L∞G ([0, T ]× Ω; I) =

{
u ∈ PG([0, T ]× Ω; I); ‖u‖ := ess sup

t,ω
|u(t, ω)| <∞

}
;

LpG([0, T ]× Ω; I) =

u ∈ PG([0, T ]× Ω; I); E

(∫ T

0

|u(t, ω)|2dt

)p/2
<∞

 ;

SpG([0, T ]× Ω; I) =

{
u ∈ PG([0, T ]× Ω; I); E

(
sup

0≤t≤T
|u(t, ω)|p

)
<∞

}
.

Whenever the notation T− appears in the definition of a function space we mean the set of all functions

whose restriction satisfy the respective property on [0, τ ] for any τ < T , e.g., by ψ ∈ L2([0, T−]× Ω; I),
we mean ψ ∈ L2([0, τ ]× Ω; I) for any τ < T . For notational convenience, we put

D2
G([0, T ]× Ω; I) := L2

G([0, T ]× Ω; I) ∩ S2
G([0, T−]× Ω; I).

For a positive stochastic process u ∈ L∞G ([0, T ]×Ω; [0,∞)) we denote its upper and lower bound by umax

and umin, respectively.
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2 The mean-field game

In this section, we state and prove an existence and uniqueness of solutions result for the MFG (1.7).

The set of admissible controls for the representative player’s liquidation problem is given by

AF(X ) :=

{
ξ ∈ L2

F([0, T ]× Ω;R),

∫ T

0

ξs ds = X a.s.

}
.

For a given process µ ∈ L2
F0([0, T ]× Ω;R), the corresponding cost and value functions are given by

J(X , ξ;µ) := E

[∫ T

0

(
κsXsµs + ηsξ

2
s + λsX

2
s

)
ds

∣∣∣∣∣X
]
,

and

V (X ;µ) = inf
ξ∈AF(X )

J(X , ξ;µ),

respectively. The Hamiltonian is

H(t, ξ, x, y;µ) = −ξy + κtµx+ ηtξ
2 + λtx

2,

and the stochastic maximum principle suggests that the solution to the optimization problem can be

characterised in terms of the FBSDE
dXt =− ξt dt,

−dYt = (κtµt + 2λtXt) dt− Zt dW̃t,

X0 =X
XT =0,

(2.1)

where W̃ = (W 0,W ) is a m-dimensional Brownian motion. The process Y is called the adjoint process

to the controlled state process X. The liquidation constraint XT = 0 results in a singularity of the value

function at liquidation time; see [3, 28]. As a result, the terminal condition for Y cannot be determined

a priori. In particular, the first equation holds on [0, T ] while the second equation holds on [0, T ). A

standard approach yields the candidate optimal control

ξ∗t =
Yt
2ηt

. (2.2)

Taking the equilibrium condition into account suggests that the analysis of the MFG reduces to the

analysis of the following conditional mean-field type FBSDE:

dXt =− Yt
2ηt

dt,

−dYt =

(
κtE

[
Yt
2ηt

∣∣∣∣F0
t

]
+ 2λtXt

)
dt− Zt dW̃t,

X0 =X
XT =0.

(2.3)

We establish the existence and uniqueness of a solution to the preceding FBSDE in the following space

of weighted stochastic processes.

Definition 2.1. For l ∈ R, we introduce the space

Hl := {Y ∈ PF([0, T ]× Ω;R ∪ {∞}) : (T − .)−lY· ∈ S2
F([0, T ]× Ω;R ∪ {∞})},
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which is endowed with the norm

‖Y ‖Hl := ‖Y ‖l :=

(
E

[
sup

0≤t≤T

∣∣∣∣ Yt
(T − t)l

∣∣∣∣2
]) 1

2

,

and the space

Ml := {Y ∈ PF([0, T ]× Ω;R ∪ {∞}) : (T − .)−lY· ∈ L∞F ([0, T ]× Ω;R ∪ {∞})},

which is endowed with the norm

‖Y ‖Ml
:= ess sup

(t,ω)∈[0,T ]×Ω

|Yt|
(T − t)l

.

Fact 2.2. The following facts are readily verified:

• For any l, Hl ⊂ H−1+l with ‖ · ‖H−1+l
≤ T‖ · ‖Hl .

• If K ∈ Hl, with l > 0, then KT = 0 a.s.

• If K1 ∈M−1 and K2 ∈ Hl, then K1K2 ∈ H−1+l.

The first two properties also hold for the space Ml.

We assume throughout that the cost coefficients are bounded and that the dependence of an individual

player’s cost function on the average action is weak enough. The weak interaction condition is consistent

with the game theory literature on mean-field type games where some form of moderate dependence

condition is usually required to prove the existence and uniqueness of Nash equilibria; see [29] and

references therein. The condition is also consistent with the monotonicity condition for FBSDE systems

originally proposed by [30, 41] and the generalization to mean-field type FBSDEs established in [7].

Specifically, we assume that the following condition is satisfied.

Assumption 2.3.

i) The processes κ, λ, 1/λ, η and 1/η belong to L∞F ([0, T ]×Ω; [0,∞)) and X ∈ L2(Ω) is independent

of W and W 0.

ii) There exists a constant θ > 0 such that

κmax

4η?
< θ < 4

λ?
κmax

. (2.4)

The following quantity will be important in our subsequent analysis:

α := η?/‖η‖ ∈ (0, 1]. (2.5)

We are now ready to state our first major result.

Theorem 2.4. Under Assumption 2.3, there exists a unique solution

(X,Y, Z) ∈ Hα × L2
F([0, T ]× Ω;R)× L2

F([0, T−]× Ω;Rm)

to the FBSDE (2.3). Moreover, the process ξ∗ =
Y

2η
is an optimal control for the representative player,

X∗ = X is the optimal state process and the aggregation effect given by

µ∗t = E
[
Yt
2ηt

∣∣∣∣F0
t

]
, t ∈ [0, T ) (2.6)
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is the unique solution to the MFG (1.7). Finally, the value function is given by

V (X ;µ∗) =
1

2
A0X 2 +

1

2
B0X +

1

2
E

[∫ T

0

κsX
∗
sµ
∗
s ds

∣∣∣∣X
]
. (2.7)

Section 2.1 is devoted to the proof of Theorem 2.4 and Section 2.2 explores some particular cases.

2.1 General existence and uniqueness of solutions

In this section we prove our existence and uniqueness of equilibrium result for the MFG (1.7). Decoupling

the FBSDE (2.3) by Y = AX +B yields the following system of Riccati type equations:

−dAt =

(
2λt −

A2
t

2ηt

)
dt− ZAt dW̃t,

−dBt =

(
κtE

[
1

2ηt
(AtXt +Bt)

∣∣∣∣F0
t

]
− AtBt

2ηt

)
dt− ZBt dW̃t,

AT =∞
BT =0.

(2.8)

The existence of a unique solution A ∈ M−1 to the first equation is established in Lemma A.1 in the

appendix. Namely, there exists a unique process (A,ZA) such that A ∈M−1, ZA ∈ L2
F([0, T−]×Ω;Rm),

the dynamics is given on any interval [0, τ ], τ < T by the first equation of (2.8) and lim
t→T

At = +∞ = AT .

Moreover A satisfies the a priori estimate (A.1) in Lemma A.1 in the appendix, from which it also follows

that

exp

(
−
∫ s

r

Au
2ηu

du

)
≤
(
T − s
T − r

)α
(2.9)

for any 0 ≤ r ≤ s < T , where α is given by (2.5). Hence we need to solve the following FBSDE:

dXt =− 1

2ηt
(AtXt +Bt) dt,

−dBt =

(
κtE

[
1

2ηt
(AtXt +Bt)

∣∣∣∣F0
t

]
− AtBt

2ηt

)
dt− ZBt dW̃t,

X0 =X
BT =0.

(2.10)

Our approach is based on an extension of the method of continuation that accounts for the singularity of

the process A at the terminal time and hence for the singularity in the driver of the FBSDE. We apply

the method of continuation to the triple (X,B, Y = AX + B) rather than the pair (X,B), and search

for solutions

(X,B, Y = AX +B) ∈ Hα ×Hγ × L2
F([0, T ]× Ω;R),

where α was defined in (2.5) and γ is any constant

0 < γ < α ∧ 1/2.
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Specifically, the method of continuation will be applied to the FBSDE

dXt =− 1

2ηt
(AtXt +Bt) dt,

−dBt =

(
κtpE

[
1

2ηt
(AtXt +Bt)

∣∣∣∣F0
t

]
+ ft −

AtBt
2ηt

)
dt− ZBt dW̃t,

dYt =

(
−2λtXt − κtpE

[
AtXt +Bt

2ηt

∣∣∣∣F0
t

]
− ft

)
dt+ ZYt dW̃t,

X0 =X
BT =0,

(2.11)

where p ∈ [0, 1], f ∈ L2
F([0, T ] × Ω;R). We emphasise that the first two equations hold on [0, T ], while

the third equation holds on [0, T ).

In a first step, we provide an a priori estimate for the processes ZB and ZY .

Lemma 2.5. Assume that f ∈ L2
F([0, T ] × Ω;R) and that there exists a solution (X,B, Y, ZB , ZY ) to

(2.11) such that

(X,B, Y ) ∈ Hα ×Hγ × S2
F([0, T−]× Ω,R).

Then

(ZB , ZY ) ∈ L2
F([0, T ]× Ω;Rm)× L2

F([0, T−]× Ω;Rm)

and there exists a constant C > 0 such that

E

[∫ T

0

|ZBt |2 dt

]
≤ C

(
‖B‖2γ + ‖X‖2α + E

[∫ T

0

|ft|2 dt

])
and such that for each τ < T

E
[∫ τ

0

|ZYs |2 ds
]
≤ C

(
E
[

sup
0≤t≤τ

|Yt|2
]

+ ‖X‖2α + ‖B‖2γ + E

[∫ T

0

|ft|2 dt

])
.

In particular,
∫ ·

0
ZBs dW̃s is a true martingale on [0, T ] and

∫ ·
0
ZYs dW̃s is a true martingale on [0, τ ], for

each τ < T .

Proof. Since A ∈ M−1 and η? > 0 there exists a constant C > 0 that is independent of s ∈ [0, T ] such

that ∣∣∣∣AsBs2ηs
− κsE

[
AsXs +Bs

2ηs

∣∣∣∣F0
s

]
− fs

∣∣∣∣ ≤ C [ |Bs|T − s
+ E

(
|Xs|
T − s

+ |Bs|
∣∣∣∣F0

s

)
+ |fs|

]
.

Let us notice that∫ T

t

ZBs dW̃s = −Bt −
∫ T

t

{
AsBs
2ηs

− κspE
[
AsXs +Bs

2ηs

∣∣∣∣F0
s

]
− fs

}
ds.

Since (X,B) ∈ Hα ×Hγ , this implies∣∣∣∣∣
∫ T

t

ZBs dW̃s

∣∣∣∣∣ ≤ C sup
0≤t≤T

|Bt|
(T − t)γ

+ C sup
0≤s≤T

E
[

sup
0≤t≤T

|Xt|
(T − t)α

∣∣∣∣F0
s

]
+ C sup

0≤s≤T
E
[

sup
0≤t≤T

|Bt|
(T − t)γ

∣∣∣∣F0
s

]
+

∫ T

0

|ft| dt.

Thus, by Doob’s maximal inequality,

E

 sup
0≤t≤T

∣∣∣∣∣
∫ T

t

ZBs dW̃s

∣∣∣∣∣
2
 ≤ C (‖B‖2γ + ‖X‖2α + E

[∫ T

0

|ft|2 dt

])
.
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Similarly, for each 0 < τ < T ,

E

[
sup

0≤t≤τ

∣∣∣∣∫ τ

t

ZYs dW̃s

∣∣∣∣2
]
≤ C

(
E
[

sup
0≤t≤τ

|Yt|2
]

+ ‖X‖2α + ‖B‖2γ + E

[∫ T

0

|ft|2 dt

])
<∞.

In a second step, we now prove an existence of solutions result for the FBSDE (2.11) with p = 0.

Lemma 2.6. For p = 0 there exists for every given data f ∈ L2
F([0, T ] × Ω;R) a unique solution

(X,B, Y, ZB , ZY ) ∈ Hα × Hγ × D2
F([0, T ] × Ω;R)×L2

F([0, T ]× Ω;Rm)× L2
F([0, T−]× Ω;Rm) to (2.11).

It is given by 

Bt = E

[∫ T

t

fse
−

∫ s
t

(2ηr)−1Ar dr ds

∣∣∣∣∣Ft
]
, t ∈ [0, T ]

Xt = X e−
∫ t
0

(2ηr)−1Ar dr −
∫ t

0

(2ηs)
−1Bse

−
∫ t
s

(2ηr)−1Ar dr ds, t ∈ [0, T ]

Yt =AtXt +Bt, t ∈ [0, T ),

and ZB ∈ L2
F([0, T ]× Ω;Rm) and ZY ∈ L2

F([0, T−]× Ω;Rm) are given by the martingale representation

theorem.

Proof. For p = 0 the process X solves a linear ODE and the pair (B,ZB) solves a linear BSDE. Hence,

the explicit representations follow from the respective solution formulas. It remains to establish the

desired integration properties. To this end, let us recall that A has positive values. Thus we first apply

Hölder’s inequality in order to obtain,

|Bt|
(T − t)γ

≤ 1

(T − t)γ
E

[∫ T

t

|fs| ds

∣∣∣∣∣Ft
]
≤

(
E

[∫ T

t

|fs|
1

1−γ ds

∣∣∣∣∣Ft
])1−γ

<∞.

Using Doob’s maximal inequality, Jensen’s inequality and the fact that γ < 1
2 we conclude that,

E

[
sup

0≤t≤T

∣∣∣∣ Bt
(T − t)γ

∣∣∣∣2
]
≤ E

 sup
0≤t≤T

(
E

[∫ T

0

|fs|
1

1−γ ds

∣∣∣∣Ft
])2(1−γ)

 ≤ CE[∫ T

0

|fs|2 ds

]
.

From (2.9), the solution formula for X and using that γ < α we obtain that X ∈ Hα because

|Xt| ≤
|X |(T − t)α

Tα
+ C

∫ t

0

|Bs|
(
T − t
T − s

)α
ds

≤ |X |(T − t)
α

Tα
+ C

(
sup

0≤s≤T

|Bs|
(T − s)γ

)(∫ t

0

(T − s)γ−α ds
)

(T − t)α

≤ (T − t)α
{
|X |
Tα

+
CT 1+γ−α

1 + γ − α

(
sup

0≤s≤T

|Bs|
(T − s)γ

)}
.

In view of (A.1) and the previously established properties of X and B we have Y ∈ S2
F([0, T−]× Ω;R)

with

E

[
sup
t∈[0,τ ]

Y 2
t

]
≤ C

(T − τ)2(1−α)
‖X‖2α + (T − τ)2γ‖B‖2γ . (2.12)

For any ε > 0, integration by part implies that

XT−εYT−ε−X0Y0 =

∫ T−ε

0

Xt dYt +

∫ T−ε

0

Yt dXt

= −
∫ T−ε

0

Xt(2λtXt + ft) dt−
∫ T−ε

0

Y 2
t

2ηt
dt+

∫ T−ε

0

XtZ
Y
t dW̃t.
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The positivity of the process A along with the definition of the process Y yields XT−εYT−ε ≥ XT−εBT−ε.

Thus, taking expectations on both sides of the above equation, letting ε → 0 and using XT = BT = 0

yields

−E [X0Y0] ≤ −E

[∫ T

0

2λtX
2
t dt

]
− E

[∫ T

0

Xtft dt

]
− E

[∫ T

0

Y 2
t

2ηt
dt

]
.

Together with the inequality (2.12) for τ = 0 this shows that

E

[∫ T

0

Y 2
t dt

]
≤ CE

[∫ T

0

X2
t dt

]
+ CE

[∫ T

0

f2
t dt

]
+ C‖X‖2α + C‖B‖2γ <∞.

In a third step we now establish the continuation result for the FBSDE (2.11) from which we shall then

deduce the existence of a unique global solution to our original MFG.

Lemma 2.7. If for some p ∈ [0, 1] the FBSDE (2.11) is for every data f ∈ L2
F([0, T ] × Ω;R) uniquely

solvable in Hα×Hγ ×D2
F([0, T ]× Ω;R)×L2

F([0, T ]×Ω;Rm)×L2
F([0, T−]×Ω;Rm), then this holds also

for p + d with d > 0 small enough (independent of p and f).

Proof. Let us fix d > 0, Y ∈ L2
F([0, T ] × Ω;R) and f ∈ L2

F([0, T ] × Ω;R) and consider the following

system:

dX̃t = − 1

2ηt
(AtX̃t + B̃t) dt,

−dB̃t =

(
κtpE

[
1

2ηt

(
AtX̃t + B̃t

)∣∣∣∣F0
t

]
+ κtdE

[
Yt
2ηt

∣∣∣∣F0
t

]
+ ft −

AtB̃t
2ηt

)
dt− ZB̃t dW̃t,

dỸt =

(
−2λtX̃t − κtpE

[
AtX̃t + B̃t

2ηt

∣∣∣∣∣F0
t

]
− κtdE

[
Yt
2ηt

∣∣∣∣F0
t

]
− ft

)
dt+ Z Ỹt dW̃t,

X̃0 = X

B̃T = 0.

(2.13)

Then

f(Y ) := κdE
[
Y

2η

∣∣∣∣F0

]
+ f ∈ L2

F([0, T ]× Ω;R).

Thus, by assumption there exists a unique solution

(X̃, B̃, Ỹ , ZB̃ , Z Ỹ ) ∈ Hα ×Hγ ×D2
F([0, T ]× Ω;R)× L2

F([0, T ]× Ω;Rm)× L2
F([0, T−]× Ω;Rm)

to (2.13), and Ỹ = AX̃ + B̃. This defines a mapping Y 7→ (X̃, B̃, Ỹ ) from L2
F([0, T ] × Ω;R) to

Hα×Hγ×L2
F([0, T ]×Ω;R) and hence also a mapping (X,B, Y ) 7→ (X̃, B̃, Ỹ ) onHα×Hγ×L2

F([0, T ]×Ω;R).

In what follows we prove that this second mapping is a contraction for some d > 0. For the unique fixed

point the system (2.13) reduces to the system (2.11) with p replaced by p + d. This then yields the

desired result.

In order to establish the contraction property, we denote for two processes Y, Y ′ ∈ L2
F([0, T ] × Ω;R) by

(X̃, B̃, Ỹ ) and (X̃ ′, B̃′, Ỹ ′) the corresponding processes defined by (2.13) and put

ξ̃t =
Ỹt
2ηt

, ξ̃′t =
Ỹ ′t
2ηt

, µ̃t = E
[
ξ̃t

∣∣∣F0
t

]
, µ̃′t = E

[
ξ̃′t

∣∣∣F0
t

]
.
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For any ε > 0 integration by part yields that

(X̃
′

T−ε − X̃T−ε)ỸT−ε =

∫ T−ε

0

(X̃
′

s − X̃s) dỸs +

∫ T−ε

0

Ỹs d(X̃
′

s − X̃s)

= −
∫ T−ε

0

(X̃
′

s − X̃s)(pκsµ̃s + 2λsX̃s) ds−
∫ T−ε

0

Ỹs(ξ̃
′
s − ξ̃s) ds

−
∫ T−ε

0

(X̃
′

s − X̃s)f(Ys) ds+

∫ T−ε

0

(X̃
′

s − X̃s)Z
Ỹ
s dW̃s

and

(X̃T−ε − X̃
′

T−ε)Ỹ
′

T−ε = −
∫ T−ε

0

(X̃s − X̃
′

s)(pκsµ̃
′

s + 2λsX̃
′

s) ds−
∫ T−ε

0

Ỹ
′

s (ξ̃s − ξ̃′s) ds

−
∫ T−ε

0

(X̃s − X̃
′

s)f(Y
′

s ) ds+

∫ T−ε

0

(X̃s − X̃
′

s)Z
Ỹ
′

s dW̃s.

Taking the sum of these two equations and using that

(X̃T−ε − X̃
′

T−ε)(Ỹ
′

T−ε − ỸT−ε) = −AT−ε(X̃T−ε − X̃
′

T−ε)
2 − (X̃T−ε − X̃

′

T−ε)(B̃T−ε − B̃
′

T−ε)

≤ − (X̃T−ε − X̃
′

T−ε)(B̃T−ε − B̃
′

T−ε)

yields

2

∫ T−ε

0

ηs(ξ̃
′
s − ξ̃s)2 ds+ 2

∫ T−ε

0

λs(X̃
′

s − X̃s)
2 ds

+

∫ T−ε

0

(X̃
′

s − X̃s)(f(Y ′s )− f(Ys)) ds+

∫ T−ε

0

(X̃s − X̃
′

s)(Z̃
Y
′

s − Z̃Ys ) dW̃s

≤ − (X̃T−ε − X̃
′

T−ε)(B̃T−ε − B̃
′

T−ε) +

∫ T−ε

0

[
pκs(µ̃s − µ̃′s)(X̃ ′s − X̃s)

]
ds.

Taking expectations on both sides drops the martingale part. Then we can pass to the limit as ε→ 0 to

drop the term (X̃T−ε − X̃
′

T−ε)(B̃T−ε − B̃
′

T−ε) because X̃, X̃ ′ ∈ Hα and B̃, B̃′ ∈ Hγ . Furthermore, since

2|ab| ≤ θa2 + b2/θ for any θ > 0, we obtain:

E

[∫ T

0

∣∣∣pκs(µ̃s − µ̃′s)(X̃ ′s − X̃s)
∣∣∣ ds] ≤ pκmax

2θ
E

[∫ T

0

|µ̃s − µ̃′s|
2
ds

]
+

pκmaxθ

2
E

[∫ T

0

∣∣∣X̃ ′s − X̃s

∣∣∣2 ds]

≤ κmax

2θ
E

[∫ T

0

∣∣∣ξ̃s − ξ̃′s∣∣∣2 ds
]

+
κmaxθ

2
E

[∫ T

0

∣∣∣X̃ ′s − X̃s

∣∣∣2 ds] ,
and

E

[∫ T

0

∣∣∣(X̃ ′s − X̃s)(f(Y ′s )− f(Ys))
∣∣∣ ds] ≤ dE

[∫ T

0

κs

∣∣∣X̃ ′s − X̃s

∣∣∣E [ |Y ′s − Ys|
2ηs

∣∣∣∣F0
s

]
ds

]

≤ d
κmax

2η?
E

[∫ T

0

∣∣∣X̃ ′s − X̃s

∣∣∣E [ |Y ′s − Ys|| F0
s

]
ds

]

≤ d
κmax

4η?
E

[∫ T

0

(
X̃
′

s − X̃s

)2

ds

]
+ d

κmax

4η?
E

[∫ T

0

E
[
(Y ′s − Ys)2

∣∣F0
s

]
ds

]
.

All these inequalities imply that for any θ > 0(
2η? −

κmax

2θ

)
E

[∫ T

0

(ξ̃′s − ξ̃s)2 ds

]
+
(

2λ? −
κmax

2
θ
)
E

[∫ T

0

(X̃
′

s − X̃s)
2 ds

]

≤ κmax

4η?
dE

[∫ T

0

(X̃ ′s − X̃s)
2 ds

]
+
κmax

4η?
dE

[∫ T

0

(Y ′s − Ys)2 ds

]
.
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In view of Assumption 2.3 we can choose a θ > 0 such that

2η? −
κmax

2θ
> 0, 2λ? −

κmaxθ

2
> 0,

which implies that there exists a constant C depending only on the coefficients κ, λ and η, such that

E

[∫ T

0

(ξ̃′s − ξ̃s)2 ds

]
+ E

[∫ T

0

(X̃
′

s − X̃s)
2 ds

]

≤ CdE

[∫ T

0

(X̃ ′s − X̃s)
2 ds

]
+ CdE

[∫ T

0

(Y ′s − Ys)2 ds

]
.

Thus, when d is small enough,

E

[∫ T

0

|Ỹt − Ỹ ′t |2 dt

]
≤ aE

[∫ T

0

|Yt − Y ′t |2 dt

]

for some a < 1. We notice that the bound on d only depends on κ, η and λ.

Now using the definition of ξ̃ and ξ̃′ the solution formula for linear BSDEs yields

|B̃t − B̃′t| ≤ κmaxE

[∫ T

t

{
pE
[
|ξ̃s − ξ̃′s|

∣∣∣∣F0
s

]
+ dE

[
|Ys − Y ′s |

2ηs

∣∣∣∣F0
s

]}
ds

∣∣∣∣Ft
]
.

Thus

|B̃t − B̃′t| ≤ C(T − t)γE

[∫ T

t

E
[
|ξ̃s − ξ̃′s|

1
1−γ

∣∣∣F0
s

]
ds

∣∣∣∣∣Ft
]1−γ

+ Cd(T − t)γE

[∫ T

t

E
[
|Ys − Y ′s |

1
1−γ

∣∣∣F0
s

]
ds

∣∣∣∣∣Ft
]1−γ

.

Since 2γ < 1, Doob’s maximal inequality along with the previously established L2 bounds yields

E

[
sup
t∈[0,T ]

|B̃t − B̃′t|2

(T − t)2γ

]
≤ CE

[∫ T

0

|ξ̃s − ξ̃′s|2ds

]
+ Cd2E

[∫ T

0

|Ys − Y ′s |2ds

]
.

Now using the dynamics of X̃ and X̃ ′ we obtain

|X̃t − X̃ ′t| =
∣∣∣∣∫ t

0

−{p(2ηs)
−1(B̃s − B̃′s)}e−

∫ t
s

(2ηr)−1Ar dr ds

∣∣∣∣
≤ C

∫ t

0

{|B̃s − B̃′s|}
(
T − t
T − s

)α
ds

≤ C
T 1+γ−α

1 + γ − α
(T − t)α sup

0≤s≤T

|B̃s − B̃′s|
(T − s)γ

.

Hence this leads to

E

[
sup
t∈[0,T ]

|X̃t − X̃ ′t|2

(T − t)2α

]
≤ C‖B̃s − B̃′s‖2γ .

To summarize, we obtain a constant d such that (X,B, Y ) → (X̃, B̃, Ỹ ) is a contraction in Hα ×Hγ ×
L2
F([0, T ] × Ω;R). Since Ỹ = AX̃ + B̃, Ỹ ∈ D2

F([0, T ] × Ω;R) and using Lemma 2.5, we see that the
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following system admits a unique solution (X̃, B̃, Ỹ , ZB̃ , Z Ỹ ) ∈ Hα×Hγ×D2
F([0, T ]×Ω;R)×L2

F([0, T ]×
Ω;Rm)× L2

F([0, T−]× Ω;Rm):

dX̃t = − 1

2ηt
(AtX̃t + B̃t) dt,

−dB̃t =

(
κtpE

[
1

2ηt

(
AtX̃t + B̃t

)∣∣∣∣F0
t

]
+ κtdE

[
Ỹt
2ηt

∣∣∣∣∣F0
t

]
+ ft −

AtB̃t
2ηt

)
dt− ZB̃t dW̃t,

dỸt =

(
−2λtX̃t − κtpE

[
AtX̃t + B̃t

2ηt

∣∣∣∣∣F0
t

]
− κtdE

[
Ỹt
2ηt

∣∣∣∣∣F0
t

]
− ft

)
dt+ Z Ỹt dW̃t,

X̃0 = X

B̃T = 0.

Using again the relation Ỹ = AX̃ + B̃, the above system is equivalent to (2.11) with p replaced by p+ d.

This proves the assertion.

Using Lemmata 2.5, 2.6 and 2.7 and by induction on p, we obtain the following result.

Proposition 2.8. There exists a unique solution (X,B, Y, ZB , ZY ) ∈ Hα × Hγ × D2
F([0, T ] × Ω;R) ×

L2
F([0, T ] × Ω;Rm) × L2

F([0, T−] × Ω;Rm) to the FBSDEs (2.3) and (2.10). Moreover, there exists a

constant C > 0 depending on η, λ, κ, T and ‖X‖L2 , such that

‖X‖Hα + ‖B‖Hγ + E

[∫ T

0

|Yt|2 dt

]
≤ C.

From the equations (2.10), (2.2) and recalling Y = AX +B, where (X,Y,B) is from Proposition 2.8, we

obtain the following candidates of the optimal portfolio process X∗ and the optimal trading strategy ξ∗

for the representative player:

X∗t = Xt = X e−
∫ t
0
Ar
2ηr

dr −
∫ t

0

Bs
2ηs

e−
∫ t
s
Ar
2ηr

dr ds,

ξ∗t =
Yt
2ηt

=
AtXt +Bt

2ηt
= X e−

∫ t
0
Ar
2ηr

dr At
2ηt

+
Bt
2ηt
− At

2ηt

∫ t

0

Bs
2ηs

e−
∫ t
s
Ar
2ηr

dr ds.

(2.14)

By construction, X∗T = 0 and hence ξ∗ is an admissible liquidation strategy. The following proposition

shows that it is indeed the optimal liquidation strategy and that its conditional expectation defines the

desired equilibrium for our MFG. In particular, it proves Theorem 2.4.

Proposition 2.9. The process ξ∗ given by (2.14) or equivalently by (2.2) is an optimal control for

the representative player, X∗ is the related optimal state process, and the aggregation effect given by

µ∗ := E[ξ∗|F0] is the solution to the MFG (1.7). Moreover, the value function is given by (2.7).

Proof. Let (X,B, Y ) be the solution given by Proposition 2.8. For any ξ ∈ AF(X ), let Xξ be the

corresponding state process. Then it holds that,

lim
s↗T

E
[
Xξ
sYs|X

]
= 0. (2.15)
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Indeed, since A ∈M−1, for any 0 ≤ s < T∣∣E [Xξ
sYs|X

]∣∣ =
∣∣E [Xξ

s (XsAs +Bs)|X
]∣∣

≤ C

T − s
E
[
(Xξ

s )2 + (Xs)
2|X

]
+ E

[
|Xξ

sBs||X
]

=
C

T − s
E

(∫ T

s

ξu du

)2

+

(∫ T

s

ξ∗u du

)2 ∣∣∣∣X
+ E

[
|Xξ

sBs||X
]

≤ CE

[∫ T

s

ξ2
u du+

∫ T

s

(ξ∗u)2 du

∣∣∣∣X
]

+ E
[
|Xξ

sBs||X
] s↗T−−−→ 0.

With this, we can now show that ξ∗ is a best response against µ∗. In fact, for each ε > 0, the convexity

of the Hamiltonian yields

E

[∫ T−ε

0

(
κsµ

∗
sX

ξ
s + ηsξ

2
s + λs(X

ξ
s )2
)
ds

∣∣∣∣X
]
− E

[∫ T−ε

0

(
κsµ

∗
sXs + ηs(ξ

∗
s )2 + λs(Xs)

2
)
ds

∣∣∣∣X
]

= E

[∫ T−ε

0

(
H(s, ξs, X

ξ
s , Ys;µ

∗)−H(s, ξ∗s , Xs, Ys;µ
∗) + (ξs − ξ∗s )Ys

)
ds

∣∣∣∣X
]

≥ E

[∫ T−ε

0

(H(s, ξ∗s , X
ξ
s , Ys;µ

∗)−H(s, ξ∗, Xs, Ys;µ
∗) + (ξs − ξ∗s )Ys) ds

∣∣∣∣∣X
]

≥ E

[∫ T−ε

0

(
(κsµ

∗
s + 2λsXs)(X

ξ
s −Xs) + (ξs − ξ∗s )Ys

)
ds

∣∣∣∣X
]
.

Furthermore, integration by part implies that for any ε > 0,

YT−ε(XT−ε −Xξ
T−ε)

= Y0(X0 −Xξ
0 ) +

∫ T−ε

0

(Xs −Xξ
s ) dYs +

∫ T−ε

0

Ys d(Xs −Xξ
s )

= −
∫ T−ε

0

(κsµ
∗
s + 2λsXs)(Xs −Xξ

s ) ds+

∫ T−ε

0

ZYs (Xs −Xξ
s ) dW̃s

−
∫ T−ε

0

Ys(ξ
∗
s − ξs) ds.

(2.16)

Therefore,

E

[∫ T−ε

0

(
κsµ

∗
sX

ξ
s + ηsξ

2
s + λs(X

ξ
s )2
)
ds

∣∣∣∣X
]
− E

[∫ T−ε

0

(
κsµ

∗
sXs + ηs(ξ

∗
s )2 + λs(Xs)

2
)
ds

∣∣∣∣X
]

≥ E
[
YT−ε(XT−ε −Xξ

T−ε)

∣∣∣∣X] .
The equation (2.15) does indeed yield

lim
ε→0

E
[
YT−ε(XT−ε −Xξ

T−ε)|X
]

= 0.

Using the Lebesgue convergence theorem and taking ε→ 0, we obtain

E

[∫ T

0

(
κsXsµ

∗
s + ηsξ

2
s + λsX

2
s

)
ds

∣∣∣∣X
]
− E

[∫ T

0

(
κsXsµ

∗
s + η∗sξ

2
s + λs(Xs)

2
)
ds

∣∣∣∣X
]
≥ 0.

In other words J(X , ξ;µ∗)− J(X , ξ∗;µ∗) ≥ 0. Finally, (2.15) and (2.16) again yield

V (X ;µ∗) =
1

2
A0X 2 +

1

2
B0X +

1

2
E

[∫ T

0

κsXsµ
∗
s ds

∣∣∣∣X
]
.
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Now assume µ′ is another equilibrium, i.e. there is an optimal control ξ′ such that J(X , ξ;µ′) ≥
J(X , ξ′;µ′) for any ξ, and µ′ = E[ξ′|F0]. Note that J(X , ξ;µ′) is strictly convex for ξ. Thus, there

is a unique optimal control, which must satisfy ξ′ = Y ′/2η, where (X ′, Y ′) is the solution to (2.1) with

µ replaced by µ′. By the uniqueness of the solution of (2.3), it must hold that µ′ = µ∗ as well as

ξ′ = ξ∗.

Remark 2.10. If we suppose that X = x is a deterministic initial value of the state process at time τ > 0,

then we can define the space of admissible controls as

AQ(τ, x) :=

{
ξ ∈ L2

Q(τ, T ) :

∫ T

τ

ξs ds = x

}
where Q = (Qt)0≤t≤T is the filtration generated by W and W 0. Assuming that the cost coefficients

satisfy Assumption 2.3 with F replaced by Q, the same arguments as before show that the FBSDE
Xs =x−

∫ s

τ

Yt
2ηt

dt, XT = 0,

Ys =Yr +

∫ r

s

(
κtE

[
Yt
2ηt

∣∣∣∣F0
t

]
+ 2λtXt

)
dt+

∫ r

s

Zt dW̃t, r < T

has a unique solution (X,Y = AX +B,Z) with (X,B) ∈ Hα×Hγ and µ∗ = E(Y/(2η)|F0) is a solution

of the MFG starting at time τ . Moreover the value function is given by:

V (τ, x;µ∗) =
1

2
Aτx

2 +
1

2
Bτx+

1

2
E

[∫ T

τ

κsXsµ
∗
s ds

∣∣∣∣Qτ
]
.

Since (X,B) ∈ Hα ×Hγ and ξ∗ ∈ AQ(τ, x),

Bτx+ E

[∫ T

τ

κsµ
∗
sXs ds

∣∣∣∣Qτ
]

≤ x(T − τ)γ sup
τ≤t≤T

∣∣∣∣ Bt
(T − t)γ

∣∣∣∣+ κmax(T − τ)αE

[∫ T

τ

|µ∗s| ds sup
τ≤t≤T

∣∣∣∣ Xt

(T − t)α

∣∣∣∣
∣∣∣∣∣Qτ

]
τ↗T−−−→ 0.

Since Aτ → +∞ as τ tends to T , we get the following terminal condition for the value function:

lim
τ↑T

V (τ, x;µ) =

{
0, x = 0;

∞, x 6= 0.

2.2 Common information environments

The benchmark case where all players share the same information, except for their initial value can be

analyzed in greater detail. In this section we therefore assume that all randomness is generated by the

common Brownian motion W 0 and the initial value X .

Assumption 2.11. The processes κ, λ, η and 1/η belong to L∞F0([0, T ]× Ω; [0,∞)).

The weak interaction condition (2.4) is not required in this section. Under the common information

assumption the conditional mean-field FBSDE (2.3) reduces to the following FBSDE:

dXt = − Yt
2ηt

dt,

−dYt =

(
κt
2ηt

E
[
Yt
∣∣F0
t

]
+ 2λtXt

)
dt− Zt dW 0

t ,

X0 = X ,
XT = 0.

(2.17)
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2.2.1 Common initial portfolio

In this subsection we further assume that the initial portfolio is common to all players, i.e. X = x ∈ R. In

this case all processes are F0-adapted and the mean-field FBSDE (2.17) simplifies to the regular FBSDE

dXt = − Yt
2ηt

dt,

−dYt =

(
κtYt
2ηt

+ 2λtXt

)
dt− Zt dW 0

t ,

X0 = x,

XT = 0.

(2.18)

In this setting, we can check that Y is given by Y = AκX where

− dAκt =

(
2λt +

κtA
κ
t

2ηt
− (Aκt )2

2ηt

)
dt− ZA

κ

t dW 0
t , AκT =∞. (2.19)

This singular terminal condition on Aκ is necessary to satisfy the constraint XT = 0. This equation has

a unique solution, due to Corollary A.2 in the appendix. By (2.18),

Xt = xe−
∫ t
0

Aκr
2ηr

dr.

The candidate of the optimal strategy is ξ∗ = Y/2η, where Y is the solution to (2.18). Since both Y and

η are F0-adapted, the consistency condition (2.6) reads µ∗ = E[ξ∗|F0] = ξ∗.

Lemma 2.12. Under Assumption 2.11, the processes Aκ, X, Y = AκX and ξ∗ = µ∗ = Y
2η have the

same sign as x. Moreover

Aκ ∈M−1, X ∈Mα, Y ∈Mα−1, ξ
∗ ∈Mα−1.

Proof. Let Ãκt = Aκt e
∫ t
0
κs
2ηs

ds. Due to Lemma A.1 in the appendix, the following estimate holds for any

0 ≤ t < T :
1

E
[∫ T

t
1

2ηs
e−

∫ s
0

κr
2ηr

dr ds
∣∣∣F0

t

] ≤ Ãκt .
Hence the process Aκt is bounded from below by:

Aκt ≥
e−

∫ t
0
κr
2ηr

dr

E
[∫ T

t
1

2ηs
e−

∫ s
0

κr
2ηr

dr ds
∣∣∣F0

t

] =
1

E
[∫ T

t
1

2ηs
e−

∫ s
t

κr
2ηr

dr ds
∣∣∣F0

t

] ≥ 2η?
1

(T − t)
. (2.20)

Hence (2.9) holds:

e−
∫ t
0

Aκr
2ηr

dr ≤ exp

(
−2η?

∫ t

0

1

2ηr(T − r)
dr

)
≤
(
T − t
T

)α
.

The conclusion on X can be deduced immediately. Again from Lemma A.1 in the appendix, Ãκ is

bounded from above:

Ãκt ≤
1

(T − t)2
E

[∫ T

t

(
2ηse

∫ s
0

κr
2ηr

dr + 2(T − s)2λse
∫ s
0

κr
2ηr

dr
)
ds

∣∣∣∣∣F0
t

]
.

Thus we get an upper bound on Aκ:

Aκt ≤
e−

∫ t
0
κr
2ηr

dr

(T − t)2
E

[∫ T

t

(
2ηse

∫ s
0

κr
2ηr

dr + 2(T − s)2λse
∫ s
0

κr
2ηr

dr
)
ds

∣∣∣∣∣F0
t

]

≤ 2

(T − t)2
E
[
‖η‖e

∫ T
0

κr
2ηr

dr(T − t) +
1

3
λmaxe

∫ T
0

κr
2ηr

dr(T − t)3

∣∣∣∣F0
t

]
≤ 2

(T − t)
e
κmaxT

2η?

[
‖η‖+

λmaxT
2

3

]
.
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Collecting all inequalities we get that Aκ ∈M−1 and

|ξ∗t | =
Aκt |Xt|

2ηt
= |x|A

κ
t e
−

∫ t
0

Aκr
2ηr

dr

2ηt

≤ |x|
η?Tα

[
‖η‖+

λmaxT
2

3

]
e
κmaxT

2η? (T − t)α−1
.

A similar inequality holds for Y .

It follows from the preceding lemma that Y is a non-negative or non-positive supermartingale so the

limit of Y at the terminal time T exists and is finite. Since X ∈ Mα, we deduce that limt↗T YtXt = 0.

Moreover, the process Z belongs to LpF0([0, T−]× Ω;R) for any p.

The following theorem verifies that ξ∗ is optimal. The proof is the similar to Proposition 2.9.

Theorem 2.13. Under Assumption 2.11 and if the initial value is deterministic, ξ∗(= µ∗) is the unique

optimal control as well as the equilibrium to MFG (1.7). Moreover the value function is given by:

V (x;µ∗) =
1

2
Aκ0x

2 +
1

2
E

[∫ T

0

κsµ
∗
sXs ds

]
, (2.21)

and is non-negative.

2.2.2 Private initial portfolio

Let us now return to the problem (2.17). Theorem 2.4 implies there exists a unique soluton (X,Y, Z) to

(2.17). From the solution to (2.18), we deduce that

µ∗t =
1

2ηt
E[Yt

∣∣F0
t ] =

E[X ]

2ηt
Aκt e

−
∫ t
0

Aκr
2ηr

dr,

where Aκ solves the BSDE (2.19). Since Y is given by Y = AX + B, we obtain (see equation (2.8) in

Section 2.1) that 
−dAt =

(
2λt −

A2
t

2ηt

)
dt− ZAt dW 0

t , AT = +∞

−dBt =

(
κtµ
∗
t −

AtBt
2ηt

)
dt− ZBt dW 0

t , BT = 0.

(2.22)

Note that A and B are F0-adapted. Thereby we have an explicit solution: for t ∈ [0, T ]

Bt = E

[∫ T

t

κsµ
∗
se
−

∫ s
t

(2ηr)−1Ar dr ds

∣∣∣∣∣F0
t

]
,

Xt = X e−
∫ t
0

(2ηr)−1Ar dr −
∫ t

0

(2ηs)
−1Bse

−
∫ t
s

(2ηr)−1Ar dr ds,

Yt =AtXt +Bt.

Again from the general analysis of Section 2.1, the system (2.22) has a unique solution; similar arguments

as in the proof of Proposition 2.9 can be applied to verify that the optimal state process for a given initial

position X = x ∈ R is given by:

X∗,xt = (x− E[X ])e−
∫ t
0

(2ηr)−1Ar dr + E[X ]e−
∫ t
0

(2ηr)−1Aκr dr. (2.23)

Thus, if different players hold different initial portfolios, then a trader’s optimal position consists of a

weighted sum of the competitors’ average portfolio size E[X ] and the deviation of the own initial position

from that average.
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Remark 2.14. By [40, Theorem 2.4] the unique solution Aκ,n to the BSDE

−dAκ,nt =

(
2λt +

κtA
κ,n
t

2ηt
− (Aκ,nt )2

2ηt

)
dt− ZA

κ,n

t dW 0
t , Aκ,nT = 2n

is increasing in κ. By Lemma A.3 in the appendix, this result carries over to the process Aκ. In particular,

Aκ ≥ A. Moreover Aκ0 > A0 if κ > 0 on some set of positive measure.

The preceding remark shows that the dependence of the optimal portfolio process on κ decreases if

E[X ] > 0. It also suggests that - contrary to the previous case - the sign of the optimal portfolio process

X∗ may change on the interval [0, T ]. In fact, if E[X ] > 0 and x ≥ E[X ], then X∗,x remains non-negative

on [0, T ]. However, if 0 < x < ζE[X ] where ζ := 1 − exp
(
A0−Aκ0

2‖η‖ t
)
> 0, then X∗,x becomes negative

shortly after the initial time; see also Figure 2 below.

2.2.3 Constant cost coefficients

In this section, we consider a deterministic benchmark example that can be solved explicitly.

Assumption 2.15. The processes λ, κ, η are positive constants.

Under the preceding assumption, the Riccati equation (2.19) reduces to

−dAκt =

(
2λ+

κAκt
2η
− (Aκt )2

2η

)
dt, AκT =∞.

Its explicit solution is given by

Aκt = 2ηγ coth (γ(T − t)) +
κ

2

where

γ :=

√
λ

η
+

κ2

16η2
.

If all players share the same initial portfolio (see Subsection 2.2.1), then the optimal portfolio process is

given by

X∗t = exp

(
− κ

4η
t

)
sinh(γ(T − t))

sinh(γT )
x (2.24)

and the optimal liquidation rate is given by

ξ∗t =

(
γ coth(γ(T − t)) +

κ

4η

)
X∗t

= exp

(
− κ

4η
t

)(
γ cosh(γ(T − t))

sinh(γT )
+
κ sinh(γ(T − t))

4η sinh(γT )

)
x.

When κ→ 0, then ξ∗t →
γ̃ cosh(γ̃(T−t))

sinh(γ̃T ) x with γ̃ =
√

λ
η . This corresponds to the benchmark model in [2].

This convergence can also be seen from Figure 1. Furthermore, we see that—as in the corresponding

single player models—the optimal liquidation rate is always positive, i.e., round trips are not beneficial.

Moreover, we notice that the portfolio process (2.24) corresponds to the optimal portfolio process in an

Almgren–Chriss model with adjusted risk aversion λ̃ = λ + κ2

16η and with additional exponential decay

of rate κ
4η .

When κ → ∞, then ξ∗0 → ∞ while ξ∗t → 0 for t > 0. That is, when the impact of interaction is very

strong, then the players trade very fast initially and very slowly afterwards. The intuitive reason is that

in this case an individual player would benefit from trading fast slightly before his competitors start
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Figure 1: Current state X∗ (left) and optimal liquidation rate ξ∗ (right) corresponding to parameters

T = 1, x = 1, λ = 5 and η = 5. The solid line corresponds to κ = 0, that is the Almgren-Chriss model

with temporary impact.

trading in order to avoid the negative drift generated by the mean-field interaction. As all the players

are statistically identical, they “coordinate” on an equilibrium trading strategy as depicted in Figure 2.

Thus, our model provides a possible explanation for large price increases or decreases in markets with

strategically interacting players with similar preferences.

If the players hold different initial portfolios (Subsection 2.2.2), then (2.23) shows that the optimal

portfolio process is given by

X∗,xt = (x− E[X ])
sinh(γ̃(T − t))

sinh(γ̃T )
+ exp

(
− κ

4η
t

)
sinh(γ(T − t))

sinh(γT )
E[X ].

Figure 2 confirms that the sign of X∗,x is indeed changing when x is small.

3 Approximate Nash Equilibrium

In this section we show that an ε-Nash equilibrium for the N player portfolio liquidation game can be

constructed from the solution to the MFG (1.7) when the number of players is large if all players share

the same cost structure.

Assumption 3.1. Assume for any i = 1, · · · , N , κi, ηi and λi admit the following expression

κit = κ(t,X i,W i
·∧t,W

0
·∧t), ηit = η(t,X i,W i

·∧t,W
0
·∧t), λit = λ(t,X i,W i

·∧t,W
0
·∧t)

for some non-negative deterministic bounded and measurable functions κ, η and λ.

The next result is an adaptation to the Yamada-Watanabe result for FBSDE. The proof follows from

the same arguments given in, e.g. [13] and [4].

Lemma 3.2. There exists a measurable function Φ : R × (C[0, T ])2 → Hα × (C[0, T−])2 such that for

any i = 1, · · · , N (
Xi
t , Y

i
t ,

∫ t

0

Zids

)
0≤t≤T

= Φ(X i,W i,W 0),
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Figure 2: Current state X∗,x corresponding to parameters T = 1, E[X ] = 1, λ = 5, η = 5 and κ = 100

for different values of the initial portfolio x.

where
(
Xi, Y i, Zi

)
is the solution to FBSDE (2.3) associated with (W 0,X i,W i, κi, ηi, λi). In particular,

there exists a function φ independent of (X 1, · · · ,XN ,W 0,W 1, . . . ,WN ) such that

ξ∗,i = φ(X i,W 0,W i), (3.1)

where ξ∗,i is an optimal control for agent i associated with (W 0,X i,W i, κi, ηi, λi), given by (2.2).

In view of the above lemma, under Assumption 3.1 each player’s unique best response ξ∗,i to the mean-

field equilibrium µ∗ can be represented in terms of the function φ as in (3.1). In particular, each individual

action has the same distribution as the mean-field equilibrium:

µ∗t = E[ξ∗,it |F0
t ], a.s. a.e. (3.2)

Proposition 2.8 guarantees the existence of a constant C such that

E

[∫ T

0

|ξ∗,it |2 dt

]
≤ C, (3.3)

and Lemma 3.2 yields a real-valued function ψ, which is independent of i, such that

E

[∫ T

0

|ξ∗,it |2 dt
∣∣∣∣X i = xi

]
= ψ(xi), (3.4)

Before we prove the main result of this section, we recall the cost functional JN,i
(
~ξ
)

from (1.4).

Theorem 3.3. Assume that Assumption 3.1 is satisfied and that the admissible control space for each

player i = 1, . . . , N is given by

Ai :=

{
ξ ∈ AFi(x

i) : E

[∫ T

0

|ξt|2 dt
∣∣∣∣X i = xi

]
≤M(xi)

}
for some fixed positive function M such that ψ ≤M . Then, for each 1 ≤ i ≤ N and each ξi ∈ Ai,

JN,i
(
~ξ∗
)
≤ JN,i(ξi, ξ∗,−i) +O

(
1√
N

)
,
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where ξ∗,i is given by (3.1), (ξi, ξ∗,−i) = (ξ∗,1, · · · , ξ∗,i−1, ξi, ξ∗,i+1, · · · , ξ∗,N ) and O
(

1√
N

)
is to be

interpreted as g(xi)√
N

for some real-valued function g independent of i.

Proof. By the symmetry of the N player game, it is sufficient to show the result for Player 1. We first

estimate the following term:

E

∫ T

0

µ∗t − 1

N

N∑
j=1

ξ∗,jt

2

dt

∣∣∣∣∣X 1 = x1


=

1

N2
E

∫ T

0

∑
i 6=j

(
µ∗t − ξ

∗,i
t

)(
µ∗t − ξ

∗,j
t

)
dt

∣∣∣∣∣X 1 = x1

+
1

N2
E

∫ T

0

N∑
j=1

(
µ∗t − ξ

∗,j
t

)2

dt

∣∣∣∣∣X 1 = x1

 .
Using (3.3) and (3.4), the second term is bounded by

2(M(x1) + (2N − 1)C)

N2
. For the first term,

if i, j 6= 1, then the conditional expectation reduces to the expectation and since ξ∗,i and ξ∗,j are

conditionally independent given W 0 for i 6= j,

E

[∫ T

0

(
µ∗t − ξ

∗,i
t

)(
µ∗t − ξ

∗,j
t

)
dt

∣∣∣∣∣X 1 = x1

]
= 0, i 6= j, i, j 6= 1.

If i = 1 6= j, then we see from Lemma 3.2 that

E

[∫ T

0

(
µ∗t − ξ

∗,1
t

)(
µ∗t − ξ

∗,j
t

)
dt

∣∣∣∣∣X 1 = x1

]
= E

[∫ T

0

Ψ(t, x1,W 1,W 0)
(
µ∗t − ξ

∗,j
t

)
dt

]

for some real-valued function Ψ. Using again conditional independence and (3.2) we see that this term

vanishes as well. As a result,

E

∫ T

0

µ∗t − 1

N

N∑
j=1

ξ∗,jt

2

dt

∣∣∣∣∣X 1 = x1

 ≤ 2(M(x1) + (2N − 1)C)

N2
. (3.5)

We are now ready to the prove the ε-equilibrium property of ~ξ∗. By (3.4), we have that ξ∗,1 ∈ A1. For

a given strategy ξ ∈ A1, let Xξ be the corresponding state process and let J1(·;µ∗) be Player 1’s cost

function when the average trading rate is replaced by the mean-field equilibrium. By Proposition 2.9,

J1(ξ;µ∗) ≥ J1(ξ∗,1;µ∗), which implies:

JN,1(ξ, ξ∗,2, · · · , ξ∗,N )− JN,1(ξ∗,1, · · · , ξ∗,N )

≥ E

∫ T

0

κ1
t

 1

N

N∑
j=2

ξ∗,jt +
1

N
ξt

Xξ
t + η1

t ξ
2
t + λ1

t (X
ξ
t )2

 dt

∣∣∣∣∣X 1 = x1


− E

[∫ T

0

(
κ1
tµ
∗
tX

ξ
t + η1

t (ξt)
2 + λ1

t (X
ξ
t )2
)
dt

∣∣∣∣∣X 1 = x1

]

+ E

[∫ T

0

(
κ1
tµ
∗
tX
∗,1
t + η1

t (ξ∗,1t )2 + λ1
t (X

∗,1
t )2

)
dt

∣∣∣∣∣X 1 = x1

]

− E

∫ T

0

κ1
t

1

N

N∑
j=1

ξ∗,jt X∗,1t + η1
t (ξ∗,1t )2 + λ1

t (X
∗,1
t )2

 dt

∣∣∣∣∣X 1 = x1


:= I1 + I2.
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For the first difference I1, using (3.5) we have that

sup
ξ∈A1

|I1|

≤ κmax

N
sup
ξ∈A1

E

[∫ T

0

|Xξ
t ||ξt| dt

∣∣∣∣∣X 1 = x1

]
+ κmax sup

ξ∈A1

E

∫ T

0

|Xξ
t |

∣∣∣∣∣∣ 1

N

N∑
j=2

ξ∗,jt − µ∗t

∣∣∣∣∣∣ dt
∣∣∣∣∣X 1 = x1


≤ κmax

N
sup
ξ∈A1

(
E

[∫ T

0

|Xξ
t |2 dt

∣∣∣∣∣X 1 = x1

]) 1
2

sup
ξ∈A1

(
E

[∫ T

0

|ξt|2 dt

∣∣∣∣∣X 1 = x1

]) 1
2

+ κmax sup
ξ∈A1

(
E

[∫ T

0

|Xξ
t |2 dt

∣∣∣∣∣X 1 = x1

]) 1
2

E

∫ T

0

∣∣∣∣∣∣ 1

N

N∑
j=1

ξ∗,jt − µ∗t −
1

N
ξ∗,1t

∣∣∣∣∣∣
2

dt

∣∣∣∣∣X 1 = x1




1
2

≤ M(x1)κmaxT

N
+

2κmaxT
√
M(x1)

N

(√
M(x1) +

√
2(M(x1) + (2N − 1)C)

)
.

For the second difference I2, again using (3.5), we have that

I2 ≤ κmax

(
E

[∫ T

0

|X∗,1t |2 dt

∣∣∣∣∣X 1 = x1

]) 1
2

E

∫ T

0

∣∣∣∣∣∣µ∗t − 1

N

N∑
j=1

ξ∗,jt

∣∣∣∣∣∣
2

dt

∣∣∣∣∣∣∣X 1 = x1




1
2

≤
2κmaxT

√
M(x1)

√
(M(x1) + (2N − 1)C)

N

This proves the assertion.

4 Approximation by unconstrained MFGs

In this section, we prove that the solution to our singular MFG can be approximated by the solutions

to non-singular MFGs under additional assumptions on the market impact parameter. Specifically, we

consider the following unconstrained MFGs:

1. fix a process µ;

2. solve the standard optimization problem: minimize

Jn(ξ;µ) = E

[∫ T

0

(
κtµtXt + ηtξ

2
t + λtX

2
t

)
dt+ nX2

T

∣∣∣∣∣X
]

such that dXt = −ξt dt, X0 = X ;

3. search for the fixed point µt = E[ξ∗,Xt |F0
t ], for a.e. t ∈ [0, T ].

(4.1)

We will need the following assumption on the solution A ∈ M−1 to the first equation in (2.8) with the

terminal condition +∞. It implies in particular that X∗ ∈ H1.

Assumption 4.1. There exists a constant C such that for any 0 ≤ r ≤ s < T

exp

(
−
∫ s

r

Au
2ηu

du

)
≤ C

(
T − s
T − r

)
.

The following result is proven in the appendix.

Lemma 4.2. Assumption 4.1 holds under each of the following conditions:
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• η is deterministic;

• 1/η is a positive martingale;

• 1/η has uncorrelated multiplicative increments, namely for any 0 ≤ s ≤ t

E
[
ηs
ηt

∣∣∣∣Fs] = E
[
ηs
ηt

]
.

Using the same arguments as in Section 2, the unconstrained control problem leads to the following

conditional mean field FBSDE:

dXn
t =

(
−A

n
tX

n
t +Bnt
2ηt

)
dt,

−dBnt =

(
−A

n
t B

n
t

2ηt
+ κtE

[
AntX

n
t +Bnt
2ηt

∣∣∣∣F0
t

])
dt− ZB

n

t dW̃t,

dY nt =

(
−2λtX

n
t − κtE

[
AntX

n
t +Bnt
2ηt

∣∣∣∣F0
t

])
dt+ ZY

n

t dW̃t,

Xn
0 = X ,

BnT = 0,

Y nT = 2nXn
T ,

(4.2)

where −dA
n
t =

{
2λt −

(Ant )2

2ηt

}
dt− ZA

n

t dW̃t,

AnT = 2n.

(4.3)

The existence of a solution (An, ZA
n

) to the BSDE (4.3) can be deduced from Lemma A.3. By the same

lemma the sequence {An} is a non-decreasing sequence converging pointwise to A and there exists a

constant C > 0 such for any n,

‖An‖M−1
≤ ‖An‖Mn

−1
≤ C,

where the space Mn
l is defined as

Mn
l :=

{
U ∈ PF([0, T ]× Ω;R ∪ {∞}) :

(
T − .+ η?

n

)−l
U· ∈ L∞F ([0, T ]× Ω;R ∪ {∞})

}
,

and endowed with the norm

‖U‖Mn
l

:= ess sup
(t,ω)×[0,T ]×Ω

|Ut|(
T − t+ η?

n

)l .
We shall also need the following analogs to the space Hν :

Hnl :=

{
U ∈ PF([0, T ]× Ω;R ∪ {∞}) :

(
T − .+ η?

n

)−l
U· ∈ S2

F([0, T ]× Ω;R ∪ {∞})
}
,

endowed with the norm

‖U‖n,l :=

E

 sup
0≤t≤T

∣∣∣∣∣ Ut(
T − t+ η?

n

)l
∣∣∣∣∣
2
 1

2

.

The next result can be obtained using similar arguments as in the proof of Theorem 2.8. In fact, we

have a slightly stronger result.
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Theorem 4.3. Assume that Assumption 2.3 holds and that X is a square integrable random variable.

Then, for any fixed p ∈ [0, 1] and f ∈ L2
F([0, T ]× Ω;R), there exists a unique solution

(Xn, Bn, Y n, ZB
n

, ZY
n

) ∈ Hnα ×Hnγ × S2
F([0, T ]× Ω;R)× L2

F([0, T ]× Ω;Rm)× L2
F([0, T ]× Ω;Rm)

to the following FBSDE system:

dXn
t = − 1

2ηt
(AntX

n
t +Bnt ) dt,

−dBnt =

(
κtpE

[
1

2ηt
(AntX

n
t +Bnt )

∣∣∣∣F0
t

]
+ ft −

Ant B
n
t

2ηt

)
dt− ZB

n

t dW̃t,

dY nt =

(
−2λtX

n
t − κtpE

[
AntX

n
t +Bnt
2ηt

∣∣∣∣F0
t

]
− ft

)
dt+ ZY

n

t dW̃t,

Xn
0 = X

BnT = 0,

Y nT = 2nXn
T .

(4.4)

Proof. The proof is similar to that of Theorem 2.8. We only need to note that by Lemma A.3,

e−
∫ t
s

Anr
2ηr

dr ≤
(
T − t+ η?

n

T − s+ η?
n

)α
.

In order to establish the convergence of the value functions of the unconstrained problems to the value

function of the constrained problem we need a uniform norm estimate for the sequence (Xn, Bn, Y n).

Lemma 4.4. Let Assumption 2.3 hold. There exists a constant C > 0 such that

‖Xn‖n,α + ‖Bn‖n,γ + E

[∫ T

0

|Y nt |2 dt

]
≤ C, (4.5)

for any n where (Xn, Bn, Y n) is the unique solution to (4.2).

Proof. The proof is split into three steps.

Step 1. When p = 0 in (4.4), there exists R ∈ R independent of n such that

‖Xn‖n,α + ‖Bn‖n,γ +

(
E

[∫ T

0

|Y nt |2 dt

]) 1
2

≤ R.

This bound follows from modifications of arguments given in the proof of Lemma 2.6. In fact,

‖Bn‖n,γ ≤ ‖Bn‖γ ≤ C‖f‖L2 ≤ R1.

Moreover,

|Xn
t | ≤

|X |(T − t+ η?
n )α

(T + η?
n )α

+ C

∫ t

0

|Bns |
(
T − t+ η?

n

T − s+ η?
n

)α
ds.

This implies ‖Xn‖n,α ≤ R2. Finally, by analogy to the proof of Lemma 2.7, doing integration by part

for XnY n, we have

E

[∫ T

0

(Y nt )2 dt

]
≤ CE

[∫ T

0

(Xn
t )2 dt

]
+ CE

[∫ T

0

f2
t dt

]
≤ R3.
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Step 2. Suppose that for some p ∈ [0, 1], the solution to (4.4) satisfies

‖Xn‖n,α + ‖Bn‖n,γ +

(
E

[∫ T

0

|Y nt |2 dt

]) 1
2

≤ kR,

for some k ≥ 1 independent of n. Then there exists d > 0 independent of p such that the solution

(X̃n, B̃n, Ỹ n) to (4.4) with p replaced by p + d satisfies the same estimate for some K > k:

‖X̃n‖n,α + ‖B̃n‖n,γ +

(
E

[∫ T

0

|Ỹ nt |2 dt

]) 1
2

≤ KR. (4.6)

To prove this assertion, we introduce for any given Y n, f ∈ L2
F([0, T ]× Ω;R) the FBSDE system

dX̃n
t = − 1

2ηt
(Ant X̃

n
t + B̃nt ) dt,

−dB̃nt =

(
κtpE

[
1

2ηt

(
Ant X̃

n
t + B̃nt

)∣∣∣∣F0
t

]
+ κtdE

[
Y nt
2ηt

∣∣∣∣F0
t

]
+ ft −

Ant B̃
n
t

2ηt

)
dt− ZB̃

n

t dW̃t,

dỸ nt =

(
−2λtX̃

n
t − κtpE

[
Ant X̃

n
t + B̃nt
2ηt

∣∣∣∣∣F0
t

]
− κtdE

[
Y nt
2ηt

∣∣∣∣F0
t

]
− ft

)
dt+ Z Ỹ

n

t dW̃t,

X̃n
0 = X ,

B̃nT = 0,

Ỹ nT = 2nX̃n
T .

(4.7)

Arguing as in the proof of Theorem 4.3, there exists a unique solution to (4.7). This defines a mapping

Γ : Y n → Ỹ n.

on L2
F([0, T ] × Ω;R). We now show the Γ has a unique fixed point and that this fixed point belongs to

BL
2

2kR(0), the subset of L2
F([0, T ]× Ω;R) such that the L2-norm is bounded by 2kR.

By the same arguments as in the proof as Lemma 2.7 we have

E

[∫ T

0

|Γ(Y n)(t)− Γ(Y
n
)(t)|2 dt

]
≤ CdE

[∫ T

0

|Y nt − Y
n

t |2 dt

]
≤ 1

4
E

[∫ T

0

|Y nt − Y
n

t |2 dt

]
,

where C does not depend on n and d is small enough but independent of p and of n. Taking Y
n

= 0, we

have (
E

[∫ T

0

|Ỹ nt |2 dt

]) 1
2

≤ 1

2

(
E

[∫ T

0

|Y nt |2 dt

]) 1
2

+

(
E

[∫ T

0

|Γ(0)(t)|2 dt

]) 1
2

.

Note that Γ(0) corresponds to the solution to (4.4) with p. By assumption,(
E

[∫ T

0

|Γ(0)(t)|2 dt

]) 1
2

≤ kR.

Thus, if we assume Y n ∈ BL2

2kR, (
E

[∫ T

0

|Ỹ nt |2 dt

]) 1
2

≤ 2kR.

This implies that Γ is a mapping from BL
2

2kR(0) to itself. Since BL
2

2kR(0) is a Banach space the unique

fixed point belongs to BL
2

2kR(0). This yields the desired L2 estimate for Ỹ .
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Let (X̃n, B̃n) be the solution corresponding to Ỹ n and p + d. Then, by Hölder’s inequality,∣∣∣B̃nt ∣∣∣
(T − t)γ

≤ 1

(T − t)γ
E

[∫ T

t

κs(p + d)E

[
|Ỹ ns |
2ηs

∣∣∣∣∣F0
s

]
ds

∣∣∣∣∣Ft
]

≤ κmax

2η?

(
E

[∫ T

t

E
[
|Ỹ ns |

1
1−γ

∣∣∣F0
s

]
ds

∣∣∣∣∣Ft
])1−γ

.

Doob’s maximal inequality yields that

E

 sup
0≤t≤T

∣∣∣∣∣ B̃nt
(T − t)γ

∣∣∣∣∣
2


≤ (κmax)2

4η2
?

E

 sup
0≤t≤T

(
E

[∫ T

t

E
[
|Ỹ ns |

1
1−γ

∣∣∣F0
s

]
ds

∣∣∣∣∣Ft
])2(1−γ)


≤ CE

[∫ T

0

|Ỹ nt |2 dt

]
.

Hence,

‖B̃n‖n,γ ≤ C

(
E

[∫ T

0

|Ỹ nt |2 dt

]) 1
2

≤ CR

and

‖X̃n‖n,α ≤ CR.

Step 3. Since d is independent of p, by iteration for only finitely many times, we have the solution for

(4.2) with p = 1 and f = 0 with the uniform estimate (4.5).

Under Assumption 4.1, the value α appearing in the estimate of Theorem 2.8 is equal to one. That is

‖X∗‖1 <∞. (4.8)

This allows us to prove the convergence of the optimal position and control.

Lemma 4.5. Let (X,B, Y ) be the solution to the FBSDEs (2.3) and (2.10) (Proposition 2.8). Under

Assumption 2.3 and Assumption 4.1,

lim
n→+∞

{
E

[∫ T

0

|Xn
t −Xt|2 dt

]
+ E

[∫ T

0

|Bnt −Bt|2 dt

]
+ E

[∫ T

0

|Y nt − Yt|2 dt

]}
= 0.

Proof. Using the same arguments as in the proof of Lemma 2.7, we have for each ε > 0

E

[∫ T−ε

0

|Y nt − Yt|2 dt

]
+ E

[∫ T−ε

0

|Xn
t −Xt|2 dt

]
≤ CE

[
|(BnT−ε −BT−ε)(Xn

T−ε −XT−ε)|
]

+ CE
[
|(AnT−ε −AT−ε)XT−ε(X

n
T−ε −XT−ε)|

]
.

(4.9)

The two terms in the above summation admit the following estimates

E[|(BnT−ε −BT−ε)(Xn
T−ε −XT−ε)|]

≤ CE[|BnT−ε|2] + CE[|BT−ε|2] + CE[|Xn
T−ε|2] + CE[|XT−ε|2]

≤ C

(
ε+

1

n

)2γ

‖Bn‖2n,γ + C

(
ε+

1

n

)2

‖Xn‖2n,α + Cε2γ‖B‖2γ + Cε2‖X‖21,
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respectively,

E[|(AnT−ε −AT−ε)XT−ε(X
n
T−ε −XT−ε)|]

≤ CE

[
sup

0≤t≤T

∣∣∣∣ Xt

T − t

∣∣∣∣
(

sup
0≤t≤T

|Xn
t |(

T − t+ η?
n

)α
)(

ε+
1

n

)α
+ ε sup

0≤t≤T

|Xt|
T − t

]
(by Lemma A.1 and Lemma A.3)

≤ C

[(
ε+

1

n

)α
+ ε

]
(‖Xn‖2n,α + ‖X‖21)

≤ C

[(
ε+

1

n

)α
+ ε

]
(by Lemma 4.4 and (4.8)).

Letting ε go to zero in (4.9), by Theorem 2.8 and Lemma 4.4 we get

E

[∫ T

0

|Y nt − Yt|2 dt

]
+ E

[∫ T

0

|Xn
t −Xt|2 dt

]
≤ C

(
1

n

)2γ

+ C

(
1

n

)2

+
C

nα
.

Hence we obtain the desired limit for (Y n − Y ) and (Xn −X). By the expression for B, we have

|Bnt −Bt| ≤ E

[∫ T

t

e−
∫ s
t

Anr
2ηt

drκsE
[
|Y ns − Ys|

2ηs

∣∣∣∣F0
s

]
ds

∣∣∣∣Ft
]

+ E

[∫ T

t

∣∣∣∣1− e− ∫ s
t

(Ar−Anr )

2ηt
dr

∣∣∣∣κsE [ |Ys|2ηs

∣∣∣∣F0
s

]
ds

∣∣∣∣Ft
]
.

Let us recall that {An} is a non-decreasing sequence converging to A. This leads to

E

[∫ T

0

|Bnt −Bt|2 dt

]
→ 0.

Let us denote by V n(X ;µn) the value function associated with the penalized problem (4.1). The next the-

orem shows the convergence of V n(X ;µn) := V n(X ) to the value function V (X ;µ∗) := V (X ) associated

with the constrained MFG.

Theorem 4.6. Under Assumption 2.3 and Assumption 4.1, the value function V n(X ) converges to

V (X ) in L1(Ω).

Proof. Let (Xn, Y n, Bn) be the solution in Theorem 4.3. Recall that ξn,∗ = Y n

2η is the optimal strategy

for the penalized problem with degree n and the related optimal process Xn,∗ is equal to Xn. Thus, with(
µn,∗ = E

[
Y nt
2ηt

∣∣∣F0
t

])
0≤t≤T

fixed, the optimal strategy ξ∗ for the constraint optimization is an admissible

control for the penalized optimization. We denote by X∗ = X the optimal state process related to ξ∗

(Proposition 2.9 and Equation (2.14)). Let us define

∆n = E

[∫ T

0

κsE
(
Ys − Y ns

2ηs

∣∣∣∣F0
s

)
X∗s ds

∣∣∣∣∣X
]
.

From Lemma 4.5, lim
n→+∞

E(|∆n|) = 0. Recalling that

J(X , ξn,∗;µn,∗) = E

[∫ T

0

(
κsµ

n,∗Xn,∗
s + ηs(ξ

n,∗
s )2 + λs(X

n,∗
s )2

)
ds

∣∣∣∣∣X
]
,
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we have

V (X ) = E

[∫ T

0

κsµ
∗X∗s + ηs(ξ

∗
s )2 + λs(X

∗
s )2 ds

∣∣∣∣∣X
]

= E

[∫ T

0

κsµ
n,∗X∗s + ηs(ξ

∗
s )2 + λs(X

∗
s )2 ds

∣∣∣∣∣X
]

+ ∆n

≥ E

[∫ T

0

(
κsµ

n,∗Xn,∗
s + ηs(ξ

n,∗
s )2 + λs(X

n,∗
s )2

)
ds+ n(Xn,∗

T )2

∣∣∣∣∣X
]

+ ∆n

= V n(X ) + ∆n ≥ J(X , ξn,∗;µn,∗) + ∆n.

Hence we deduce that

V (X )− J(X , ξn,∗;µn,∗) ≥ V (X )− Vn(X ) ≥ ∆n,

thus

|V (X )− Vn(X )| ≤ |∆n|+ |V (X )− J(X , ξn,∗;µn,∗)|.

Again by Lemma 4.5,

lim
n→+∞

E|V (X )− J(X , ξn,∗;µn,∗)| = 0.

Remark 4.7. As a by-product of the proof, we get that lim
n→+∞

E
[
n(Xn,∗

T )2
]

= 0. Moreover

|Xn,∗
T | ≤

C

n

(
|X |+ sup

0≤t≤T

|Bnt |(
T − t+ η?

n

)γ
)
→ 0 a.s..

The proof of convergence of the value function simplifies substantially under the common information

assumption (Subsection 2.2.1). In particular, Assumption 4.1 is not necessary here. In this case, Y n =

AnXn where

−dAnt =

(
2λt +

κtA
n
t

2ηt
− (Ant )2

2ηt

)
dt− ZA

n

t dW 0
t , AnT = 2n

and

dXn
t = −A

n
tX

n
t

2ηt
dt, X0 = x ∈ R

The optimal strategy and the resulting portfolio process are given by, respectively,

ξn,∗t = µn,∗t =
AntX

n
t

2ηt
, Xn,∗

t = Xn
t = xe−

∫ t
0

Anr
2ηr

dr t ∈ [0, T ].

Since the sequence An is non-decreasing and converges to A, we deduce that Xn,∗ converges to X∗

a.s. and that ξn,∗ converges to ξ∗ a.e. a.s.. Moreover, for fixed µn,∗, ξ∗ is suboptimal to the penalized

optimization. This implies that

E

[∫ T

0

(
κsξ
∗
sX
∗
s + ηs(ξ

∗
s )2 + λs(X

∗
s )2
)
ds

]

= E

[∫ T

0

(
κsξ

n,∗
s X∗s + ηs(ξ

∗
s )2 + λs(X

∗
s )2
)
ds

]
+ E

[∫ T

0

κsX
∗
s (ξ∗s − ξn,∗s ) ds

]

≥ E

[∫ T

0

(
κsξ

n,∗
s Xn,∗

s + ηs(ξ
n,∗
s )2 + λs(X

n,∗
s )2

)
ds+ n(Xn,∗

T )2

]
+ E

[∫ T

0

κsX
∗
s (ξ∗s − ξn,∗s ) ds

]

≥ E

[∫ T

0

(
κsξ

n,∗
s Xn,∗

s + ηs(ξ
n,∗
s )2 + λs(X

n,∗
s )2

)
ds

]
+ E

[∫ T

0

κsX
∗
s (ξ∗s − ξn,∗s ) ds

]
.
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For any ε > 0, it holds

lim
n→+∞

E

[∫ T−ε

0

(
κsξ

n,∗
s Xn,∗

s + ηs(ξ
n,∗
s )2 + λs(X

n,∗
s )2

)
ds

]

= E

[∫ T−ε

0

(
κsξ
∗
sX
∗
s + ηs(ξ

∗
s )2 + λs(X

∗
s )2
)
ds

]
.

Hence, the monotone convergence theorem implies

lim
n→∞

E

[∫ T

0

(
κsξ

n,∗
s Xn,∗

s + ηs(ξ
n,∗
s )2 + λs(X

n,∗
s )2

)
ds+ n(Xn,∗

T )2

]

≥ E

[∫ T

0

(
κsξ
∗
sX
∗
s + ηs(ξ

∗
s )2 + λs(X

∗
s )2
)
ds

]
.

(4.10)

Moreover,

|κsX∗s (ξ∗s − ξn,∗s )| ≤ κmax|x||ξ∗s − ξn,∗s |,

which is L2 bounded uniformly in n, due to Lemma 4.4. Vitali convergence implies

lim
n→∞

E

[∫ T

0

κsX
∗
s (ξ∗s − ξn,∗s ) ds

]
= 0. (4.11)

The convergence (4.10) and (4.11) yields the desired result.

A Appendix

In this appendix we recall an existence of solutions result for a stochastic Riccati equation with singular

terminal condition and prove Lemma 4.2. We assume throughout that λ, η and 1/η are bounded.

A.1 Stochastic Riccati equations with singular terminal value

Lemma A.1. [3, Theorem 2.2][28, Theorem 6.1, Theorem 6.3] In S2
F([0, T−]×Ω;R)×L2

F([0, T−]×Ω;Rm)

there exists a unique solution to −dAt =

(
2λt −

A2
t

2ηt

)
dt− ZAt dWt,

AT = ∞.

Moreover, there holds the following estimate

1

E
[∫ T

t
1

2ηs
ds
∣∣∣Ft] ≤ At ≤

1

(T − t)2
E

[∫ T

t

2ηs + 2(T − s)2λs ds

∣∣∣∣∣Ft
]
. (A.1)

Corollary A.2. The BSDE (2.19)−dAt =

(
2λt +

κtAt
2ηt

− A2
t

2ηt

)
dt− ZAt dW 0

t ,

AT = ∞.

has a unique solution.

31



Proof. Let Ãt = Ate
∫ t
0
κs
2ηs

ds. Then,
−dÃt =

[
2λte

∫ t
0
κs
2ηs

ds − Ã2
t

2ηte
∫ t
0
κs
2ηs

ds

]
dt− Z̃t dW 0

t ,

ÃT =∞.

(A.2)

Hence, the assertion follows from the preceding lemma.

Lemma A.3. For each n, there exists a unique solution An to the BSDE−dA
n
t =

(
2λt −

(Ant )2

2ηt

)
dt− ZA

n

t dWt,

AnT = 2n.

(A.3)

Ant ≥
1

1
2n + E

[∫ T
t

1
2ηs

ds
∣∣∣Ft] .

Moreover, the sequence An is non-decreasing and converges to A. There exists a constant C such that

for any n:

‖An‖M−1 + ‖An‖Mn
−1
≤ C.

Proof. The first and second assertions are results of [3, Proposition 3.1,Theorem 3.2], respectively. For

any t, n and a, we have

2λt −
a2

2ηt
≤ 2λt −

2(
T − t+ η?

n

)a+
2ηt(

T − t+ η?
n

)2 = g(t, a).

Let us denote by Ψn the solution of the BSDE with generator g and terminal condition 2n. By the

comparison principle for BSDEs, we have Ant ≤ Ψn
t and by the solution formula for linear BSDEs,

Ψn
t =

(
T + η?

n

T − t+ η?
n

)2

E

[( η?
n

T + η?
n

)2

2n+

∫ T

t

(
T − s+ η?

n

T + η?
n

)2
(

2ηs(
T − s+ η?

n

)2 + 2λs

)∣∣∣∣∣Ft
]

=
2η2
?

n

1(
T − t+ η?

n

)2 +
1(

T − t+ η?
n

)2E
[∫ T

t

(
2ηs + 2

(
T − s+

η?
n

)2

λs

)∣∣∣∣∣Ft
]
.

Hence (
T − t+

η?
n

)
Ψn
t

≤ 2η2
?

η? + n(T − t)
+

1(
T − t+ η?

n

)E[∫ T

t

(
2ηs + 2

(
T − s+

η?
n

)2

λs

)∣∣∣∣∣Ft
]

≤ 2η? +
1

T − t
E

[∫ T

t

(
2ηs + 2

(
T − s+

η?
n

)2

λs

)∣∣∣∣∣Ft
]

= C.

Thus
(
T − t+ η?

n

)
Ant ≤ C, that is ‖An‖Mn

−1
≤ C.

A.2 On Assumption 4.1

Assumption 4.1 states that there exists a constant C such that a.s. for any 0 ≤ r ≤ s < T

exp

(
−
∫ s

r

Au
2ηu

du

)
≤ C

(
T − s
T − r

)
.
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The left-hand side is equal to the optimal state process χ of the control problem studied in [3, 28] with

initial value equal to 1 at time r. In particular from the proof of [3, Theorem 4.2], the process M defined

on [r, T ) by

Ms =
1

Ar

[
Asχs + 2

∫ s

r

λuχudu

]
is a non-negative local martingale with Mr = 1. Hence for any s ∈ [r, T )

exp

(
−
∫ s

r

Au
2ηu

du

)
= χs ≤

Ar
As

Ms ≤
‖η‖+ Tλmax

η?

(
T − s
T − r

)
Ms = C

(
T − s
T − r

)
Ms.

Since M is also a non-negative supermartingale Mt converges almost surely as t goes to T and the limit

MT satisfies E(MT ) ≤ 1. Therefore Assumption 4.1 does not strike us as overly restrictive.

Proof of Lemma 4.2. From (A.1)

− Au
2ηu
≤ − 1

E
[∫ T

u
ηu
ηs
ds
∣∣∣Fu] = − 1∫ T

u
E
[
ηu
ηs

∣∣∣Fu] ds .
By the very definition of uncorrelated multiplicative increments for 1/η and from [3, Lemma 5.1]

− Au
2ηu
≤ − 1∫ T

u
E
[
ηu
ηs

]
ds

= − 1∫ T
u

E[1/ηs]
E[1/ηu] ds

= − E [1/ηu]∫ T
u
E [1/ηs] ds

=
1

Nu
dNu

with Nu :=
∫ T
u
E [1/ηs] ds. Hence

exp

(
−
∫ s

r

Au
2ηu

du

)
= exp

(∫ s

r

1

Nu
dNu

)
=
Ns
Nr

=

∫ T
s
E [1/ηv] dv∫ T

r
E [1/ηv] dv

≤ ‖η‖
η?

(
T − s
T − r

)
.

If 1/η is a positive martingale, then again from [3, Lemma 5.1], we get that 1/η has uncorrelated

multiplicative increments. If η is deterministic, we have directly that

− Au
2ηu
≤ − 1

ηu
∫ T
u

1
ηs
ds

=
1

Nu

dNu
du

.
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